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1. INTRODUCTION

In this note we shall discuss an isovariant version of the Borsuk-Ulam theorem,

which we call the isovariant Borsuk-Ulam theorem, and give some related results
on the isovariant Borsuk-Ulam theorem for 50(3).

We say that acompact Lie group $G$ has the $IB$-property if $G$ has the following
property:

$\bullet$
$\mathrm{p}_{01}$ . any (orthogonal) $G$-representations $V$ , $W$ such that a $G$ isovariant map
$f$ : $Varrow W$ exists, the inequality

$\dim V-\dim V^{G}\leq\dim W-\dim W^{G}$

holds.
An interesting problem is the following.

Problem A. Which compact Lie gl.oups have the $\mathrm{I}\mathrm{B}- \mathrm{p}\mathrm{r}\mathrm{o}\mathrm{p}\mathrm{e}\mathrm{r}\mathrm{t}\mathrm{y}^{7}$

By aresult of Wasserman [3], any compact solvable Lie group has the IB-
property, however this problem is still open for ageneral compact Lie group. On
the other hand, aweaker version of this problem has an affirmative answer for an
arbitrary compact Lie group.
Theorem 1.1 (The weak isovariant Borsuk-Ulam theorem). For an arbitrary corn-
pact Lie group, the weak isovariant Borsuk-Ulam theorem holds.

In section 2we shall recall this theorem from [2].
In section 3, as an example, we shall discuss further details when $G=SO(3)$ ,

alld show the isovariant Borsuk-Ulam theorem holds when the $\mathrm{d}$ $\dot{\mathrm{u}}\mathrm{n}\mathrm{e}\mathrm{n}\mathrm{s}\mathrm{i}\mathrm{o}\mathrm{n}$ of 50(3).
representation is small, that is,

Proposition 1.2. Let $V=\oplus_{\mathrm{i}=0}^{6}a_{i}U_{i}\oplus U$ and $W=\oplus_{i=0}^{6}b_{i}U_{i}\oplus U$, where $a_{ij}b_{i}$ are
nonnegative integers, $U_{i}$ is the $(2i+1)$ -dimensional irreducible SO(3)-representation
and $U$ is any SO(Z)-representation. If there is an SO(3)-i$Ovariant rnap frorn $V$

to $W$ , then
$\dim V-\dim V^{SO(3)}\leq\dim W-\dim W^{SO(3)}$
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2. AWEAK VERSION OF THE ISOVARIANT BORSUK-ULAM THE0REM

We first recall the prime condition in order to state Wasserman’s result.
Definition 1. We say that afinite group $G$ satisfies the prime condition if for every
pair of subgroups $H\triangleleft K$ with $K/H$ simple,

$p. \cdot \mathrm{p}\mathrm{r}\mathrm{i}\mathrm{m}\mathrm{e}\sum_{p||g|}\frac{1}{p}\leq 1$

for every $g\in K/H$ , where $|g|$ denotes the order of $g$ .
Wasserman’s isovariant Borsuk-Ulam theorem is stated as follows.

Theorem 2.1 (The isovariant Borsuk-Ulam theorem). Every finite group $G$ satisfy
fying the prime condition has the IB-property.
Remark. All finite groups do not satisfy the prime condition, for example, $A_{n}$ ,
$n\leq 11$ , satisfies the prime condition, but $A_{n}$ , $n\geq 12$ , does not satisfy the prime
condition. The author does not know whether all $A_{n}$ have the IB-property.

We next consider aweaker version of the isovariant Borsuk-Ulam theorem.
Definition 2. We say that acompact Lie group $G$ has the $WIB$-property if there
exists amonotone increasing function $\varphi_{G}$ : $\mathrm{N}_{0}arrow \mathrm{N}_{0}$ ( $\mathrm{N}_{0}$ : the nonnegative integers)
diverging $\mathrm{t}\mathrm{o}+\infty$ with the following property:

$\bullet$ For any (orthogonal) $G$-representations $V$ , $W$ such that a $G$ isovariant map
$f$ : $Varrow W$ exists, the inequality

$\varphi c(\dim V-\dim V^{G})\leq\dim W-\dim W^{G}$

holds.
Remark. In [2] we defined the WIB-property for linear $G$-spheres, but it is es-
sentially same as above, because one can see that the existence of aG-isovariant
map from $V$ to $W$ alld the existence of a $\mathrm{G}$-isovariant map from $SV$ to $SW$ are
equivalent.

Aweak version of Problem Ais:
Problem B. Which compact Lie groups have the $\backslash \mathrm{V}\mathrm{I}\mathrm{B}- \mathrm{p}\mathrm{r}\mathrm{o}\mathrm{p}\mathrm{e}\mathrm{l}\cdot \mathrm{t}\mathrm{y}$ ?

The answer is the following:
Theorem 2.2 (The weak isovariant Borsuk-Ulam theorem). An arbitrary compact
Lie group $G$ has the WIB-properry

The outline of proof is as follows. The full details will appear in [2]. We first
note:
Lemma 2.3. Let

$1arrow Harrow Garrow Karrow 1$

be a short exact sequence of compact Lie groups.
(1) If $H$ and $K$ have the $WIB[IB]- propert\mathrm{c}/$, then $G$ has the $WIB$ $[IB]$-property,
(2) If $G$ has the VVIB $[IB]$-property, then $K$ has the $WIB$ $[IB]$-property,

By this lemma, the problem is reduced to two case$\mathrm{s}$ :
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(1) $G$ is afinite simple group,
(2) $G$ is acompact, simply-connected, simple Lie group.

Using the (ordinary) Borsuk-Ulam theorem, one can see
Proposition 2.4. $C_{p}$ ($p$ :prime) and $S^{1}$ have the IB-property.

Therefore we obtain the following corollary from Lemma 2.3 and Proposition 2.4:
Corollary 2.5. Any compact solvable Lie group has the IB-property.

The next result is easy, but plays an import ant role in the proof of the weak
isovariant Borsuk-Ulam theorem.
Lemma 2.6. Let $H$ be a closed subgroup of $G$ with the $IB$-property. Assume that
there exists a constant $0<c<1$ such that $\dim U^{H}\leq c\dim$ $U$ for all nontrivial
irreducible representations $U$ of G. Then $G$ has the $WIB$-property, and moreover
$\varphi_{G}(n)$ can be taken to be $\langle(1-c)n\rangle$ , where $\langle x\rangle=\min\{n\in \mathbb{Z}|n\geq x\}$ .
Proof. Let $f$ : $Varrow W$ be any $G$-isovariant map between representations. Let
$V=V_{G}\oplus V^{G}$ and $W=W_{G}\oplus W^{G}$ , where $V_{G}$ [resp. $W_{G}$] denotes the orthogonal
complement of $V^{G}$ [resp. $W^{G}$]. Since the natural inclusion $i$ : $V_{G}arrow V$ and the
projection $p:Warrow \mathrm{I}4^{\gamma_{G}}$ are $G$-isovariant, we get a $G$-isovariant map $g:=p\circ\tilde{f}\mathrm{o}i$ :
$V_{G}arrow \mathrm{V}Vc$ . Since $H$ has the $\mathrm{I}\mathrm{B}$-property, it follows that

$\dim Vc-\dim V_{G}^{HH}\leq\dim W_{G}-\dim \mathrm{M}^{\gamma_{G}}\leq\dim \mathrm{T}\mathrm{t}^{\gamma_{G}}$.
By the complete reducibility of $G$ , $V_{G}$ is isomorphic to adirect sum of nontrivial
irreducible representations. Hence by assumption one can see that

$(1-c)\dim V_{G}\leq\dim V_{G}-\dim V_{G}^{H}$ .
Setting $\varphi c(n)=\langle(1-c)n\rangle$ , we obtain that $\varphi c(\dim V_{G})\leq\dim W_{G}$ , or equivalently

$\varphi c(\dim V-\dim V^{G})\leq\dim W-\dim W^{G}$ .
Clearly $\varphi_{G}$ is amonotone increasing function diverging to $\infty$ . This implies that $G$

has the WIB-property.

In the case (1), since there are only finitely many irreducible representations, we
have following:
Proposition 2.7. Let $G$ be a finite simple group. Let $H$ be any nontrivial subgroup
of G. Then there eists a constant $0<c<1$ such that $\dim U^{H}\leq \mathrm{c}\dim$ $U$ for all
nontrivial irreducible representations $U$ .

In particular, taking $H$ as acyclic subgroup of prime order, we obtain by Lemma
2.6 that $G$ has the WIB-property.

In the case (2), by representation theory of compact Lie groups, we also see the
following:
Proposition 2.8 $([\underline{9}])$ . Let $G$ be a compact, simply-connected, simple Lie group and
$T$ a $nlax.i\uparrow \mathit{7}lal$ torus. There exists a constant $0<c<1$ such that $\dim U^{T}\leq c\mathrm{d}\mathrm{i}\mathrm{u}\mathrm{z}$ $U$

for all nontrivial irreducible representations $U$ of $G$ .
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Since $T$ has the $\mathrm{I}\mathrm{B}$-property, it follows from Lemma 2.6 that $G$ has the WIB-
property. Thus the proof of the weak isovariant Borsuk-Ulam theorem is complete.

Before ending this section, we give aremark on the (weak) isovariant Borsuk-
Ulam theorem in semilinear actions.
Definition 3. Aclosed (smooth) $G$-manifold $\lambda f$ is called asemilinear $G$ -sphere if
the $H$-fixed point set $\Lambda I^{H}$ is homotopy equivalent to asphere or empty for every
closed subgroup $H$ of $G$ .

We can consider asimilar problem in the family of semilinear $G$-spheres, however
the conclusion is different from linear case. For semilinear $G$-spheres, the (weak)
isovariant Borsuk-Ulam theorem does not hold in general. In this case we show
in [2] that the (weak) isovari ant Borsuk-Ulam theorem holds if aaid only if $G$ is
solvable.

3. $\mathrm{s}_{\mathrm{o}\mathrm{M}\mathrm{E}}$ ESTIMATE OF $\Psi G$ FOR $G$ $=SO(3)$

In this section we concerned with the function $\varphi_{G}$ as in Definition 2.
We set

$cc(n)= \max${ $\varphi c(n)|\varphi c$ as in Definition 2}
for $n\geq 1$ , and $c_{G}(0)=0$ for convenience.

Set $D_{G}=$ {$n|n=\dim V-\dim V^{G}$ for some $V$}. We also define asimilar func-
tion $d_{G}$ on $D_{G}$ , where $d_{G}(n)$ , $n\geq 1$ , is defined as the greatest integer with the
following property:

$\bullet$ For any representation $V$ with $\dim V-\dim V^{G}=n$ and for any $W$ , if there
is a $G$-isovariant map $f$ : $Varrow W$ , then

$d_{G}(n)\leq\dim W-\dim W^{G}$

holds.
We also define $d_{G}(0)=0$ . Though the definition of $d_{G}$ resembles that of $c_{G}$ , these
are different in definition, namely $d_{G}$ need not be monotonely increasing. (However
the author does not have such an example.)

We first note the following.
Lemma 3.1. The value $c_{G}(n)$ , $n\geq 1$ , is equal to the greatest integer with the
$f\dot{\mathit{0}}llowing$ property:

$\bullet$ For any representation $V$ with $\dim V-\dim V^{G}\geq n$ and for any $W$ , $\iota f=$ there
is a $G$ -isovariant map $f$ : $Varrow \mathrm{f}\prime V$ , then

$c_{G}(n)\leq\dim W-\dim W^{G}$

holds.

Proof. Let $d_{G}(n)$ be the greatest integer satisfying the above property. Then $c_{G}’$

is monotonely increasing and diverging to $\infty$ by the weak isovariant Borsuk-Ulam
theorem. Hence $c_{C\tau}’$ is one of $\varphi_{G}$ and so $c_{G}’=c_{G}$ .
Remark. From this lemma, $c_{G}$ is thought of as an isovariant version of the Borsuk-
Ulam function $b_{G}$ defined in [1]
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One can easily see the following by definition.
Proposition 3.2. $\varphi_{G}(n)\leq c_{G}(n)\leq d_{G}(n)\leq n$ for any $n\in D_{G}$ .

Proposition 3.3. The following are equivalent.

(1) $G$ has the IB-property.
(2) $c_{G}(n)=n$ for any $n\in D_{G}$ .
(3) $d_{G}(n)=n$ for any $n\in D_{G}$ .

As an example we shall estimate $c_{G}$ or $d_{G}$ by finding some function $\varphi_{G}$ when
$G=SO(3)$ . As is well-known, 50(3) has only one (real) $(2k+1)$-dimensi0nal
irreducible representation for each $k\geq 0$ , which we denote by $U\iota-$ . Let $T(\cong S^{1})$

be amaximal torus and $N(\cong O(2))$ the normalizer of $T$ . Each $U_{k^{\mathrm{B}}}$ has the weight
$1+t+\cdots+t^{k}$ , where $t$ is the standard irreducible representation of $S^{1}$ . So we
obtain $\dim U_{k}^{T}=1$ , moreover we have

$\dim U_{k}^{N}$. $=\{$
1($k$ : even)
0($k$ : odd),

and so

$\frac{\dim U_{k}^{N}}{\dim U_{k^{n}}}.=\{$

$\frac{1}{2k+1}$. ( $k$ : even)
0($k$ : odd).

Therefore we obtain
$\dim V^{N}\leq\frac{1}{5}\dim V$

for aluy representation $V$ with $V^{G}=0$ . Since $N$ is solvable, by Proposition 2.8 and
its proof, we obtain

$\frac{4}{5}(\dim V-\dim V^{G})\leq\dim W-\dim W^{G}$ .

So $\varphi_{G}$ can be taken as

$\varphi_{G}(n)=\langle\frac{4}{5}n\rangle$ .

azxd hence
$c_{G}(n) \geq\langle\frac{4}{5}n\rangle$ .

For $G=SO(3)$ , $D_{G}$ consists of the nonnegative integers except $n=1,2,4$ .
Consequently we have $c_{G}(3)=3$ , $c_{G}(5)\geq 4$ , $c_{G}(6)\geq 5$ , etc. However this estimate
is not very sharp. In fact one can see $c_{G}(5)=5$ , $c_{G}(6)=6$ later.
Remark. The value of $\varphi c$ or $cc$ of $n\not\in D_{G}$ is not important as well as of $n=0$ for
our purpose.

The following is apartial result on the isovariant Borsuk-Ulam theorem for
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Proposition 3.4. Let $G=SO(3)$ . Let $V=\oplus_{i=0}^{6}a_{\mathrm{i}}U_{1}$ % $U$ and $W=\oplus_{\mathrm{i}=0}^{6}b_{i}U_{i}\oplus U$ .
where $a_{i}$ , $b_{i}$ are nonnegative integers and $U$ is any representation. If there is $a$

$G$-isovariant map from $V$ to $W$ , then
$\dim V-\dim V^{G}\leq\dim W-\dim$ Il .

We notice some facts for the sake of proof. Firstly it suffices to show the prop0-
sition when $a_{0}=b_{0}=0$ . Secondly, as is well-known, the (closed) proper subgroups
of 50(3) are the following: the cyclic group $C_{n}$ , the dihedral group $D_{n}$ , the tetra-
hedral group $T$ , the octahedral group $O$ , the icosahedral group $I$ , 50(2) and $O(2)$ .
All of these except I are solvable, and I is isomorphic to $A_{5}$ , whence all proper
subgroups of 50(3) have the $\mathrm{I}\mathrm{B}$-property. Therefore the isovariant Borsuk-Ulam
theorem gives various inequalities between dimensions. We consider them in a
general setting. Let $V=\oplus_{i=1}^{n}a_{i}U_{i}$ and $W=\oplus_{i=1}^{n}b_{i}U_{i}$ . Set $\eta=W-V$ and set
$\alpha_{i}=\sum_{k=i}^{n}$. $(b_{h}. -a_{k}.)$ , $1\leq i\leq n$ . Then we have

${\rm Res}_{SO(2)\eta=\alpha_{1}1+\alpha_{1}t+\alpha_{2}t^{2}+\cdots+\alpha_{n}t^{n}}$ ,

and
$\dim\eta=3\alpha_{1}+2(\alpha_{2}+\cdots+\alpha_{\mathrm{n}})$ .

By the isovariant Borsuk-Ulam theorem, one can easily see the following.
Lemma 3.5. (1) $\dim\eta^{SO(2)}-\dim\eta^{O(2)}=\sum_{\mathrm{A}=1}^{n}.(-1)^{k-1}\alpha_{k}$. $\geq 0$ .

(2) $\dim\eta-\dim\eta^{C_{p}}=\sum_{k\not\equiv 0(p)}\alpha_{k}\geq 0$ .
(3) $\dim\eta^{C^{2}}-\dim\eta^{C^{4}}=\sum$

$k.\cdot\not\equiv 0(4)k\equiv 0(2),\alpha k$

. $\geq 0$ .

(4) If $i> \frac{n}{3}$ , then $\alpha_{i}\geq 0$ .

Proof. (1)$-(3)$ :easy.
(4): By the isovariant Borsuk-Ulam theorem, we have

dinl $\mathrm{t}7^{c_{:}}-\dim \mathrm{t}7^{C_{2i}}=2(\alpha_{i}+\alpha_{3i}+a_{5i}+\cdots)\geq 0$ .

Since $3i>n$ , $\alpha_{n\mathit{1}}$ must be 0for $m\geq 3i$ . Hence $\alpha_{i}\geq 0$ .

Proof of Proposition 3.4. We may suppose that $a_{0}=b_{0}=0$ . When $n=6$ , by
Lemma 3.5, we have inequalities

$\alpha_{1}-\alpha_{2}+\alpha_{3}-\alpha_{4}+\alpha_{5}-\alpha_{6}\geq 0$,
$\alpha_{1}+\alpha_{2}+\alpha_{4}+\alpha_{5}\geq 0$ ,

$\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}+\alpha_{6}\geq 0$ ,
$\alpha_{2}+\alpha_{6}\geq 0$ .

Adding up these inequalities, we have
$3\alpha_{1}+2\alpha_{2}+2\alpha_{3}+\alpha_{4}+2\alpha_{5}+\alpha_{6}\geq 0$ .

Since $\alpha_{4}\geq 0$ alld $\alpha_{6}\geq 0$ by Lemma 3.5 (4), it follows that
$\dim\eta=3\alpha_{1}+\underline{9}(\alpha_{2}+\cdots+\alpha_{6})\geq 0$.

Hence $\mathrm{d}\mathrm{i}\mathrm{m}$ $V\leq\dim W$ .
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Remark. For ageneral $n$ , it does not seem that the above argument works well
though many other inequalities as in Lemma 3.5 exist.

Proposition 3.4 gives some information about $c_{SO(3)}(n)$ or $d_{SO(3)}(n)\mathrm{f}\mathrm{o}1^{\cdot}$ lower $n$ .

For example,
Example 3.6. $d_{SO(3)}(n)=n$ for $n\leq 15(n\in D_{SO(3)})$ .

Proof. When $n$ $\leq 14$ , $d_{so(3)}(n)=n$ follows directly from Proposition 3.4. If
$d_{SO(3)}(15)<15$ , there is a $G$-isovariant $G$-map $f$ : $S(V)arrow S(W)$ for some $V$ , $W$

$(V^{G}=W^{G}=0)$ such that $\dim \mathrm{T}/V<\dim V=15$ , hence $W$ does not include $U_{k}.$ ,
$k>6$ , by dimensional reason. Since $\alpha_{7}=b_{7}-a_{7}\geq 0$ by Lemma 3.5 (4), $V$ does
not also include U7. Hence $dso(3)(15)=15$ by Proposition 3.4.

By asimilar argument we also have
Example 3.7. $c_{SO(3)}(n)=n$ for $n\leq 15(n\in D_{so(3)})$ .
Remark. By afurther argument, one can see that the above equality holds for some
more large integers. The detail is left to the readers.

Finally we pose
Conjecture. $c_{G}(n)=d_{G}(n)=n$ for each $n\in D_{G}$ when $G=SO(3)$ .
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