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1. JNTRODUCTION
Theory of toric varieties, which was laid down by Demazure, Miyake-

Oda and Mumford etc. around 1970 can be viewed as abridge between
algebraic geometry and combinatorics. In fact, it is based on the fol-
lowing two fundamental facts.

1st fundamental fact. There is aone-t0-0ne correspondence between
toric varieties of complex dimension n and fans of real dimension n.

2nd fundamental fact. To an ample line bundle over acompact toric
variety $\Lambda I$ of complex dimension $n$ , there is amap (called amoment
map) $\Phi:\Lambda I$ $arrow \mathbb{R}^{n}$ such that $\Phi(M)$ is alattice convex polytope of
dimension $n$ .

Here atoric variety of complex dimension $n$ is anormal algebraic
variety with $(\mathbb{C}^{*})^{n}$-action having adense orbit, and afan of real dimen-
sion $n$ is acollection of cones in $\mathbb{R}^{n}$ with apex at the origin satisfying
certain conditions. The details can be found in [3] and we will illustrate
these notions with examples later. Because of the 1st fundamental fact,
all geometrical information on atoric variety such as cohomology and
characteristic numbers call be read from the associated fan. However,
those are topological invariants, so one can expect to develop the the-
ory of toric varieties using only topological technique to some extent.
It turns out that this is possible and this point of view enables us to
treat more general combinatorial objects what we call multi-fan and
multi-polytope. In this note, we will overview the theory of toric vari-

$\mathrm{e}\mathrm{t}\mathrm{i}\mathrm{e}\mathrm{s}\prime \mathrm{f}\mathrm{r}\mathrm{o}\mathrm{m}$ the topological point of view, which is developed in [7], [11],
[8], [9], [13] and [12]. The subjects treated in [2] and [1] are closely
related to the subject treated in this note
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2. How TO ASSOCIATE A FAN WITHA SMOOTH TORIC VARIETY

$\backslash \mathrm{R}’\mathrm{e}$ begin with two simple but basic examples of toric varieties.

Example 2.1. Let $(g_{1},$
\ldots ,

$g_{n})\in(\mathbb{C}^{*})^{n}$ .

(1) $\mathbb{C}^{n}$ with the action of $(\mathbb{C}^{*})^{n}$ given by
$(z_{1}, \ldots, z_{n})\mapsto(g_{1}z_{1}, \ldots, g_{n}z_{n})$

is anon-compact smooth toric variety.

(2) $\mathbb{C}P^{n}$ with the action of $(\mathbb{C}^{*})^{n}$ given by
$[z_{1}, \ldots, z_{n}, z_{n+1}]\mapsto[g_{1}z_{1}, \ldots, g_{r\iota}z_{n}, z_{n+1}]$

is acompact toric variety.

Products of toric varieties are again toric varieties. Rather non-
trivial examples of toric varieties are Hirzebruch surfaces.

If $\Lambda I$ is atoric variety of complex dimension $n$ , then $\Lambda I$ has adense
orbit by definition, which is isomorphic to $(\mathbb{C}^{*})^{n}$ , and other orbits are
known to be finitely many and isomorphic to $(\mathbb{C}^{*})^{l\dot{\iota\prime}}$ for some $f_{v}^{n}<n$ .
Let $\Lambda/I_{i}$ $(i=1, \ldots, d)$ be the closure of complex codimension one or-
bits. They are invariant divisors and fixed by certain C’-subgroups.
For instance, when $M=\mathbb{C}^{n}$ in the above example, $d=n$ and $\Lambda I_{i}’ \mathrm{s}$

are coordinate hyperplanes $z_{i}=0$ , and when $\Lambda/I=\mathbb{C}P^{n}$ , $d$ $=n+1$
and A$I_{\dot{l}}$ ’s are hypersurfaces $z_{i}=0$ . The C’-subgroup which fixes $\Lambda fI_{i}$

depends on $M_{i}$ . When $\Lambda I$ is smooth, $\Lambda I_{i}$ is aconnected complex codi-
mension one smooth submanifold fixed by acertain C’-subgroup. $\Lambda I_{i}’ \mathrm{s}$

are invariant dovisors and we call $\Lambda I_{i}$ a $ch,aro_{l}c,teristic$, submanifold. 1Ve
note that $\Lambda f\backslash \bigcup_{i}\Lambda I_{i}$ is the dense orbit isomorphic to $(\mathbb{C}^{*})^{n}$ . Therefore,
one can expect that toric varieties can be determined by characteris-
tic submanifolds and their neighborhoods. We extract two data from
them.

1st data. We set
$\Sigma_{M}:=$ {I $\subset$ {1, \ldots , ci} $|\cap\Lambda i\in II_{i}\neq\emptyset$ }.

One easily checks that this is an abstract simplicial complex. The
dimension of the simplicial complex is at most $n-1$ and it attains
$n-1$ if and only if the action of $(\mathbb{C}^{*})^{n}$ on $\Lambda f$ has afixed point .

2nd data. The set $\mathrm{H}\mathrm{o}\mathrm{m}(\mathbb{C}^{*}, (\mathbb{C}^{*})$”) consisting of homomorphisms from
C’ to $(\mathbb{C}^{*})^{n}$ is an abelian group under the multiplication on $(\mathbb{C}^{*})^{n}$ and
naturally isomorphic to $\mathbb{Z}^{n}$ . In the following we make the following
identification

$\mathrm{H}_{0\mathrm{l}}\mathrm{n}(\mathbb{C}^{*}, (\mathbb{C}^{*})^{n})=\mathbb{Z}^{n}$ .
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An element in $\mathrm{H}\mathrm{o}\mathrm{m}(\mathbb{C}^{*}, (\mathbb{C}^{*})^{n})$ determines aC’-subgroup of $(\mathbb{C}^{*})^{n}$ as
the image of $\mathbb{C}^{*}$ , and two non-trivial elements in $\mathrm{H}\mathrm{o}\mathrm{m}(\mathbb{C}^{*}, (\mathbb{C}^{*})^{n})$ deter-
mine the same C’-subgroup if and only if their corresponding vectors
in $\mathbb{Z}^{n}$ lie on asame line. To each characteristic submanifold $\Lambda I_{i}$ , an
element $v_{i}\in \mathrm{H}\mathrm{o}\mathrm{m}(\mathbb{C}^{*}, (\mathbb{C}^{*})^{n})$ satisfying the follo wing two conditions is
uniquely detemined:

(1) $v_{i}(\mathbb{C}^{*})$ fixes $\Lambda/I_{i}$

(2) $v_{i}(g)_{*}w=gw$ for $w$ in the normal bundle of $\Lambda I_{i}$

where $v_{i}(g)_{*}$ denotes the differential of $v_{i}(g)$ which is adiffeomorphism
of $\Lambda I$ , and $gw$ denotes the complex multiplication of $w$ by $g\in \mathbb{C}$

’ (this
meakes sense because the normal bundle of $\Lambda I_{i}$ is naturally acomplex
vector bundle). For each $I$ $\in\Sigma_{M}$ , we span acone in $\mathrm{H}\mathrm{o}\mathrm{m}(\mathbb{C}^{*}, (\mathbb{C}^{*})^{n})\otimes$

$\mathbb{R}$ $=\mathbb{R}^{n}$ by $v_{i}’ \mathrm{s}(i\in I)$ . The collection of these cones is the fall $\Delta_{\mathrm{A}L}$

associated with $M$ . This is not astandard way to define afan. See [3]
for the details.

Example 2.2. Take $\mathbb{C}^{2}$ with the natural action of $(\mathbb{C}^{*})^{2}$ given by
$(z_{1}, z_{2})arrow(g_{1}z_{1}, g_{2}z_{2})$ .

Then $\mathbb{C}_{i}^{2}:=\{z_{i}=0\}$ $(i=1, 2)$ are characteristic submanifolds alld
$\Sigma_{\infty}=\{\{1\}, \{2\}, \{1,2\}\}$

$v_{1}(g)=(g, 1)$ , $v_{2}(g)=(1, g)$ .
Therefore, the fan Ac2 of $\mathbb{C}^{2}$ with the above action can be described
as the left figure below.

$\bullet$

$\bullet$

$\bullet$

$\bullet$

$\bullet$ $\bullet$ $\bullet$ $\bullet$ $\bullet$

Example 2.3. Take $\mathbb{C}P^{2}$ with the natural action of $(\mathbb{C}^{*})^{2}$ given by
$[z_{1}, z_{2}, z_{3}]arrow[g_{1}z_{1}, g_{2}z_{2}, z_{3}]$ .

Then $\mathbb{C}P_{i}^{2}$ $:=\{z_{i}=0\}(i=1,2,3)$ are characteristic submanifolds
and

$\Sigma_{\mathbb{C}P2}=\{\{1\}, \{2\}, \{3\}, \{1,2\}, \{2,3\}, \{3,1\}\}$

$v_{1}(g)=(g, 1)$ , $v_{2}(g)=(1, g)$ , $v_{3}(g)=(g^{-1}, g^{-1})$

Therefore, the fall $\Delta_{\mathbb{C}P^{2}}$ of $\mathbb{C}P^{2}$ with the above action can be described
as the right figure above
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3. Equivariant cohomology

When asmooth toric variety $\Lambda’I$ is compact, the two data $\Sigma_{n4}$ and
$\{v_{i}\}$ forming the fan of $\Lambda/I$ have nice interpretation in terms of equi-
variant cohomology. Let me explain this in this $\mathrm{s}\mathrm{e}\mathrm{c}\mathrm{t}\mathrm{i}_{011}$ .

The equivariant cohomology of $\Lambda\prime I$ with the action of $(\mathbb{C}^{*})^{n}$ is defined
by

$H_{(\mathbb{C}^{\mathrm{r}})^{n}}^{*}(\Lambda/I):=H^{*}(E(\mathbb{C}^{*})^{n}\mathrm{x}_{(\mathbb{C}’\cdot)}n\mathbb{J}/I)$

Let $\Lambda I_{i}(i=1, \ldots d)\}$ be characteristic submanifolds of $\mathbb{J}I$ as before.
Since $\Lambda I_{i}$ is of real codimension two in $\Lambda I$ , the Poincare’ dual of $\Lambda l_{i}$ in
the equivariant cohomology defines acoho mological degree two element
$\tau_{i}$ in $H_{(\mathbb{C}^{*})^{n}}^{2}(\Lambda I)$ . Intersections of characteristic submanifolds $\mathrm{f}\mathrm{A}I_{\mathrm{i}}’ \mathrm{s}$ are
transversal, so the Poincare’ dual of the intersection $\bigcap_{i\in I}\Lambda I_{i}$ for $I$ $\subset$

$\{1, \ldots, d\}$ is $\prod_{i\in I}\tau_{i}\in H_{(\mathbb{C}^{l})^{n}}^{*}$
$(\Lambda I)$ . This shows that $\prod_{i\in I}\tau_{i}$ vanishes

when $\bigcap_{i\in I}$ A$I_{i}$ is empty. It turns out that $H_{(U)^{n}}^{*}(M)$ is generated by
$\tau_{i}’ \mathrm{s}$ as aring and the relations are generated by these monomials.

Theorem 3.1 (Well-known). As a ring

$H_{(\mathbb{C}^{*})^{n}}^{*}$ (A#) $=\mathbb{Z}[\tau_{1}, \ldots, \tau_{d}]/$ (
$\prod_{i\in I}\tau_{i}|\bigcap_{i\in I}$

A$I_{i}=\emptyset$ )

In the terminology of commutative algebra, one can say that $H_{(\mathbb{C}^{*})^{n}}^{*}(\Lambda I)$

as a ring is isomorphic to the face ring of the simplicial complex $\Sigma_{flI}$ .

Example 3.2. $H_{(\mathbb{C}^{*})^{2}}^{*}(\mathbb{C}P^{2})=\mathbb{Z}[\tau_{1},\tau_{2}, \tau_{3}]/(\tau_{1}\tau_{2}\tau_{3})$

In short, we might say that

$H_{(\mathbb{C}^{r})^{n}}^{*}$ (A#) as a ring 9the simplicial complex $\Sigma_{\Lambda 4}$ of All.

However, the equivariant cohomology has afiner structure than the
ring structure. We have afibration

(3.1) M $rightarrow E(\mathbb{C}^{*})^{n}\mathrm{x}_{(\mathbb{C}^{\mathrm{t}})^{n}}\Lambda I$
$arrow B\pi(\mathbb{C}^{*})^{n}$

Through $\pi^{*}:$ $H^{*}(B(\mathbb{C}^{*})^{n})arrow H_{(\mathrm{C}^{\mathrm{r}})^{n}}^{*}(\Lambda I)$ , one can view $H_{(\mathbb{C}^{*})^{n}}^{*}$ (If) as
$\mathrm{a}\mathrm{J}1$ algebra over $H^{*}(B(\mathbb{C}^{*})^{71})$ . As is well-known, $H^{*}(B(\mathbb{C}^{*})^{n})$ is apoly-
nomial ring generated by its degree two part. Therefore, the algebra
structure can be determined by the image of elen ents in $H^{2}(B(\mathbb{C}^{*})^{n})$

by $\pi^{*}$ .

Lemma 3.3. To each $i\in\{1, \ldots, d\}$ , there is a unique element $v_{i}\in$

$H_{2}(B(\mathbb{C}^{*})^{n})$ such that

$\pi^{*}(u)=\sum_{i=1}^{d}\langle u, v_{i}\rangle\tau_{i}$ for $\forall u\in H^{2}(B(\mathbb{C}^{*})^{n})$
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$\Lambda Ioreover_{i}$ viewing $v_{i}$ as an element of Holn $(\mathbb{C}^{*}, (\mathbb{C}^{*})^{n})$ through an iden-
tificatio $n$

$H_{2}(B(\mathbb{C}^{*})^{n})=[B\mathbb{C}^{*}, B(\mathbb{C}^{*})^{n}]=\mathrm{H}\mathrm{o}\mathrm{n}\mathrm{u}(\mathbb{C}^{*}, (\mathbb{C}^{*})^{n})$ ,

$v_{i}(_{\backslash }\mathbb{C}^{*})$ is the C’-subgroup of $(\mathbb{C}^{*})^{n}$ which fixes $\mathrm{A},f_{i}$ .

In short, we might say that

$H_{(\mathbb{C}^{*})^{n}}^{*}(\Lambda I)$ as an algebra over $H^{*}(B(\mathbb{C}^{*})^{n})\Leftrightarrow \mathrm{t}\mathrm{h}\mathrm{e}$ fan $\Delta_{M}$ of If

Remark. It follows from the fibration (3.1) that $\pi^{*}(H^{>0}(B(\mathbb{C}^{*})^{n}))$ maps
to zero in the ordinary cohomology $H^{*}(\mathrm{A}/I)$ by the restriction map from
$H_{(\mathbb{C}^{\mathrm{r}})^{n}}^{*}(\Lambda I)$ to $H^{*}(M)$ . This is equivalent to saying that $\pi^{*}(H^{2}(B(\mathbb{C}^{*})^{n}))$

maps to zero in $H^{*}(\Lambda I)$ by the restriction map because $H^{*}(B(\mathbb{C}^{*})^{n})$ is
generated by its degree two part. It turns out that the restriction map
is surjective and its kernel is generated by elements in $\pi^{*}(H^{2}(B(\mathbb{C}^{*})^{n}))$ .
Thus we have

$H’(\Lambda I)=H_{(\mathbb{C}^{*})^{n}}^{*}(\Lambda I)/(\pi^{*}(u)|u\in H^{2}(B(\mathbb{C}^{*})^{n}))$

Combining this with Theorem 3.1 and Lemma 3.3, we obtain awell-
known explicit description of $H^{*}(\Lambda I)$ as aring, see [3, p.106].

4. Torus manifolds and multi-fans

In order to associated afan with asmooth toric variety $\Lambda I$ , we
needed two data, the simplicial complex $\Sigma_{\Lambda f}$ alld integral vectors $v$:’s
in $\mathrm{H}\mathrm{o}\mathrm{m}(\mathbb{C}^{*}, (\mathbb{C}^{*})^{n})=H_{2}(B(\mathbb{C}^{*})^{n})$ . We note that

$\mathrm{H}\mathrm{o}\mathrm{m}(\mathbb{C}^{*}, (\mathbb{C}^{*})^{n})=\mathrm{H}\mathrm{o}\mathrm{m}(S^{1}, T)=H_{2}(BT)$,

where $T=(S^{1})^{n}\cdot$ , so those two data can be defined even if we restrict
the $(\mathbb{C}^{*})^{n}$-action to $T$ . This observation leads us to study T-actions.
The reader should notice that the argument developed in Section 3
also works for the restricted $T$-action. In the following we use $H_{2}(BT)$

instead of Honl $(S^{1}, T)$ .
Let $\Lambda I$ be an orientable closed smooth manifold of $\dim_{\mathrm{R}}=2n$ with

smooth $T$-action such that $\Lambda f^{T}\neq\emptyset$ . Note that

$\mathrm{d}\mathrm{i}_{\mathrm{l}}\mathrm{n}T=\frac{1}{2}$ dinl $\Lambda I$ .

Let $\Lambda f_{i}$ $(i=1, \ldots, d)$ be aconnected closed real codimension two sub-
manifold fixed by acertain $S^{1}$ -subgroup of $T$ . We call these $\mathrm{A}I_{i}’ \mathrm{s}$

characteristic submanifolds of $\Lambda I$ as before.

Definition. When $\Lambda f$ and Afi’s are oriented, we call $A,f$ atorus mani
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Compact smooth toric varieties with restricted $T$-actions provide
examples of torus manifolds. Ho wever, there are many torus manifolds
which are not toric varieties. We shall give two such examples. The
reader can find more examples in [2], [11], [1].

Example 4.1 (Torus manifolds which are not toric).
(1) The unit sphere $S^{2n}$ of $\mathbb{C}^{n}\mathrm{x}\mathbb{R}$ with anatural $T$-action defined

$1\supset \mathrm{y}$

$(z_{1}, \ldots, z_{n}, y)arrow(g_{1}z_{1}, \ldots.g_{n}z_{n}, y)$

is atorus manifold but this is not atoric variety when $n\geq 2$ .
(2) Let $N$ be asmooth manifold of dimension $n$ with boundary dif-

feomorphic to $S^{n-1}$ and let $\Lambda I$ be acompact smooth toric man-
ifold of complex dimension $n$ (with the restricted $T$-action). We
remove an open invari ant tubular neighborhood of.a free orbit
from $\Lambda I$ , and paste it with $N\cross T$ equivariantly along their bound-
ary. The resulting space $\Lambda I(N)$ is atorus manifold with orbit
space diffeomorphic to $N$ because the orbit space of acompact
smooth toric variety with the restriction $T$-action is an n-ball.
Therefore, A#(N) is not atoric variety unless $N$ is aball.

For atorus manifold $\Lambda I$ , asimplicial complex $\Sigma_{M}$ of dimension $n-1$

and $v_{i}\in H_{2}(BT)=\mathbb{Z}^{n}$ can be defined, and one can form cones in
$H_{2}(BT;\mathbb{R})=\mathbb{R}^{n}$ similarly to the toric case. However, unlike the toric
case, these cones may overlap as shown in the following example.

Example 4.2 (see [11]). Let $v_{1}$ , $\ldots$ , $v_{d}(d\geq 3)$ be asequence of vec-
tors in $\mathbb{Z}^{2}$ such that each successive pair $v_{i}$ and $v_{i+1}$ is abasis of $\mathbb{Z}^{2}$ for
$i\in\{1, \ldots, d\}$ where $v_{d+1}=v_{1}$ (see the figure below). Then there is a
torus manifold $\Lambda l$ of (real) dimension 4having $d$ number of chal.acter-
istic submanifolds $\Lambda I_{i}$ $(i=1, \ldots, d)$ such that

(1) the associated simplicial complex is
$\Sigma_{M}=\{\{1\}, \ldots, \{d\}, \{1,2\}, \ldots, \{d-1, d\}, \{d, 1\}\}$

(2) the vector in $H_{2}(BT)=\mathbb{Z}^{2}$ corresponding to $\mathrm{A}/I_{i}$ is the given $v:$ .
$v_{2}$ $v_{4}$

$v_{1}$

In the case shown in the figure above, any generic point of $H_{2}(BT;\mathbb{R})$

is contained in exactly two cones. This degree of overlap of cones is
roughly speaking equal to the Todd genus of $\Lambda/I$ . Let me state this
more precisely
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Let I be asubset of $\{$ 1, $\ldots$ , $d\}$ with cardinality $n$ such that $\mathbb{J}/I_{I}:=$

$\bigcap_{i\in I}\mathrm{J}/I_{i}$ is non-empty. Then the intersection consists of finitely many
$T$-fixed points. When $\Lambda I$ is atoric variety, the intersection consists
of exactly one point if it is non-empty. But this is not the case for
atorus manifold. For instance, when $\Lambda I$ $=S^{2n}$ in Example 4.1, the
intersection of $n$ characteristic submanifolds consists of two points (the
north pole and $\mathrm{t}1$) $\mathrm{e}$ south pole) for $n\geq 2$ . Let $l^{J}\in\Lambda/I_{I}$ . Then the
tangential $T$-module $\tau_{\mathrm{p}}\Lambda I$ at $p$ decomposes into

(4.1)
$\tau_{p}\mathrm{A}f=\oplus\tau_{p}\mathrm{A}/I/\tau_{p}\Lambda I_{i}i\in I^{\cdot}$

Here each factor has an orientation since $\Lambda l$ and $\Lambda f_{i}$ are both oriented
by the definition of torus manifold, and it induces an orientation on
the weight-hand side of (4.1) which is independent of the order of the
sum because $\tau_{p}\Lambda I/\tau_{p}\Lambda I_{i}$ is real 2-dimensional. This orientation may
not agree with the given orientation on $\tau_{p}\Lambda I$ (the left-hand side of
(4.1) $)$ . We $\mathrm{g}\mathrm{i}\mathrm{v}\mathrm{e}+1\mathrm{o}\mathrm{r}-1$ to the $T$-fixed point $p$ according as the two
orientations at (4.1) agree or disagree. We count tlie number of points
in $\Lambda I_{I}$ with this sign and denote its sum by $w(I)$ . When $\Lambda f$ is atoric
variety, $w(I)=\mathrm{I}$ for all $I$ . When $\mathrm{A}f$ $=S^{2n}$ for $n\geq 2$ , I is unique
(since $d=n$) and $w(I)=0$ . We denote by $Zvj$ the cone (of dimension
$n)$ spanned by $v_{i}’ \mathrm{s}$ for $i\in I$ .

Theorem 4.3 ([11]). Let $v$ be a generic element of $H_{2}(BT;\mathbb{R})$ . Then
$\sum_{v\in\angle v_{I}}w(I)$ is independent of the choice of $v$ and this integer agrees
with the “Todd genus” of $\Lambda f$ .

Remark. (1) The author does not know whether all arbitrary torus
manifold admits a $T$-invariant unitary (or weakly almost complex)
structure compatible with the orientations on $\Lambda f$ and $\Lambda I_{j}’ \mathrm{s}$ . Neverth-
less, “Todd genus” can be defined for atorus manifold using Lefschtez
fixed point formula (see [8]) in such away that it agrees with the Todd
genus of $\Lambda\cdot f$ when $M$ admits aunitary structure.

(2) The Todd genus of acompact smooth toric variety is one. This
together with the above theorem explains why cones have no overlap
in an ordinary fan.

For atorus manifold $\Lambda I$ , the collection of cones formed from the
two data $\Sigma_{M}$ and $v_{i}’ \mathrm{s}$ together with the weight function $w$ on cones of
maxim al dimension $n$ is called the multi-fan of All. When $\Lambda f$ is toric,
the weight function is constant and takes the value one as remarked
above. Therefore, the multi-fan of $\Lambda,f$ can be viewed as the ordinaly
fan of $\Lambda f$ when $\Lambda,f$ is toric.

We have acorrespondence

$\Psi$ :{Torus manifolds}\rightarrow {multi-fans
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but this is NOT one-t0-0ne. For instance, the torus manifolds $\Lambda f(N)$

in Example 4.1 (2) have the same multi-fan as the toric variety $l_{1}f$

regardless of $N$ .

Problem. Characterize the image and $\zeta$ “kernel” of $\Psi$ . (See [8] for some
work on this problem.)

Although the map $\Psi$ is not injective, characteristic numbers such
as Euler characteristic, $T_{y}$-genus and elliptic genus can be described
explicitly in terms of multi-fans ([11], [8], [9]).

5. Moment maps and polytopes

We shall discuss about the 2$\dot{\mathrm{n}}$d fundamental fact mentioned in the
Introduction. First we note

Lie$(T)^{*}=H^{2}(BT;\mathbb{R})\supset H^{2}(BT)$

Fans or multi-fans are defined in the homology $H_{2}(BT;\mathbb{R})$ while m0-

ment maps have images in the cohomology $H^{2}(BT;\mathbb{R})$ .
To an ample $T$-line bundle $Larrow M$ over acornpact toric variety $\Lambda I$ ,

there exists amoment map
$\Phi:\Lambda I$ $arrow \mathrm{L}\mathrm{i}\mathrm{e}(T)^{*}=H^{2}(BT;\mathbb{R})$

and $\Phi(\Lambda,f)$ is alattice convex polytope, where lattice polytope means
that the vertices of the polytope lie on the lattice $H^{2}(BT)=\mathbb{Z}^{n}$ as
shown in the following figure.

There is anatural identification
$H^{2}(BT)=\mathrm{H}\mathrm{o}\mathrm{m}(.T, S^{1})$ ,

so alattice point in $H^{2}(BT)$ can be interpreted as acomplex one-
dimensional $T$-module. We denote by $t^{u}$ the complex $T$-niodule corre-
sponding to $u\in H^{2}(BT)$ .

Theorem 5.1 (Well-known). Let $Larrow\Lambda I$ be an ample line bundle
over a compact smooth toric variety. Then

$H^{0}( \Lambda f; L)=,\sum_{u\in\Phi(\Lambda I)\cap H^{2}(BT)}t^{u}$
as complex T-module

112



THEORY OF TORIC VARIETIES FROM THE TOPOLOGICAL VIEWPOINT

Since the line bundle $L$ is ample, its higher dimensional cohornol-
ogy groups $H^{i}(\Lambda,f;L)(i>0)$ vanish. Therefore, the left-hand side
at the identity of the theorem above may be viewed as the equivari-
ant Riemann-Roch number $RR^{T}(\Lambda’I;L)$ of the line bundle $L$ . Thus,
forgetting the action, the identity in the theorem above reduces to

(5.1) $RR(\mathrm{A}f; L)=\#$ $(\Phi(\mathrm{A}f))$

where $RR(\Lambda I, L)$ is the non-equivariant Riemann-Roch nun ber of $L$

and $\#(\Phi(\Lambda I))$ denotes the number of lattice points in (I) $(\Lambda\#)$ .
To an arbitrary $T$ line bundle $Larrow\Lambda f$ over atorus manifold $\Lambda,f$ ,

the equivariant Riemann-Roch number $RR^{T}(\mathrm{A}I, L)$ and the moment
map $\Phi$ are still defined. But $RR^{T}(\mathrm{J}I;L)$ may be avirtual T-module,
i.e., an element of the representation ring $R(T)$ of $T$ and $\Phi(M)$ is not
necessarily aconvex polytope as shown in the following figures. The
latter leads to the notion of multi-polytope, see [8].

Theorem 5.2 ([10], [5], [11]).

$RR^{T}( \mathrm{A}I, L)=\sum_{u\in\Phi(M)}m(u)t^{u}\in R(T)$

and $m(u)\in \mathbb{Z}$ can be described in terms of (I)(Af).

When $\Phi(\Lambda/I)$ is the figure shown above, $m(u)$ is roughly speaking the
rotation number of the boundary of $\Phi(\mathrm{A}I)$ around $u$ . For example, if $u$

is inside (resp. outside) of the left figure above, then $m(u)=\pm 1$ (resp.
$m(u)=0)$ . If $u$ is inside of the pentagon of the right (star-shaped)
figure above, then $m(u)=\mathrm{i}2$ .

The theorem above implies that (5.1) would still hold once we de-
fine the right-hand side $\#(\Phi(\Lambda l))$ in an appropriate way. In fact, this is
done in [8] and some results on counting lattice points on lattice convex
pofytopes such as Pick’s formula, Ehrhart polynomial and Khovanskii-
Pukhlikov formula are generalized to lattice $\uparrow nulti$ pofytopes with suit-
able modification ([11], [8])
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6. Orbit spaces

In this section we discuss about the orbit space $\Lambda I/T$ of atorus $\mathrm{n}\mathrm{l}\mathrm{a}\mathrm{n}-$

ifold $\Lambda I$ . First we note that the orbit space of $\mathbb{C}^{n}$ by the restricted stan-
dard $T$-action in Example 2,1 (1) is naturally identified with the first
quadrant $(\mathbb{R}_{\geq 0})^{n}$ of Rn. In fact, the map $(z_{1}, \ldots, z_{n})arrow(|z_{1}|, \ldots, |z_{n}.|)$

induces the identification. We say that atorus manifold $\mathrm{A}I$ is locally
standard if every point in $\mathrm{A}f$ has an invariant neighborhood $U$ weakly
equivariantly diffeomorphic to an open invariant subset $\mathfrak{l}f^{f}$ of $\mathbb{C}^{n}$ with
the restricted standard $T$-action. Here “weakly equivariantly diffe0-
lnorphic” means that there is an automorphism $\psi:Tarrow T$ and adiffe0-
morphism $f:Uarrow W$ such that $f(ty)=\psi(t)f(y)$ for all $t\in T$, $y\in U$ .
Since the orbit space $\mathbb{C}^{n}/T=(\mathbb{R}_{\geq 0})^{n}$ is amanifold with corners, the
following lemma is immediate from the definition of locally standard
ness.
Lemma 6.1. If a torus manfold $\Lambda I$ is locally standard, then the orbit
space $\Lambda f/T$ is a manifold with corners.

Here is asufficient condition for atorus manifold to be locally stan-
dard.

Theorem 6.2 ([13]). A to us manifold $\Lambda/I$ is locally standard if
$H^{odd}(\Lambda f)$ $=0$ .

When $\Lambda f$ is locally standard, possible isotropy groups are subtorus
of $T$ and if $H$ is asubtorus of dimension $k$ , then every connected
component in the $H$-fixed point set $\mathrm{J}/I^{H}$ is of codimension $2k$ . The
image of aconnected component in $\Lambda I^{H}$ by the quotient map $\Lambda/Iarrow$

$\Lambda/I/T$ is called aface of codimension Ain $\Lambda I/T$ and acodimension one
face is called afacet.

Acompact smooth toric variety $\Lambda f$ with the restricted $T$-action is
locally standard, so its orbit space is amanifold with corners. If $\Lambda/I$

is projective in addition (hence All admits an ample $T$-line bundle),
then the moment map $\Phi:Marrow H^{2}(BT;\mathbb{R})$ , which is equivariant and
the $T$-action on the taget space $H^{2}(BT;\mathbb{R})$ is trivial, induces all iden-
fication between the orbit space $\Lambda\cdot f/T$ and the simple convex polytope
$\Phi(M)$ . Here aconvex polytope of dimension $n$ is said to be simple if
there are exactly $n$ edges meeting at every vertex. For example, the
middle polytope in the following figure is not simple while the others
are simple.

simple not simple simple
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Here are some explicit examples of orbit spaces.

Example 6.3. (1) $(\mathbb{C}P^{1})^{n}/T=(\mathbb{C}P^{1}/S^{1})^{n}=[0,1]^{n}$ (n-cube)
(2) $\mathbb{C}P^{n}/T=$ n-simplex
In fact, the map from $CPn$ to $\mathbb{R}^{n}$ given by

$[z_{1}, \ldots, z_{n}, z_{n+1}]arrow\frac{1}{\sum_{i=1}^{n+1}|z_{i}|^{2}}(|z_{1}|^{2}j\ldots, |z_{n}|^{2})$

induces an identification between $\mathbb{C}P^{n}/T$ and the standard n-simplex.

Example 6.4. The torus manifolds in Example 4.1 are locally stan-
dard but their orbit spaces are not simple convex polytopes.

(1) The orbit space of $S^{2n}$ by the restricted $T$-action is homeomor-
phic to an $n$-ball. As amanifold with corners, it has two vertices
corresponding to the north and south poles and has $n$ facets as shown
in the followng figure.

$S^{4}/T^{2}$ $S^{6}/T^{3}$

(2) As remarked in Example 4.1, the orbit space $\Lambda/I(N)/T$ can be
identified with $N$ which is not necessarily acyclic.

It is well-known that the cohomology ring of acompact smooth toric
variety is generated by its degree two part (see the Remark at the end of
Section 3). It is also known that every face in the orbit space of acom-
pact smooth toric variety by the restricted $T$-action is contractible (in
particular, acyclic) and any multiple intersection of faces is connected
(unless it is non-empty) like asimple convex polytope.

Theorem 6.5 ([13]). Let $\Lambda I$ be a torus manifold.
(1) $H^{odd}(\Lambda l)=0$ if and only if $\Lambda f$ is locally standard and $\Lambda I/T$ is

face-acyclic ($\mathrm{i}.\mathrm{e}.$ , every face in $\Lambda f/T$ is acyclic).
(2) $H^{*}(\Lambda l)$ is generated by its degree two part if and only if $\Lambda I$ is 10-

cally standard and $\Lambda f/T$ is a homology pol ytope ($i.e.$ , face-acyclic
and any multiple intersection of faces is connected unless it is
non-empt $y$).

Remark If we cut the face-acyclic manifold $S^{2n}/T$ along avertex, then
it turns into $\mathrm{a}\mathrm{J}1$ $n$-simplex which is the orbit space $\mathbb{C}P^{n}/T$ , observe
this with Example 6.4 (1). In general, given aface-acyclic manifold
$Q$ which may have disconnected intersections of faces, one call convert
$Q$ into ahomology polytope $P$ by cutting along faces in $Q$ . When $Q$

is the orbit space of atorus manifold $\Lambda^{!}I$ , cutting along aface $F$ in $Q$

corresponds to blowing up $\Lambda f$ along the preimage $q^{-1}(F)$ where $q:\Lambda f$ $arrow$
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$Q=M/T$ is the quotient map. This together with the theorem above
implies that one can convert atorus manifold $\mathrm{A}/I$ with $H^{odd}(\mathrm{A}/I)=0$

into atorus manifold whose cohomology is generated $1\supset \mathrm{y}$ its degree two
part by blowing up $\mathrm{A}/I$ finitely many times along submanifolds fixed by

subtorus.

7. Face numbers

Let $P$ $\mathrm{b}\mathrm{e}$ a(not necessarily simple) convex polytope of dimension $n$ .
For $i=0,1$ , $\ldots$ , $n$ we set

$f_{i-1}:=\mathrm{t}\mathrm{h}\mathrm{e}$ number of codimension $i$ faces of $P$ .

We note that $f_{-1}=1$ , $f_{0}$ is the number of facets and $f_{n-1}$ is the number
of vertices. The vector $($ /0, $f_{1}$ , $\ldots$ , $f_{n-1})$ is called the $f$ vector of $P$ .

$(f_{0}, f_{1}, f_{2})=(4,$ 6,4) (5, 8, 5) (6, 12, 8)

The $f$-vector of aconvex polytope P cannot be arbitrary. In fact,

(7.1) $\sum_{i=0}^{n}(-1)^{n-i}f_{i-1}=1$

because the left-hand side must agree with the Euler characteristic of
the convex polytope which is one. When $P$ is simple, further equal-
ities are known among components $f_{i}’ \mathrm{s}$ . In order to state this, it is

convenient to introduce the $h$-vector of $P$ defined from the equation

$\sum_{\dot{|}=0}^{n}h_{i}t^{n-i}:=\sum_{i=0}^{n}f_{i-1}$
$($ fi $-1)^{n-i}$

Needless to say, the $h$-vector has the same information as the /-vector.

Check that in the above polytopes

$(h_{0}, h_{1}, h_{2}, h_{3})=(1,1,1,1)$ (1, 2, 1, 1) (1, 3, 3, 1)

We note that $h_{0}=1$ and $h_{n}= \sum_{i=0}^{n}(-1)^{n-i}f_{i-1}$ , so the equation (7.1)
can be restated as $h_{n}=h0$ .

Theorem 7.1 ($1h^{\gamma}\mathrm{e}11$ known as Dehn-Sommerville equations). If a con-
vex polytope P is simple, then $h_{i}=l\iota_{n-i}$ for any i.

116



THEORY OF TORIC VARIETIES FROM THE TOPOLOGICAL $\backslash ^{\gamma}\mathrm{I}\mathrm{E}\mathrm{W}\mathrm{P}\mathrm{O}\mathrm{I}\mathrm{N}\mathrm{T}$

Asimple convex pofytope is aface-acyclic manifold with corners and
$f$-and $h$-vectors can be defined for amanifold with corners in asimilar
fashion.

Theorem 7.2. Dehn-Sommerville equations $h_{i}=h_{n-\iota}$,still hold for $a$

face-acyclic manifold $Q$ with corners.

Outline of proof One can find atorus manifold (or orbifold) $\mathrm{J}I$ such
that $f\mathrm{A}/I/T$ $=Q$ and $h_{i}=\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k}$ $H^{2i}(\mathrm{A}I)$ . Then Poincare duality on $\mathrm{A},f$

implies $h_{i}=h_{n-i}$ . $\square$

If $P$ is asimple convex polytope, then there is acompact toric orb-
ifold $\Lambda I$ with $\Lambda I/T=P$ and it is well-known that the $h$ vector of $P$

must satisfy not only Dehn-Sommerville equations but also some in-
equalities obtained by applying the hard Lefschetz theorem to $\Lambda f$ . The
hhrvectors of simple convex polytopes are characterized and known as
$g$-theorem, see [3]. The following theorem characterizes $h$ vector of
face-acyclic manifolds with corners.

Theorem 7.3 ([12]). A vector of integers $(h_{0},$
\ldots ,

$h_{n})$ with $h_{0}=h_{n}=$

1 is an h vector of a face-ac3’clic manifold Q (of dimension n) with
corners if and only if

(1) $h_{i}=h_{n-:}$ for any $i$ ,
(2) $h_{i}\geq 0$ for any $i$ , and
(3) $\sum_{j=0}^{n}h_{j}$ is even if $h_{j}=0$ for some $j\geq 1$ .

Idea of proof The “if’ part is easy. As for the “only if part, the
condition (1) is Theorem 7.2 and the condition (2) follows from the fact
that $h_{i}=\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k}H^{2i}(\Lambda I)$ in the proof of Theorem 7.2. The difficult part
is the condition (3) conjectured by Stanley [14]. The idea to deduce the
condition (3) is as follows. Suppose we find atorus manifold $\Lambda f$ such
that $\Lambda I/T=Q$ and $H^{odd}(1)$ $=0$ . (Unfortunately, $\mathrm{t}\mathrm{l}\dot{\mathrm{u}}\mathrm{s}$ is not always
possible although $\Lambda I$ can be taken as atorus orbifold.) Then the total
Stiefel-Whitney class of $\Lambda f$ is of the $\mathrm{f}\mathrm{o}$ rm

$w(\mathrm{A}I)$ $= \prod_{i=1}^{d}(1+\mu_{i})\in H^{*}(\Lambda I;\mathbb{Z}/2)$

where $\mu_{i}\in H^{2}(\Lambda f;\mathbb{Z}/2)$ is the Poincare dual of acharacteristic subman-
hold $\Lambda I_{i}$ $(i=1, \ldots, d)$ . If $h_{j}=0$ for some $j\geq 1$ , then $H^{\underline{9}}j(\Lambda/l;\mathbb{Z}/2)=0$

and hence the top Stiefel-Whitney class $w^{2n}(\Lambda I)$ vanishes. Therefore,
$\sum_{i}hi=\lambda’(\Lambda f)$ niust be even. Cl

It follows from Theorem 7.3 that (1, 0, 2, 0, 1) does appear as an h-
vector of aface-acyclic manifold with corners but (1, 0, 1, 0, 1) does not
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8. Equivariant cohomology of atorus manifold

The equivariant cohomology $H_{T}^{*}(\mathrm{J}l)$ of atorus manifold $\Lambda f$ has an
explicit description when $H^{odd}(\Lambda f)=0$ , which generalizes Theorem 3.1.
For aface $\Gamma\forall$ of $\mathrm{A}f/T$ , let $\mathrm{A}/I_{F}$ be the inverse image of $F\mathrm{b}\mathrm{J}’$ the quotient
map $f\Lambda/Iarrow \mathrm{A}’fI/T$ and let $\tau_{F}\in H_{T}^{2\mathrm{c}\mathrm{o}\dim F}(flf)$ be the Poincare dual of
$\Lambda I_{F}$ in equivariant cohom ology.

Theorem 8.1 ([13]). If $\mathbb{J}/I$ is a torus manifold with $H^{odd}(\mathrm{A}I)$ $=0$ ,

$H_{T}^{*}( \mathrm{J}I)=\mathbb{Z}[\tau_{F}|Fface]/(\tau_{G}\tau_{H}-\tau_{G\vee H}\sum_{E\in G\cap H}\tau_{E})$

where $G\vee H$ is the minimal face of A$I/T$ which contains $G$ and $H$ .
Akey fact used to prove this theorem is that if $H^{odd}(\Lambda I)$ $=0$ , then

the restriction map $H_{T}^{*}(\Lambda I)$ $arrow H_{T}^{*}(\Lambda/I^{T})$ is injective and its image is
determined by the one-skeleton of $\mathrm{A},f/T$ (see [4], [6]).

When $H$‘(M) is generated by its degree two part (this is the case
when $\Lambda I$ is acompact smooth toric variety), $\Lambda/I/T$ is ahomology poly-
tope by Theorem 65; so any multiple intersection of faces is connected
(if it is non-empty) and any face can be obtained as amultiple in-
tersection of facets. Therefore, the right-hand side at the identity in
Theorem 8.1 reduces to that in Theorem 3.1 when $H^{*}(\mathrm{A}f)$ is generated
by its degree two part.

We may view Theorem 8.1 through the dual of $\Lambda I/T$ . $\backslash 1^{\gamma}\mathrm{h}\mathrm{e}\mathrm{n}\Lambda/I/T$

is ahomology polytope ( $\mathrm{e}.\mathrm{g}.$ , asimple convex PolytoPe), its dual is the
simplicial complex $\Sigma_{M}$ . However, the dual of $\mathrm{A}I/T$ is not necessarily a
simplcial complex in general. For instance, the dual of $S^{n}/T(n\geq 2)$

is two $(n-1)$-simplices glued together along their boundary. (Observe
this for the figure below) In general, the dual of amanifold with
corners is what we call asimplicial cell complex ([13]) or asimplcial
poset ([14]), and Theorem 8.1 says that $H_{T}^{*}(\Lambda I)$ is the face ring of the
simplcial cell complex (or simplicial poset) associated with $\Lambda I$ . When
all intersections of faces of $\Lambda/I/T$ are connected, the associated simplicial
cell complex agrees with the sirnphcial complex $\Sigma_{\Lambda’I}$ .
Example 8.2. We have

$If_{T}^{*}(S^{4})=$ $+\tau_{q}))$

$S^{4}/T^{2}$ $S^{6}/T^{3}$
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