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TRANSFER BETWEEN STRUCTURE SETS
IN EQUIVARIANT SURGERY EXACT SEQUENCES
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SECTION 1. INTRODUCTION: THE EQUIVARIANT SURGERY EXACT SEQUENCE

Let G be a finite group. The classification of G-manifolds can be approached
through the equivariant surgery exact sequence. In the category of locally linear PL-
G-manifolds with a certain stability condition (“the gap hypothesis”), a surgery exact
sequence was set up by I. Madsen and M. Rothenberg in [MR 2], when the group G
is of odd order. One of its central feature is equivariant transversality, which holds
only in those circumstances.

Let X be a (locally linear PL) G-manifold with boundary. The main target
we wish to investigate is expressed, in this context, as the “structure set” gg(X , ),
which is the set of equivalence classes of G-simple homotopy equivalences h : M — X
with 8h a PL-homeomorphism, where two such objects are equivalent when they are
connected (in a commutative diagram) with a PL-G-homeomorphism of the domain
M.

When one wishes to analyze the surgery exact sequence, one needs to compute
the set Ng(X) of G-normal cobordism classes of G-normal maps. By virtue of G-
transversality, this set is interpreted in terms of bundle theories, and therefore is
classified by a G-space F/PL. (See [MR 2, §5].)

Madsen and Rothenberg set up the equivariant surgery exact sequence and
identified /vc;(X) as a term in the sequence, in a suitable category of G-spaces when
G is a group of odd order. Here we cite their main results:

The strong gap condition. [MR 2, Theorem 5.11) If G is a group of odd order and
X is a G-oriented PL-G-manifold which satisfies the gap conditions

10 < 2dim X7 <dimX*  for K c H X" # XK,
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then /\7(;(}{ /0X) is in one-to-one correspondence with normal cobordism classes of
restricted G-normal maps over X, as defined in [MR 2, 5.9].

The equivariant surgery exact sequence. [MR 2, Theorem 5.12] If G, X are as
above and we assume that X is simply-connected for all H, then there is an exact
sequence

— 86(D! x X,8) — Ng(D! x X,8) = Ly4m — Sa(X,8) = Ng(X/0X) — Ln(G)

where

ﬁm(G) = @(H)Lm(H)(N(;H/H)
with m(H) = dim X ¥, and the sum is over the conjugacy classes of subgroups of G.

Madsen and Rotherberg ([MR 2]) identified each term of the exact sequences in
geometric and homotopy theoretic methods, and the author ([N 3,4]) modified their
methods to interpret the terms in a homotopy theoretic way.

Two of the terms in the equivariant surgery exact sequence, Ng(X/8X ) and
Ln(G), are defined using homotopy-theoretic and algebraic methods, respectively.
Therefore they naturally inherit a Mackey functor structure over the system of sub-
groups of G. However, the remaining term, the structure set §G(X ,0), 1s concerned
with homeomorphisms, and so it does not provide a straightforward way to construct
a functorial (Mackey) structure with respect to the system of subgroups of G.

Ranicki ([R 1,2]) has identified the structure set term in the equivariant surgery
exact sequence with an “algebraically defined structure set,” in his terminology. He
used categorical constructions to identify the surgery exact sequence itself using al-
gebraically constructed objects, thus making it possible to apply various categorical
techniques. Making use of his methods, it is possible to interpret the equivariant
structure set Sg(X, 8) in a categorical manner. However, that approach puts one in
a stabilization situation, and thus requires a very strong stability hypotheses.

In this paper we try to use geometric methods, rather than algebraic, to directly
construct a Mackey structure in the terms of the equivariant surgery exact sequence,
in the case where the manifold X is a very special one. So, at least in that situation,
the Mackey functor structure is realized in the equivariant surgery exact sequence,
without going through the stable homotopy category, thus giving the result to the
structure set of the manifold itself, that is considered here.

SECTION 2. DEFINITION: THE MACKEY FUNCTOR STRUCTURE



The Mackey functor structure over the system of subgroups of the finite group
G is defined as follows. For an RG-module V', let Iso(V) be the set of isotropy
subgroups of the G-module V.

Let M be an abelian group valued bifunctor over the category Iso(V), and
for the morphisms in Iso(V), that is, inclusions of subgroups H < K, we use the
notation Res : M(K) —» M(H) and Ind% : M(H) — M(K) for the corresponding
morphisms. Also we suppose there is a conjugation morphism ¢, : M(H) — M(HY)
for any H and and g € G.

The system M, Res® IndX, cg is called a Mackey functor if the following con-
ditions are satisfied for all A < K in Iso(V):

cg =idyy if g€ H; Cgr095 = Cgy O Cg,
-9 " 9
Ind¥e 0Cy = ¢4 0 Ind%, Res; oc, = ¢4 0 Resi
. ’—1
ResZ 0Ind§ = Z InthoKa ocg 0 ResiH
H\G/K

Let A(G : V) be the Grothendieck group of finite G-sets X such that Iso(X) C
Iso(V'). Then a Mackey functor M over Iso(V') becomes a natural A(G : V)-module,
and thus traditional algebraic caluculations are applicable to compute such terms.
See [MS] for example.

SECTION 3. THE CONSTRUCTION OF THE MACKEY FUNCTOR STRUCTURE

We now specialize to the following case: Let X = DF x SU where D* is the
k-dimensional disk with the trivial G-action, U is an RG-module with no G-trivial
summand, that is, U® =0, V = U@RF?, and we assume that X satisfies the strong

gap condition that was defined in the above.
We will construct a Mackey finctor structure for the structure set

Su(D* x SU,8)  (H € Iso(V))

The restriction and the conjugation maps are defined naturally. That is, for H < K,
with H, K € Iso(V'), we define the restriction map:

ResH : i (D* x SU,8) — Sy(DF x SU,9)

by the natural restriction (forgetful map) of viewing a A-simple homotopy equivalence
as an H-simple homotopy equivalence. Similarly, the conjugation map:

¢y : Sp(D¥ x SU,8) — Sy (D* x SU, 8)
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is defined by sending a map (f : M — X) to (f : M? — X), where the H9-action
on the manifold M9 = M is given by the map H9 — H — Aut M, in which the first
map sends z € HY to g~*hg € H.

Thus, it remains to define the induction map

IndX : S(D* x SU,8) — Sx(D* x SU, 8)

for all subgroup inclusions H < K in Iso(V) = Iso(U @ R*1).
An element of the domain Sy(D* x SU, Q) is represented by an H-simple
homotopy equivalence

f:(M,8) — (D* x SU,9)

such that its restriction to the boundary M is a PL homeomorphism. Thus, OM =
$*=1 x SU. Divide the (k — 1)-dimensional sphere into northern and southern hemi-
spheres: S~ = Di‘l U D¥~!. Thus the boundary manifold is divided into

OM =0, MUo_M
where the map f can be assumed to be the identity on the southern hemispere part:
8_-M = D*! x SU.
Using this identity map, we extend the H-homotopy equivalence f into:
FiM=MUs(S* x DU) LS D* x SU U 41 x DU
=~ S(R* x U)

Next, we remove the interior of a small disk D(IR""1 xU) = Di"l C Sk¥-1x DU, out
of M, to get:
Mo = M —int (D(R*! x U))
fo = Flugy (Mo,a» — (D(R*~! x U),8) = (DV, ).

Since the Whitehead torsion does not change:

(f) = ta(f) = 7(fo)

because the D*-direction has the trivial H-action, the result map fy is an H-simple
homotopy equivalence. Furthermore, it is easily seen that dfy = id and that f; is a
PL-homeomorphism in the neighborhood of f; ' (D*~! x {0}).

Now, for each H € Iso(V), choose a G-embedding

Z'HZG/H—-—*V'

such that the isotropy subgroup of ig(eH) is H, and fix all the {iy} for the rest of
the construction.
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For any subgroup inclusion H < K in Iso(V), choose a positive number € small
enough so that the G-embedding

1+ |y

p:V—V, V€

satisfies the condition that ig(gH) + p(DV) for all ¢ € K/H are mutually disjoint.
That is, p(K xg DV) is embedded into DV. Since the map f, : (My,8) — (DV,0)
has been defined so that it is the identity on My = SV, we can now paste them
together to get a manifold Ny and a map Fp:

No = (K x5 My) Ug (DV —int p(K xg DV))

Fo=(Kx g fo)uid
—

DV.

Because the map Fy is a PL homeomorphism in a neighborhood of Fy ! (DF=? x {0}),
we can now remove the interior of its neighborhood to get:

Ny = No —int F;* (D! x D.V)
21, pt x sv.

This result map f; turns out to be a K-simple homotopy equivalence. That it is a K-
homotopy equivalence is shown by the standard argument, becuase the construction
is by pasting together H-homotopy equivalences via the group-level transfer construc-
tion K x gy DV inside the representation space DV. The Whitehead torsion doesn’t
change either, because the pasting and the removal were all done with respect to the
trvial action directions. We now use this as the definition of Indj(f]:

Definition 3.1. For any class [f] € Su(D*¥ x SU,d), define its induction image as
follows: IndX[f] = [f1] € Sx(D* x SU,9)

Theorem 3.2. If X = D* x SU satisfies the strong gap condition explained in the
above, then the induction map

Ind¥ : Sy(D* x SU,8) — Sx(D* x SU, d)

is well-defined, and, together with the restriction and conjugation maps, Res® and Cg,
that were defined in the beginning of this section, satisfies the conditions of Mackey

functor (defined in Section 2).

The proof of this theorem will occupy the rest of this section.

We follow the argument in Section 3 of Madsen-Svensson’s paper [MS], which
checks the Mackey conditions in the homotopy-theoretic situation. In our geometric
situation, where (simple) homotopy equivalences are constructed by pasting home-
omorphisms together, we simply have additional need to check that the homotopy
constructed in their paper would be able to made, in our situation, to become a
shifting by homeomorphisms. In fact this can be done, thanks to the existence of




collars (“fattening by identity maps”) in our construction, and to the general position
allowance provided by the codimention condition given by the strong gap condition.

So, we simply follow the Section 3 of [MS], adapted to our construction with
g'(_)(Dk x SU,0). The strong gap condition. guarantees just enough trivial-action
dimention that allows the existence of homotopies between maps of (3.5) of [MS],
which they give by explicit parameter formula. We can use the same homotopy, glued
together with the identity maps outside of the embedding neighborhoods, strictly
following their construction.

As in Madsen-Svensson’s argument, only the double-coset formula (the last
equation in our definition of the Mackey conditions) and the commutation of Ind and
cgy need real checking. For the commutation of Ind and ¢,, we define our homotopy
as:

Cloy+ve : (W(@)u(t) + tin(9H) + p(v),t) — f4(v)

on the “core” K xy My, where f9(v) is the map twisted by the conjugation action
cg, ¥(t) is a path modification in the trivial representation component so that the
g-orbits avoids crossing together, and 6(¢) is the result curves in DV x I that are
disjoint each other. We paste this homotopy on the “core” with the identity maps on
the outside of the core neighborhoods, and, thanks to the strong gap condition, the
pasting can still be done without making the homeomorphisms crossing together in
DV x I.
Now the diagram

Su(D* x SU,8) —2— Sy.(D* x SU,8)

Indgi 11“1{;’

Sk(D* x 8U,8) —2— S.(D* x SU, 8)

commutes, with the same reason that the homotopy gives the commutative diagram
in the homotopy sets in the situation of Section 3 of Madsen-Svensson [MS].

The (more complicated) diagram for the double-coset formula also holds with
the similar construction of homotopies, again as in Madsen-Svensson’s argument, and
our Theorem 3.2 is proved.

The main point is the appropriate construction of the map, and once it is
constructed properly, then the proof of the required Mackey functor condition is done
by the standard argument.

SECTION 4. THE TRANSFER COMPATIBILITY IN THE SURGERY EXACT SEQUENCE
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Now that we have a Mackey functor structure in each of the terms in the
equivariant surgery exact sequence, we want to check if the maps in the exact sequence
are compatible with those Mackey structures. In fact this is true, as in the following:

Theorem 4.1. The equivariant surgery exact sequence for the X = D* x SU with
the strong gap condition as in the above, consists of Mackey functor maps, where
the structure set term is given the Mackey structure constructed in Section 3 above,
and the other terms are given the natural homotopy-theoretically and algebraically
defined Mackey structures, that were explained in Section 1 above.

Proof. The L-group term in the equivariant surgery exact sequence was interpreted
by Madsen-Rothenberg ([MR 2]) as hierarchical strata-wise L-group classes, each of
which is interpreted (by the original realization theorem of C. T. C. Wall ([W], Section
3)) as appropriate classes of equivariant normal maps. Therefore, we can re-interpret
the construction of the induction maps in the L-group term with the geometric normal
map level constructions, and once we do that, the exactly similar construction to
our one in the above Section 3 (replacing equivariant homotopy equivalences with
equivariant normal maps, homotopies with normal cobordisms, etc.) for the structure
set term can be checked to be compatible with the induction maps in the L-group
term. Our construction of K x i p(fo) can be compatible with the inductive splitting
correspondence of Theorem 9.1 and Theorems 10.1 and 10.2 of Madsen-Rothenberg
(MR 2)). |

Similarly, the normal invariant term in the equivariant surgery exact sequence
is interpreted by homotopy classes of equivariant normal maps as done in Madsen-
Rothenberg (MR 2]), and, again, the comparison of constructions can be done, to
provide the compatibility of induction maps between the structure set term and the
normal invariant term.

Other Mackey structure maps, that is, the restriction maps and the conjuga-
tion maps, are obviously compatible with the maps in the surgery exact sequence,
by definition, and thus we see that the exact sequence consists of maps of Mackey

functors.

In order to provide an explicit transfer construction, we had to restrict our-
selves with the case X = DF x SU. We expect the same result to hold for more
general G-manifolds X, with enough stability condition (we hope the same “strong
gap condition” for the G-manifold X could be enough), but we haven’t been able to
provide a satisfactory construction for that general case, at this point. We hope to
return to this generality in a future work.
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