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1. INTRODUCTION

In this note we shall discuss an isovariant version of the Borsuk-Ulam theorem,
which we call the isovariant Borsuk-Ulam theorem, and give some related results
on the isovariant Borsuk-Ulam theorem for SO(3). v

We say that a compact Lie group G has the IB-property if G has the following
property:

e For any (orthogonal) G-representations V, W such that a G-isovariant map
f:V — W exists, the inequality

dimV — dim V¢ < dim W — dim W&

holds.

An interesting problem is the following.
Problem A. Which compact Lie groups have the IB-property?

By a result of Wasserman [3], any compact solvable Lie group has the IB-
property, however this problem is still open for a general compact Lie group. On
the other hand, a weaker version of this problem has an affirmative answer for an
arbitrary compact Lie group.

Theorem 1.1 (The weak isovariant Borsuk-Ulam theorem). For an arbitrary com-
pact Lie group, the weak isovariant Borsuk-Ulam theorem holds.

In section 2 we shall recall this theorem from [2].

In section 3, as an example, we shall discuss further details when G = S0(3),

and show the isovariant Borsuk-Ulam theorem holds when the dimension of SO(3)-
representation is small, that is,
Proposition 1.2. Let V = &f_,a;U; @ U and W = &% biU; ® U, where a;, b; are
nonnegative integers, U; is the (2i+1)-dimensional irreducible SO(3)-representation
and U is any SO(3)-representation. If there is an SO(3)-isovariant map from V
to W, then

dim V — dim V5°® < dim W — dim W5°®
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2. A WEAK VERSION OF THE ISOVARIANT BORSUK-ULAM THEOREM

We first recall the prime condition in order to state Wasserman’s result.
Definition 1. We say that a finite group G satisfies the prime condition if for every
pair of subgroups H <« K with K/H simple,

1
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p:prime
pllgl

for every g € K/H, where |g| denotes the order of g.

Wasserman'’s isovariant Borsuk-Ulam theorem is stated as follows.

Theorem 2.1 (The isovariant Borsuk-Ulam theorem). Every finite group G satis-
fying the prime condition has the IB-property.

Remark. All finite groups do not satisfy the prime condition, for example, Ay,
n < 11, satisfies the prime condition, but A,, n > 12, does not satisfy the prime
condition. The author does not know whether all A, have the IB-property.

We next consider a weaker version of the isovariant Borsuk-Ulam theorem.
Definition 2. We say that a compact Lie group G has the WIB-property if there
exists a monotone increasing function g : Ng — Ng (Np : the nonnegative integers)
diverging to +oo with the following property:

e For any (orthogonal) G-representations V', W such that a G-isovariant map
f:V — W exists, the inequality

we(dimV — dim V%) < dim W — dim w¢

holds.

Remark. In [2] we defined the WIB-property for linear G-spheres, but it is es-
sentially same as above, because one can see that the existence of a G-isovariant
map from V to W and the existence of a G-isovariant map from SV to SW are
equivalent. '

A weak version of Problem A is:
Problem B. Which compact Lie groups have the WIB-property?

The answer is the following:
Theorem 2.2 (The weak isovariant Borsuk-Ulam theorem). An arbitrary compact
Lie group G has the WIB-property.

The outline of proof is as follows. The full details will appear in [2]. We first
note:
Lemma 2.3. Let

1-H-G—-K-—-1

be a short exact sequence of compact Lie groups.

(1) If H and K have the WIB [1B]-property, then G has the WIB [IB]-property.
(2) If G has the WIB [IB]-property, then K has the WIB [IB]-property.

By this lemma, the problem is reduced to two cases:
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(1) G is a finite simple group,
(2) G is a compact, simply-connected, simple Lie group.

Using the (ordinary) Borsuk-Ulam theorem, one can see
Proposition 2.4. C, (p: prime) and S* have the IB-property.
Therefore we obtain the following corollary from Lemma 2.3 and Proposition 2.4:

Corollary 2.5. Any compact solvable Lie group has the IB-property.

The next result is easy, but plays an important role in the proof of the weak
isovariant Borsuk-Ulam theorem.
Lemma 2.6. Let H be a closed subgroup of G with the IB-property. Assume that
there erists a constant 0 < ¢ < 1 such that dimU¥ < c¢dimU for all nontrivial
wrreducible representations U of G. Then G has the WIB-property, and moreover
pc(n) can be taken to be (1 — c)n), where (z) = min{n € Z|n > z}.

Proof. Let f : V — W be any G-isovariant map between representations. Let
V=V VC®and W = Wz ® WE, where Vg [resp. W] denotes the orthogonal
complement of V¢ [resp. WC). Since the natural inclusion i : Vg — V and the
projection p : W — Wy are G-isovariant, we get a G-isovariant map g:=pofoi:
Ve — We. Since H has the IB-property, it follows that

dim Vg — dim V¥ < dimWg - dim W¥ < dim W

By the complete reducibility of G, Vg is isomorphic to a direct sum of nontrivial
irreducible representations. Hence by assumption one can see that

(1 =c)dim Vg < dim Vg — dim V.
Setting wg(n) = ((1 — ¢)n), we obtain that ¢g(dim Vg) < dim W, or equivalently
pa(dimV — dim V) < dim W - dim W°.

Clearly p¢ is a monotone increasing function diverging to co. This implies that G
has the WIB-property.

In the case (1), since there are only finitely many irreducible representations, we
have following: .
Proposition 2.7. Let G be a finite simple group. Let H be any nontrivial subgroup
of G. Then there exists a constant 0 < ¢ < 1 such that dim U¥ < cdim U for all
nontriwvial irreducible representations U.

In particular, taking H as a cyclic subgroup of prime order, we obtain by Lemma

2.6 that G has the WIB-property. '
In the case (2), by representation theory of compact Lie groups, we also see the

following:
Proposition 2.8 ([2]). Let G be a compact, simply-connected, simple Lie group and
T a mazimal torus. There exists a constant 0 < ¢ < 1 such that dim UT <cdimU
for all nontrivial irreducible representations U of G.
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Since T has the IB-property, it follows from Lemma 2.6 that G has the WIB-
property. Thus the proof of the weak isovariant Borsuk-Ulam theorem is complete.
Before ending this section, we give a remark on the (weak) isovariant Borsuk-
Ulam theorem in semilinear actions.
Definition 3. A closed (smooth) G-manifold M is called a semilinear G-sphere if
the H-fixed point set M# is homotopy equivalent to a sphere or empty for every
closed subgroup H of G.

We can consider a similar problem in the family of semilinear G-spheres, however
the conclusion is different from linear case. For semilinear G-spheres, the (weak)
isovariant Borsuk-Ulam theorem does not hold in general. In this case we show
in [2] that the (weak) isovariant Borsuk-Ulam theorem holds if and only if G is
solvable.

3. SOME ESTIMATE OF ypg FOR G = SO(3)

In this section we concerned with the function ¢¢ as in Definition 2.
We set
cc(n) = max{pg(n) | pc as in Definition 2}
for n > 1, and ¢g(0) = 0 for convenience.

Set Dg = {n|n =dimV — dim V¢ for some V}. We also define a similar func-
tion dg on Dg, where dg(n), n > 1, is defined as the greatest integer with the
following property:

e For any representation V' with dim V —dim V¢ = n and for any W, if there
is a G-isovariant map f : V — W, then
dg(n) < dim W - dim W¢

holds.
We also define dg(0) = 0. Though the definition of dg resembles that of cg, these
are different in definition, namely d need not be monotonely increasing. (However
the author does not have such an example.)

We first note the following.
Lemma 3.1. The value cg(n), n > 1, is equal to the greatest integer with the
following property:
o For any representation V with dimV —dim V¢ > n and for any W, if there
is a G-isovariant map f : V — W, then
ce(n) < dim W — dim W¢
holds.

Proof. Let cg(n) be the greatest integer satisfying the above property. Then cj
is monotonely increasing and diverging to co by the weak isovariant Borsuk-Ulam
theorem. Hence c; is one of ¢ and so ¢ = cg.

Remark. From this lemma, cg is thought of as an isovariant version of the Borsuk-
Ulam function bg defined in [1].
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One can easily see the following by definition.

Proposition 3.2. pg(n) < cg(n) < dg(n) < n for any n € Dg.
Proposition 3.3. The following are equivalent.

(1) G has the IB-property.

(2) cg(n) =n for anyn € Dg.

(3) dg(n) =n for anyn € Dg.

As an example we shall estimate ¢g or dg by finding some function ¢ when
G = SO(3). As is well-known, SO(3) has only one (real) (2% + 1)-dimensional
irreducible representation for each k > 0, which we denote by U. Let T (= S')
be a maximal torus and N (= O(2)) the normalizer of T'. Each Uy has the weight
14¢t+---+tk where t is the standard irreducible representation of S'. So we
obtain dim UF = 1, moreover we have

1 (k:even)

dim U} =
mUi {o (k : 0dd),

and so

dimU}Y |75 (k:even)
dimU, |0 (k : odd).

Therefore we obtain
dim V" < % dimV

for any representation V with V¢ = 0. Since N is solvable, by Proposition 2.8 and
its proof, we obtain

g(dim V — dim V¢) < dim W — dim W°.

So ¢ can be taken as

and hence

co(n) > <§n>

For G = SO(3), D¢ consists of the nonnegative integers except n = 1, 2, 4.
Consequently we have cg(3) = 3, ¢g(b) 2 4, cg(6) > 5, etc. However this estimate
is not very sharp. In fact one can see cg(5) = 5, cg(6) = 6 later.

Remark. The value of g or cg of n € Dg is not important as well as of n = 0 for
our purpose.

The following is a partial result on the isovariant Borsuk-Ulam theorem for
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Proposition 3.4. Let G = SO(3). Let V = &°_a;U; ®U and W = &5_b;U; @ U,
where a;, b; are nonnegative integers and U is any representation. If there is a
G-isovariant map from V to W, then

dimV — dim V% < dim W — dim W€,

We notice some facts for the sake of proof. Firstly it suffices to show the propo-
sition when ap = by = 0. Secondly, as is well-known, the (closed) proper subgroups
of SO(3) are the following: the cyclic group C;, the dihedral group D, the tetra-
hedral group T, the octahedral group O, the icosahedral group I, SO(2) and O(2).
All of these except [ are solvable, and I is isomorphic to As, whence all proper
subgroups of SO(3) have the IB-property. Therefore the isovariant Borsuk-Ulam
theorem gives various inequalities between dimensions. We consider them in a
general setting. Let V = @[_,a;U;-and W = @ b;U;. Set n = W — V and set
o; =Y p;(bx —ax), 1 <i<n. Then we have

Res so@yn = a1l + aqt + aot® + - + ant™,
and
dimn = 3a; + 2(as + -+ - + an).
By the isovariant Borsuk-Ulam theorem, one can easily see the following.
Lemma 3.5. (1) dim7%°® — dimn°® = Y"7_ (-1)* ey > 0.
(2) dimn — dimn® = 3, ., @k > 0.
(3) dim n°® — dim 7 = Y k=o(2) o > 0.
k#0(4)
(4) Ifi > %, then oy > 0.
Proof. (1)-(3): easy.
(4): By the isovariant Borsuk-Ulam theorem, we have
dimn% — dimn® = 2(ai + oz +asi+---) > 0.
Since 3¢ > n, a,, must be 0 for m > 3i. Hence o; > 0.

Proof of Proposition 8.4. We may suppose that ag = by = 0. When n = 6, by
Lemma 3.5, we have inequalities

o —ag+az—aq+as —ag 2> 0,
ay+as+ag+as >0,
oy +oag+oaz+ay+oas 2> 0,
o+ ag > 0.
Adding up these inequalities, we have
3a; + 209 + 203 + a4 + 205 + a5 2 0.

Since a4 > 0 and ag > 0 by Lemma 3.5 (4), it follows that

dimn = 3a; + 2(ae + -+ -+ ag) > 0.
Hence dimV < dim W.
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Remark. For a general n, it does not seem that the above argument works well
though many other inequalities as in Lemma 3.5 exist.

Proposition 3.4 gives some information about cgos)(n) or dsos)(n) for lower n.
For example,
Ezample 3.6. dso(s)(n) =n for n < 15 (n € Dgp(s)).

Proof. When n < 14, dsos)(n) = n follows directly from Proposition 3.4. If
dso(3)(15) < 15, there is a G-isovariant G-map f : S(V) — S(W) for some V, W
(V€ = W€ = 0) such that dimW < dimV = 15, hence W does not include Uy,
'k > 6, by dimensional reason. Since a7 = by — a7 > 0 by Lemma 3.5 (4), V does

not also include Uz. Hence dso(3)(15) = 15 by Proposition 3.4.

By a similar argument we also have
Ezample 3.7. cso3)(n) =n for n <15 (n € Dso))-
Remark. By a further argument, one can see that the above equality holds for some
more large integers. The detail is left to the readers.

Finally we pose
Conjecture. cg(n) = dg(n) =n for each n € Dg when G = SO(3).
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