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THEORY OF TORIC VARIETIES FROM THE
TOPOLOGICAL VIEWPOINT

Osaka City University ~Mikiya Masuda (#tH&:t)

1. INTRODUCTION

Theory of toric varieties, which was laid down by Demazure, Miyake-
Oda and Mumford etc. around 1970, can be viewed as a bridge between
algebraic geometry and combinatorics. In fact, it is based on the fol-
lowing two fundamental facts.

1st fundamental fact. There is a one-to-one correspondence between
toric varieties of complex dimension n and fans of real dimension n.

2nd fundamental fact. To an ample line bundle over a compact toric
variety M of complex dimension n, there is a map (called a- moment
map) ®: M — R" such that ®(M) is a lattice convex polytope of
dimension n.

Here a toric variety of complex dimension n is a normal algebraic
variety with (C*)"-action having a dense orbit, and a fan of real dimen-
sion n is a collection of cones in R™ with apex at the origin satisfying
certain conditions. The details can be found in [3] and we will illustrate
these notions with examples later. Because of the 1st fundamental fact,
all geometrical information on a toric variety such as cohomology and
characteristic numbers can be read from the associated fan. However,
those are topological invariants, so one can expect to develop the the-
ory of toric varieties using only topological technique to some extent.
It turns out that this is possible and this point of view enables us to
treat more general combinatorial objects what we call multi-fan and
multi-polytope. In this note, we will overview the theory of toric vari-
eties from the topological point of view, which is developed in (7], [11],
18], [9], [13] and [12]. The subjects treated in [2] and [1] are closely
related to the subject treated in this note.
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2. How TO ASSOCIATE A FAN WITH A SMOOTH TORIC VARIETY

We begin with two simple but basic examples of toric varieties.

Example 2.1. Let (g1,...,9n) € (C*)™

(1) C™ with the action of (C*)" given by
(zl, Tt Zn) = (glzla ce ,gnzn)

is a non-compact smooth toric variety.

(2) CP™ with the action of (C*)" given by
[zla ceoy Rny 2.n+1] = [91217 v agnzn, zn+1]
is a compact toric variety.

Products of toric varieties are again toric varieties. Rather non-
trivial examples of toric varieties are Hirzebruch surfaces.

If M is a toric variety of complex dimension n, then M has a dense
orbit by definition, which is isomorphic to (C*)", and other orbits are
known to be finitely many and isomorphic to (C*)* for some k < n.
Let M; (i = 1,...,d) be the closure of complex codimension one or-
bits. They are invariant divisors and fixed by certain C*-subgroups.
For instance, when M = C" in the above example, d = n and M;’s
are coordinate hyperplanes z; = 0, and when M = CP*, d = n + 1
and M;'s are hypersurfaces z; = 0. The C*-subgroup which fixes M;
depends on M;. When M is smooth, M; is a connected complex codi-
mension one smooth submanifold fixed by a certain C*-subgroup. M;’s
are invariant dovisors and we call M; a characteristic submanifold. We
note that M\ U; M; is the dense orbit isomorphic to (C*)". Therefore,
one can expect that toric varieties can be determined by characteris-
tic submanifolds and their neighborhoods. We extract two data from

them.

1st data. We set ‘
Su={IC{1,...,d} | [ M # 0}.

i€l
One easily checks that this is an abstract simplicial complex. The

dimension of the simplicial complex is at most n — 1 and it attains
n — 1 if and only if the action of (C*)™ on M has a fixed point .

2nd data. The set Hom(C*, (C*)") consisting of homomorphisms from
C* to (C*)™ is an abelian group under the multiplication on (C*)™ and
naturally isomorphic to Z". In the following we make the following

identification
Hom(C*, (C*)") = Z".
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An element in Hom(C*, (C*)™) determines a C*-subgroup of (C*)™ as
the image of C*, and two non-trivial elements in Hom(C*, (C*)™) deter-
mine the same C*-subgroup if and only if their corresponding vectors
in Z™ lie on a same line. To each characteristic submanifold M;, an
element v; € Hom(C*, (C*)™) satisfying the following two conditions is
uniquely detemined:

(1) v (C*) fixes M;

(2) v;(g)sw = gw for w in the normal bundle of M;
where v;(g)« denotes the differential of v;(g) which is a diffeomorphism
of M, and gw denotes the complex multiplication of w by g € C* (this
meakes sense because the normal bundle of M; is naturally a complex
vector bundle). For each I € Xj4, we span a cone in Hom(C*, (C*)") ®
R = R™ by v;’s (¢ € I). The collection of these cones is the fan Ay
associated with M. This is not a standard way to define a fan. See [3]
for the details.

Example 2.2. Take C? with the natural action of (C*)? given by
(21, 22) = (q121, g222)-
Then C?; := {2; = 0} (i = 1,2) are characteristic submanifolds and

Te = {{1},{2},{1, 2}}

Ul(g) = (ga 1)’ UZ(g) = (lag)
Therefore, the fan A of C? with the above action can be described
as the left figure below.

Example 2.3. Take CP? with the natural action of (C*)? given by

[21, 22, 23] — [9121, 9222, 23] ,
0} (¢ = 1,2,3) are characteristic submanifolds

Then CP?; = {z
and

Yepz = {{1}7 {2}, {3}’ {17 2}a {2’ 3}, {3, 1}}

vi(9) =(9:1), (9 =(1,9), vl9=(g"9g")
Therefore, the fan Acpz of CP? with the above action can be described
as the right figure above. |
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3. Equivariant cohomology

When a smooth toric variety M is compact, the two data Xjs and
{v;} forming the fan of M have nice interpretation in terms of equi-
variant cohomology. Let me explain this in this section.

The equivariant cohomology of M with the action of (C*)" is defined

by

Higoyn (M) = H*(E(C")™ x(cyn M)
Let M; (s = 1,...,d) be characteristic submanifolds of M as before.
Since M; is of real codimension two in M, the Poincaré dual of A; in

the equivariant cohomology defines a cohomological degree two element
7; in H (20 ),,(M ). Intersections of characteristic submanifolds M;’s are

transversal, so the Poincaré dual of the intersection (),.; M; for I C
{1,...,d} is [L;e; 7 € H{g.)n(M). This shows that [;e; 7 vanishes
when [;c; Mi is empty. It turns out that Hie )n(M ) is generated by
7.’s as a ring and the relations are generated by these monomials.

Theorem 3.1 (Well-known). As a ring

Higyn(M) = Z[n, ... ,Td]/(Hn |\ M: =0)
iel el
In the terminology of commutative algebra, one can say that Hicuyn (M)
as a ring is isomorphic to the face ring of the simplicial compler Xips.
Example 3.2. Hi.;,(CP?) = Zlr1, 72, 73) [ (T172T3)

In short, we might say that

H{ceyn (M) as a ring <= the simplicial complex X of M.

However, the equivariant cohomology has a finer structure than the
ring structure. We have a fibration

(3.1) M — E(C*)" x(c-y» M - B(C*)"

Through m*: H*(B(C*)") — Hiwy(M), one can view Higy (M ) as
an algebra over H*(B(C*)"). As is well-known, H*(B(C*)") is a poly-
nomial ring generated by its degree two part. Therefore, the algebra
structure can be determined by the image of elements in H*(B(C*)")

by 7*.
Lemma 3.3. To each i € {1,...,d}, there is a unique element v; €
Ho(B(C*)™) such that
d
™ (u) = Z(u, vy, for Yu € H*(B(C*)™)

i=1
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Moreover, viewing v; as an element of Hom(C*, (C*)") through an iden-
tification

Hy(B(C*)") = [BC*, B(C*)"] = Hom(C*, (C*)™),
v;(C*) is the C*-subgroup of (C*)™ which fizes M;.

In short, we might say that

H{cvy»(M) as an algebra over H*(B(C*)") <= the f:cm Nprof M

Remark. It follows from the fibration (3.1) that =*(H>%(B(C*)"™)) maps
to zero in the ordinary cohomology H*(M) by the restriction map from
Hicey (M) to H*(M). This is equivalent to saying that T (H*(B(C*)™))
maps to zero in H*(M) by the restriction map because H*(B(C*)") is
generated by its degree two part. It turns out that the restriction map
is surjective and its kernel is generated by elements in 7*(H2(B(C*)™)).
Thus we have

H*(M) = Higeyn(M)/ (7" (u) | u € H*(B(C)"))

Combining this with Theorem 3.1 and Lemma 3.3, we obtain a well-
known explicit description of H*(M) as a ring, see [3, p.106].

4. Torus manifolds and multi-fans

In order to associated a fan with a smooth toric variety M, we
needed two data, the simplicial complex £, and integral vectors v;’s
in Hom(C*, (C*)") = H,(B(C*)"). We note that

Hom(C*, (C*)") = Hom(S*,T') = H,(BT),
where T = (S)", so those two data can be defined even if we restrict
the (C*)™-action to 7. This observation leads us to study T-actions.
The reader should notice that the argument developed in Section 3
also works for the restricted T-action. In the following we use Ha(BT)
instead of Hom(S*,T').

Let M be an orientable closed smooth manifold of dimg = 2n with
smooth T-action such that M7 # (). Note that

dimT = :,12- dim M. |

Let M; (i =1,...,d) be a connected closed real codimension two sub-
manifold fixed by a certain S'-subgroup of T. We call these M;’s
characteristic submanifolds of M as before.

Definition. When M and A;’s are oriented, we call M a torus mani-
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Compact smooth toric varieties with restricted 7-actions provide
examples of torus manifolds. However, there are many torus manifolds
which are not toric varieties. We shall give two such examples. The
reader can find more examples in (2], [11], [1].

Example 4.1 (Torus manifolds which are not toric).
(1) The unit sphere S?" of C* x R with a natural T-action defined
by
(zlv R zn’y) - (9121, e 'gnzmy)

is a torus manifold but this is not a toric variety when n > 2.
(2) Let N be a smooth manifold of dimension n with boundary dif-
feomorphic to S™ ! and let M be a compact smooth toric man-
ifold of complex dimension n (with the restricted T-action). We
remove an open invariant tubular neighborhood of a free orbit
from M, and paste it with Vx T equivariantly along their bound-
ary. The resulting space M(N) is a torus manifold with orbit
space diffeomorphic to N because the orbit space of a compact
smooth toric variety with the restriction T-action is an n-ball.
Therefore, M(N) is not a toric variety unless /N is a ball.

For a torus manifold M, a simplicial complex ¥)s of dimension n—1
and v; € Hy(BT) = Z" can be defined, and one can form cones in
H,(BT;R) = R" similarly to the toric case. However, unlike the toric
case, these cones may overlap as shown in the following example.

Example 4.2 (see [11]). Let v1,...,vq (d > 3) be a sequence of vec-
tors in Z?2 such that each successive pair v; and v;y; is a basis of Z? for
i € {1,...,d} where vg4; = v; (see the figure below). Then there is a
torus manifold M of (real) dimension 4 having d number of character-
istic submanifolds M; (i = 1,...,d) such that

(1) the associated simplicial complex is
= {{1},...,{d},{1,2},...,{d - 1,d},{d,1}}
(2) the vector in Ho(BT) = Z? corresponding to M; is the given v;.

(Y

In the case shown in the figure above, any generic point of Hy(BT; R)
is contained in exactly two cones. This degree of overlap of cones is
roughly speaking equal to the Todd genus of M. Let me state this

more precisely.
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Let I be a subset of {1,...,d} with cardinality n such that M; :=
NierM; is non-empty. Then the intersection consists of finitely many
T-fixed points. When M is a toric variety, the intersection consists
of exactly one point if it is non-empty. But this is not the case for
a torus manifold. For instance, when M = S?" in Example 4.1, the
intersection of n characteristic submanifolds consists of two points (the
north pole and the south pole) for n > 2. Let p € M;. Then the
tangential T-module 7, at p decomposes into

(4.1) M = D 7,M /7, M;.

' i€l

Here each factor has an orientation since M and M; are both oriented
by the definition of torus manifold, and it induces an orientation on
the right-hand side of (4.1) which is independent of the order of the
sum because 7,M/7,M; is real 2-dimensional. This orientation may
not agree with the given orientation on 7,M (the left-hand side of
(4.1)). We give +1 or —1 to the T-fixed point p according as the two
orientations at (4.1) agree or disagree. We count the number of points
in M; with this sign and denote its sum by w(I). When M is a toric
variety, w(I) = 1 for all I. When M = S§?" for n > 2, I is unique
(since d = n) and w(I) = 0. We denote by Zv; the cone (of dimension
n) spanned by v;’s for 7 € I.

Theorem 4.3 ([11]). Let v be a generic element of Hy(BT;R). Then
D vesv; W) 1is independent of the choice of v and this integer agrees
with the “Todd genus” of M. '

Remark. (1) The author does not know whether an arbitrary torus
manifold admits a T-invariant unitary (or weakly almost complex)
structure compatible with the orientations on A and M;’s. Neverth-
less, “Todd genus” can be defined for a torus manifold using Lefschtez
fixed point formula (see [8]) in such a way that it agrees with the Todd
genus of M when M admits a unitary structure.

(2) The Todd genus of a compact smooth toric variety is one. This
together with the above theorem explains why cones have no overlap
in an ordinary fan. '

For a torus manifold M, the collection of cones formed from the
two data X and v;’s together with the weight function w on cones of
maximal dimension n is called the multi-fan of M. When M is toric,
the weight function is constant and takes the value one as remarked

above. Therefore, the multi-fan of M can be viewed as the ordinaly

fan of M when M is toric.
‘We have a correspondence

¥: {Torus manifolds} — {multi-fans}
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but this is NOT one-to-one. For instance, the torus manifolds M(N)
in Example 4.1 (2) have the same multi-fan as the toric variety M
regardless of V.

Problem. Characterize the image and “kernel” of U. (See [8] for some
work on this problem.)

Although the map ¥ is not injective, characteristic numbers such
as Euler characteristic, T,-genus and elliptic genus can be described

explicitly in terms of multi-fans ([11], (8], [9]).

5. Moment maps and pclytdpes

We shall discuss about the ond fundamental fact mentioned in the
Introduction. First we note

Lie(T)* = H*(BT;R) D> H*(BT)

Fans or multi-fans are defined in the homology H2(BT;R) while mo-
ment maps have images in the cohomology H 2(BT;R).
To an ample T-line bundle L — M over a compact toric variety M,

there exists a moment map
®: M — Lie(T)" = H?*(BT;R)

and ®(M) is a lattice convex polytope, where lattice polytope means
that the vertices of the polytope lie on the lattice H>(BT) = Z" as
shown in the following figure.

There is a natural identification
H?*(BT) = Hom(T, S%),

so a lattice point in H?(BT) can be interpreted as a complex one-
dimensional T-module. We denote by t* the complex T-module corre-

sponding to u € H*(BT).

Theorem 5.1 (Well-known). Let L — M be an ample line bundle
over a compact smooth toric variety. Then

H°(M;L) = Z t* as complez T-modules
u€d(M)NH(BT)
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Since the line bundle L is ample, its higher dimensional cohomol-
ogy groups H'(M;L) (i > 0) vanish. Therefore, the left-hand side
at the identity of the theorem above may be viewed as the equivari-
ant Riemann-Roch number RRT(M; L) of the line bundle L. Thus,
forgetting the action, the identity in the theorem above reduces to

(5.1) RR(M; L) = (®(M))

where RR(M, L) is the non-equivariant Riemann-Roch number of L
and §(®(M)) denotes the number of lattice points in ®(M).

To an arbitrary T-line bundle L — M over a torus manifold M,
the equivariant Riemann-Roch number RRT(M, L) and the moment
map & are still defined. But RRT(M; L) may be a virtual T-module,
i.e., an element of the representation ring R(T") of T and ®(M) is not
necessarily a convex polytope as shown in the following figures. The
latter leads to the notion of multi-polytope, see (8.

Theorem 5.2 ([10], [5], [11]).

RRT(M,L)= Y m(u)t* € R(T)
u€P (M)

and m(u) € Z can be described in terms of ®(M).

When &(M) is the figure shown above, m(u) is roughly speaking the
rotation number of the boundary of ®(M) around u. For example, if u
is inside (resp. outside) of the left figure above, then m(u) = %1 (resp.
m(u) = 0). If u is inside of the pentagon of the right (star-shaped)
figure above, then m(u) = £2.

The theorem above implies that (5.1) would still hold once we de-
fine the right-hand side §(®(A/)) in an appropriate way. In fact, this is
done in [8] and some results on counting lattice points on lattice convex
polytopes such as Pick’s formula, Ehrhart polynomial and Khovanskii-
Pukhlikov formula are generalized to lattice multi-polytopes with suit-
able modification ([11], [8]).
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6. Orbit spaces

In this section we discuss about the orbit space M /T of a torus man-
ifold M. First we note that the orbit space of C" by the restricted stan-
dard T-action in Example 2.1 (1) is naturally identified with the first
quadrant (R>o)™ of R™. In fact, the map (z1,...,2n) — (|21],.. ., |2n])
induces the identification. We say that a torus manifold M is locally
standard if every point in M has an invariant neighborhood U weakly
equivariantly diffeomorphic to an open invariant subset W of C™* with
the restricted standard T-action. Here “weakly equivariantly diffeo-
morphic” means that there is an automorphism ¢: T'— T and a diffeo-
morphism f: U — W such that f(ty) = ¢(t)f(y) forallt € T,y € U.
Since the orbit space C*/T = (R>0)" is a manifold with corners, the
following lemma is immediate from the definition of locally standard-

ness.

Lemma 6.1. If a torus manfold M is locally standard, then the orbit
space M /T is a manifold with corners.

Here is a sufficient condition for a torus manifold to be locally stan-
dard. ’

Theorem 6.2 ([13]). A torus manifold M is locally standard if
He% (M) = 0.

When M is locally standard, possible isotropy groups are subtorus
of T and if H is a subtorus of dimension k, then every connected
component in the H-fixed point set M* is of codimension 2k. The
image of a connected component in M# by the quotient map M —
M/T is called a face of codimension & in M /T and a codimension one
face is called a facet. .

A compact smooth toric variety M with the restricted T-action is
locally standard, so its orbit space is a manifold with corners. If M
is projective in addition (hence M admits an ample 7-line bundle),
then the moment map ®: M — H?(BT;R), which is equivariant and
the T-action on the taget space H%(BT;R) is trivial, induces an iden-
fication between the orbit space M /T and the simple convex polytope
®(M). Here a convex polytope of dimension n is said to be simple if
there are exactly n edges meeting at every vertex. For example, the
middle polytope in the following figure is not simple while the others

are simple.

simple not simple simple
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Here are some explicit examples of orbit spaces.

Example 6.3. (1) (CPY)*/T = (CP'/SY)* =[0,1]* (n-cube)
(2) CP*/T = n-simplex
In fact, the map from CP" to R™ given by

1
(21, Zn; Zng1] — m(lzllz; cee fznfz)‘
i=1 |zi|

induces an identification between CP"/T and the standard n-simplex.

Example 6.4. The torus manifolds in Example 4.1 are locally stan-
dard but their orbit spaces are not simple convex polytopes. '

(1) The orbit space of S?* by the restricted T-action is homeomor-
phic to an n-ball. As a manifold with corners, it has two vertices
corresponding to the north and south poles and has n facets as shown
in the followng figure. ‘

20

S4T?  S8/T3

(2) As remarked in Example 4.1, the orbit space M(N)/T can be
identified with IV which is not necessarily acyclic.

It is well-known that the cohomology ring of a compact smooth toric
variety is generated by its degree two part (see the Remark at the end of
Section 3). It is also known that every face in the orbit space of a com-
pact smooth toric variety by the restricted T-action is contractible (in
particular, acyclic) and any multiple intersection of faces is connected
(unless it is non-empty) like a simple convex polytope.

Theorem 6.5 ([13]). Let M be a torus manifold.

(1) Ho%(M) = 0 if and only if M is locally standard and M/T is
face-acyclic (i.e., every face in M/T is acyclic).

(2) H*(M) is generated by its degree two part if and only if M is lo-
cally standard and M/T is a homology polytope (i.e., face-acyclic
and any multiple intersection of faces is connected unless it is
non-empty).

Remark. If we cut the face-acyclic manifold S?*/T along a vertex, then
it turns into an n-simplex which is the orbit space CP"/T', observe
this with Example 6.4 (1). In general, given a face-acyclic manifold
@ which may have disconmected intersections of faces, one can convert
@ into a homology polytope P by cutting along faces in . When
is the orbit space of a torus manifold M, cutting along a face F' in @
corresponds to blowing up M along the preimage ¢~ (F') where g: A —
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Q = M/T is the quotient map. This together with the theorem above
implies that one can convert a torus manifold M with Ho%(M) = 0
into a torus manifold whose cohomology is generated by its degree two
part by blowing up M finitely many times along submanifolds fixed by

subtorus.

7. Face numbers

Let P be a (not necessarily simple) convex polytope of dimension n.
Fori=20,1,...,n we set

fi-1:= the number of codimension 7 faces of P.

We note that f—1 = 1, fo is the number of facets and fr—1 is the number
of vertices. The vector (fo, fi,-- ., fa—1) is called the f-vector of P.

o
(anflafZ) = (4,6,4) (518> 5) (671218)

The f-vector of a convex polytope P cannot be arbitrary. In fact,

n
(7.1) > D=1

=0
because the left-hand side must agree with the Euler characteristic of
the convex polytope which is one. When P is simple, further equal-
ities are known among components f;’s. In order to state this, it is
convenient to introduce the h-vector of P defined from the equation

Z": hit" ™" = z“‘: fima(E =1

=0 =0
Needless to say, the h-vector has the same information as the f-vector.
Check that in the above polytopes
(hO, h17 h?a h3) = (1) 1, 1: 1) (1, 2: 17 1) (1: 37 3a 1)

We note that ho = 1 and h, = Y5 o(—1)""* fi1, so the equation (7.1)
can be restated as h, = fhg.

Theorem 7.1 (Well-known as Dehn-Somumerville equations). If a con-

vez polytope P is simple, then h; = hy—; for any .

116




THEORY OF TORIC VARIETIES FROM THE TOPOLOGICAL VIEWPOINT

A simple convex polytope is a face-acyclic manifold with corners and
f- and h-vectors can be defined for a manifold with corners in a similar

fashion.

Theorem 7.2. Dehn-Sommerville equations h; = hy—; still hold for a
face-acyclic manifold () with corners.

Outline of proof. One can find a torus manifold (or orbifold) M such
that M/T = Q and h; = rank H*(M). Then Poincaré duality on M
implies h; = hp—;. O :

If P is a simple convex polytope, then there is a compact toric orb-
ifold M with M/T = P and it is well-known that the h-vector of P
must satisfy not only Dehn-Sommerville equations but also some in-
equalities obtained by applying the hard Lefschetz theorem to M. The
h-vectors of simple convex polytopes are characterized and known as
g-theorem, see [3]. The following theorem characterizes h-vectors of
face-acyclic manifolds with corners.

Theorem 7.3 ([12]). A vector of integers (ho, ..., hn) with ho = hy =
1 is an h-vector of a face-acyclic manifold Q (of dimension n) with
corners if and only if

(1) hi = hp—y for any i,

(2) hi 20 for any %, and

(3) X i=ohj is even if hj =0 for some j > 1.

Idea of proof. The “if’ part is easy. As for the “only if” part, the
condition (1) is Theorem 7.2 and the condition (2) follows from the fact
that h; = rank H% (M) in the proof of Theorem 7.2. The difficult part
is the condition (3) conjectured by Stanley [14]. The idea to deduce the
condition (3) is as follows. Suppose we find a torus manifold A such
that M/T = @ and H°?(M) = 0. (Unfortunately, this is not always
possible although M can be taken as a torus orbifold.) Then the total
Stiefel-Whitney class of M is of the form

d
w(M) =[(1+m) € H(M;Z/2)
i=1
where yu; € H 2(]\4 ; Z,/2) is the Poincaré dual of a characteristic subman-
ifold M; (i = 1,...,d). If h; = 0 for some j > 1, then H¥(M;Z/2) =0
and hence the top Stiefel-Whitney class w?*(M) vanishes. Therefore,
> hi = x(M) must be even. [J

It follows from Theorem 7.3 that (1,0,2,0,1) does appear as an h-
vector of a face-acyclic manifold with corners but (1,0, 1,0,1) does not.
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8. Equivariant cohomology of a torus manifold

The equivariant cohomology Hx(M) of a torus manifold A has an
explicit description when H°% (M) = 0, which generalizes Theorem 3.1.
For a face F of M/T, let Mr be the inverse image of F' by the quotient
map M — M/T and let 7r € HZ°¥mF () be the Poincaré dual of
MTF in equivariant cohomology.

Theorem 8.1 ([13]). If M is a torus manifold with H°*(M) =0,

H3 (M) =Ztp | F face]/ TgTH — TovH Z TE
EeGNH

where GV H 1is the minimal face of M/T which contains G and H.

A key fact used to prove this theorem is that if H°%(M) = 0, then
the restriction map Hx(M) — Hi(MT) is injective and its image is
determined by the one-skeleton of M/T (see [4], [6]).

When H*(M) is generated by its degree two part (this is the case
when M is a compact smooth toric variety), M /T is a homology poly-
tope by Theorem 6.5; so any multiple intersection of faces is connected
(if it is non-empty) and any face can be obtained as a multiple in-
tersection of facets. Therefore, the right-hand side at the identity in
Theorem 8.1 reduces to that in Theorem 3.1 when H*(M) is generated

by its degree two part.
We may view Theorem 8.1 through the dual of M/T. When M/T

is a homology polytope (e.g., a simple convex polytope), its dual is the
simplicial complex ;. However, the dual of M/T is not necessarily a
simpleial complex in general. For instance, the dual of S*/T (n > 2)
is two (n — 1)-simplices glued together along their boundary. (Observe
this for the figure below.) In general, the dual of a manifold with
corners is what we call a simplicial cell complez ([13]) or a simplcial
poset ([14]), and Theorem 8.1 says that Hy(M) is the face ring of the
simplcial cell complex (or simplicial poset) associated with M. When
all intersections of faces of M /T are connected, the associated simplicial
cell complex agrees with the simplicial complex 2.

Example 8.2. We have

4
H3(8%) = Z[rg, TH, Tp, Tq]/ T6TH — (Tp + Tq

4 O

S4/T? S8/T3
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