
THE SPACE OF INTERVALS AND AN APPROXIMATION TO
$\Omega^{n}\Sigma^{n}X$

詫間電波工業高等専門学校 奥山真吾 (Shingo Okuyama)
Takuma National College of Technology

1. INTRODUCTION
Let $C_{n}(X)$ be the configuration space of finite points in $\mathrm{R}^{n}$ with labels in $X$ . As a

set, $C_{n}(X)$ is given by

$C_{n}(X)=\{(S, x)|x:Sarrow XS:\mathrm{a}\mathrm{f}\mathrm{f}\mathrm{i}\mathrm{n}\mathrm{i}\mathrm{t}\mathrm{e}$

ssubbsseett
$\subset \mathrm{R}^{n}\}/\sim$

where the relation is the base point relation, that is

$(S,x)\sim(T, y)\Leftrightarrow\{$
$x(\mathrm{c})=y(c)$ if $c\in S\cap T$

$x(c)=*,y(c)=*$ otherwise.

We say $X$ group-completes to $\mathrm{Y}$ if there exist an admissible $\#$-space $X\sim$ which is
weakly equivalent to $X$ sand agroup completion $\tilde{X}arrow \mathrm{Y}[?]$ . By definition, if $X$ group
completes to $\mathrm{Y}$ then $H_{*}(X)[\pi_{0}(X)^{-1}]$ $\simeq H_{*}(\mathrm{Y})$ .

Then Segal showed the following
Theorem 1(Segal $[?]$ ). $C_{n}(X)$ group completion to $\Omega^{n}\Sigma^{n}X$ . When $X$ is connected,
$C_{n}(X)\simeq_{w}\Omega^{n}\Sigma^{n}X$.

By the above theorem, it is natural to expect that if we could put aHopf inverse to
$C_{n}(X)$ in some nice way, then we get amodel which approximates $\Omega^{n}\Sigma^{n}X$ even when
$X$ is not connected. We recall the following special case of D.McDu $\mathrm{f}\mathrm{T}\mathrm{s}$ construction[?].
We put

$C^{\pm}(\mathbb{R}^{1l})=\{(S,p)|p.\cdot.Sarrow\{\pm S.\mathrm{a}\mathrm{f}\mathrm{f}\mathrm{i}\mathrm{n}\mathrm{i}\mathrm{t}\mathrm{e} \mathrm{s}\mathrm{u}\mathrm{b}\mathrm{s}\mathrm{e}\mathrm{t}\mathrm{l}\}$

$\subset$

$\mathrm{R}^{n}\}/\sim$

where the topology is given so that two points with the opposite parity in $\{\pm 1\}$ can
collide and annihilate. By the annihilation of oppositely charged particles, this space
call be considered as aspace constructed from $C_{n}(S^{0})$ by putting ahomotopy inverse to
it. But it does not approximate $\Omega^{1}’\Sigma^{n}S^{0}=\Omega^{n}S^{\mathrm{n}}$ , indeed, it is showed by McDuff that
$C^{\pm}(\mathrm{R}^{n})\simeq_{w}\Omega^{n}(S^{n}\mathrm{x}S^{n}/\Delta)$, where $\Delta$ denotes the diagonal subspace of $\Sigma^{n}X\mathrm{x}\Sigma^{n}X$

By an interval in $\mathrm{R}^{n}$ we mean a subspace $J\mathrm{x}v\subset \mathrm{R}$ $\mathrm{x}\mathrm{R}^{\mathrm{n}-1}$ where $J\subset \mathrm{R}^{1}$ is a
bounded interval and $v\in \mathrm{R}^{n-1}$ . We put

$I_{n}(X)=\{\{(J_{1},x_{1}), \cdots, (J_{k}, x_{k})\}|x_{i}\in.X\{J_{i}\}$
.disjoint iinntteerrvvaallss iinn

$\mathrm{R}^{n}\}/\sim$

This set is topologized so that
-Any two intervals call be connected into one interval if they are of different type

in meeting ends ( $i.e$ . one is closed alld the other is open) arxd their labels in $X$

coincide, ffild
$-\mathrm{A}\mathrm{n}\mathrm{y}$ half-open interval caax vanish when its length comes to be zero.

Theorem 2(Main theorem). $I_{n}(X)\simeq_{\mathrm{u}};\Omega^{n}\Sigma^{n}X$ (even for non-connected $X$)
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The construction of $I_{n}(X)$ and the above theorem is inspired by the idea of Prof.
K.Shimakawa concerning the same problem generalized to the $G$-equivariant setting.
Let $G$ be agroup acting on $X$ , and $V$ be an orthogonal G-module, which contains all
the irreducible $G$-representations inifinitely many times as direct summ ands. We denote
the space $\Lambda fap_{*}(V^{c}, V^{c}\Lambda X)$ of based maps by $\Omega^{V}\Sigma^{V}X$ , $\mathrm{w}1_{1}\mathrm{e}\mathrm{r}\mathrm{e}V^{c}$ denotes the one point
compactification of $V$ . When $G$ is finite, it is known that the configuration space $Cv(X)$

of finite points in $V$ with labels in $X$ is weakly equivalent to $\Omega^{V}\Sigma^{V}X$ , but when $G$ is
infinite, $C_{V}(X)$ is too small to give such an approximation. His idea is to substitute
$Cv(X)$ by aspace of some class of manifolds embedded in $V$ and get aweak equivalence
to $\Omega^{V}\Sigma^{V}X$ . Especially, the manifolds can be cut and pasted in his space of manifolds,
which specializes to the connection of intervals in our space.

We give an outline of the proof of the main theorem in \S 2. In \S 3, we explain how $I_{1},(X)$

is related to $\Omega^{n}\Sigma^{n}X$ by observing the idea of physical analogue behind the definition of
$\alpha:\tilde{I}_{n}(X)arrow$ $\mathrm{C}\mathrm{n}-\mathrm{i}\Sigma X$ . We also give the explicit definition of $\alpha$ in \S 3.

2. OUTLINE OF THE PROOF OF THE MAIN THEOREM

Let $U$ be asubspace of $\mathbb{R}^{1}$ azid $I_{1}(X)u$ denote the space of intervals in $U$ . We
denote $I_{1}(X)_{\epsilon}=I_{1}(X)(0,s)\cdot I_{1}(X)$ is $\mathrm{h}\mathrm{o}\mathrm{m}\mathrm{e}\mathrm{o}\mathrm{m}\mathrm{o}\mathrm{r}\mathrm{p}1_{1}\mathrm{i}\mathrm{c}$ to $I1$ $(X)_{\mathit{8}}$ for any $s>0$ . We
say that $\iota$ $\in I_{1}(X)_{U}$ is $\epsilon$-separated if it consists of $\mathrm{i}_{11}\mathrm{t}\mathrm{e}\mathrm{r}\mathrm{v}\mathrm{a}1\mathrm{s}$ which satisfy the following
conditions.

(1) they are subinterval in $U-\partial\overline{U}_{\epsilon/2}$, where $\overline{U}$ denotes the closure of $U$ and $\partial\overline{U}_{\epsilon/2}$

denotes the $\epsilon/2$-neighborhood of its boundary,
(2) aaly two ends (of the same or $\mathrm{d}\mathrm{i}\mathrm{s}\mathrm{t}\mathrm{i}_{11}\mathrm{c}\mathrm{t}$ intervals) with the $\mathrm{s}$ ame parity are $\mathrm{s}\mathrm{e}\mathrm{p}*$

rated more than or equal to $\epsilon$ , and
(3) any two intervals with the distinct labels in $X$ are separated more than or equal

to $\epsilon$ .
Let $I_{1}^{\epsilon}(X)_{U}$ be the subspace of $I_{1}(X)_{U}$ consisting of all the $\epsilon$-separated elements. We
define

$I_{n}^{\mathrm{g}}(X)=C_{n-1}(I_{1}^{\epsilon}(X))$ .
(We agree here, that $C_{\iota-1}$, is acontinuous self-functor on the category of topological
abelian partial monoids $1^{?}$], $[?]$ . Abelian partial monoid structure of $I_{1}^{\epsilon}(X)$ is given by
superimposition.)

Then we define
$\tilde{I}_{n}(X)=\{(\xi,\epsilon, s) |0<\epsilon \leq\delta, s\geq 0, \xi\in I_{n}^{\epsilon}(X)_{s}\}$ ,

with atopology considered as asubspace of $I_{11}(X)_{\infty}\mathrm{x}(0,\delta]\mathrm{x}[0, \infty)$ . Then the following
lemma holds.

Lemma 3. $I_{n}(X)\simeq_{w}\tilde{I}_{n}(X)$ .

We can define aspace $\tilde{E}_{n}(X)$ alld maps $i_{1}$ and $p$ appropriately so that the following
proposition holds.

Proposition 4. $\tilde{I}_{n}(X)arrow\tilde{E}_{n}(X)arrow C_{n-1}\Sigma Xi\mathrm{P}$ is aquasifibration.

Proof. We follow thc Dold-Thom criterion for a $\mathrm{q}\mathrm{u}\mathrm{a}\mathrm{s}\mathrm{i}\mathrm{f}\mathrm{f}\mathrm{i}\mathrm{b}\mathrm{r}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}.[?]$ So it suffices to show
two lemmas below. $\square$

Lemma 5. (Dold-Thom criterion 1)
For any open set V $\subset F{}_{j}C_{\mathfrak{n}-1j-1}\Sigma X-FC_{n-}\mathrm{I}\Sigma X$, V is distinguished
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Lemma 6. (Dold-Thom criterion 2)
There exist an open neighborhood $U$ of $Fj-1C_{n-1}\Sigma X$ in $F{}_{jn-1}C\Sigma X$ and ahomotopies
$h_{t}$ : $Uarrow U$ alld $H_{t}$ : $p^{-1}Uarrow p^{-1}U$ such that

(1) $h_{0}=idu$ and $h_{1}(U)\subset F_{j-1}C_{n-1}\Sigma X$ ,
(2) $H_{0}=id_{p^{-1}U}$ and $pH_{t}=h_{t}p$ for all $t$ ,
(3) $H_{1}$ : $p^{-1}zarrow p^{-1}h_{1}z$ is a homotopy equivalence for all $z\in U$ .

Filtration $F{}_{j}C_{n-1}\Sigma X$ is given in $[?]$ . The proof of two lemmas above are quite lengthy
and we refer the reader to $[?]$ .

We have maps $\alpha$ and $\beta$ which make the following diagram commutative.

(1)
$I\sim n\alpha\downarrow(X)$

$\beta\downarrow$ $||$

$arrow.\cdot$ $\tilde{E}_{n}(X)$ $arrow pC_{n-1}\Sigma X$

$\Omega C_{n-1}\Sigma Xarrow PC_{n-1}\Sigma Xarrow C_{n-1}\Sigma X$.
The above quasifibration approximates the path loop fibration

$\Omega C_{n-1}\Sigma Xarrow PC_{n-1}\Sigma Xarrow C_{n-1}\Sigma X$ ,
once we have proved the following

Lemma 7. $\tilde{E}_{n}(X)$ is weakly contractible.

As $\tilde{E}_{n}(X)$ is weakly contractible, $\beta$ is aweak equivalence, and so is $\alpha$ . Then the main
theorem follows from Lemma $??$ , $\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{c}\mathrm{e}_{f}$ by the Segal’s theorem, $C_{n-1}\Sigma X\simeq\Omega^{n-1}\Sigma^{n}X$ .

3. THE MAP $\alpha:I_{n}(X)$ $arrow\Omega C_{n-1}\Sigma X$

Before giving the explicit definition of $\alpha$, we observe that there exists an idea of
physical analogue behind it.

To relate $\overline{I}_{n}(X)$ with $\Omega^{n}\Sigma^{n}X$ , we regard all interval to be a string which produces
an electric field. Essentially, the electric property of a string differs from an ordinary
electricity only in the direction of its tangent vector at two ends, so we first concentrate
on the case $n=1$ .

We introduce some extraordinary electricity of particles, the notion of aparticle
’charged half. Aparticle charged $\pm\frac{1}{2}$ on the left(right) make the same effect as a
particle &arged\pm l on the left(right) side and does nothing on its right(left) side.

Astring works as apair of particles each of which is $\mathrm{c}\mathrm{h}\mathrm{a}\mathrm{r}\mathrm{g}\mathrm{e}\mathrm{d}+\frac{1}{2}$ or $- \frac{1}{2}$ . If the string
has a closed(opcn) end on its left side, then we take it as if there is aparticle charged
$+ \frac{1}{2}(-\frac{1}{2})$ on the left located at $\frac{\epsilon}{2}$ inside the end. We understand $\mathrm{t}1_{1}\mathrm{e}$ exsistence of another
particle charged $\pm\frac{1}{2}$ on the right similarly for the right end of the string.

Then a point in $\tilde{I_{1}}^{e}(X)$ is considered to be a configuration of finite number of such
strings in R. $I_{1}^{\tilde{\epsilon}}(X)arrow Map^{cpt}(\mathrm{R},\mathrm{R} \mathrm{x}X)$ is defined by assigning to the configuration
of strings a field it produces, making the labels in $X$ in consideration. Taking one
point compactification of $\mathbb{R}$ and aquotient appropriately, we get amap at’ : $I1(\tilde{\epsilon}X)arrow$

$Map*(\mathrm{R}\cup\{\infty\}, (\mathrm{R}\cup\{\infty\})\wedge X)\approx\Omega\Sigma X$ . (Regard that, in $\Lambda fap_{*}(\mathbb{R}\cup\{\infty\}, (\mathrm{R}\cup\{\infty\})\Lambda X)$ ,
$\infty$ is the base point of $\mathrm{R}\cup\{\infty\}$ on the source, while 0is oll the target.) $\alpha^{\epsilon}$ for all $0<\epsilon$ $\leq\delta$

constitutes amap $\alpha:\tilde{I}_{n}(X)arrow\Omega^{n}\Sigma^{n}X$ .
If we prefer, we may define $\tilde{I}_{n}(X)arrow\Omega^{n}\Sigma^{n}X$ by assignment of the field to the

configuration of strings in $\mathrm{R}^{n}$ , by regarding the effect of each string in the direction
orthogonal to the first axis as the effect given by a‘string $\mathrm{c}\mathrm{l}\mathrm{l}\mathrm{a}\mathrm{r}\mathrm{g}\mathrm{c}\mathrm{d}+1$ ’.
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Now we give the explicit definition of $\alpha$ : $\overline{I}_{n}(X)arrow\Omega C_{n-1}\Sigma X$. Let $\iota$ be an element
of $I_{1}^{\epsilon}(X)_{s}$ . Suppose $\iota$ is represented by a $k$-tuple $((J_{1}, x_{1}),$ $\cdots$ , $(Jk, xk))$ where $J_{i}$ is all

interval with end points $u_{2i-1}$ and $u_{2i}$ . We also assume that $ui-1\leq u_{i}$ for all $i$ . If $uj$

($j$ $=2i-1$ or $2\mathrm{z}$) is aclosed(open) end of $J_{i}$ , we put $pj=1(-1)$ .
We define subintervals $N_{i}\subset[0, s](i=1, \cdots, 2k)$ as

$N_{1}=[u_{1}-\epsilon/2, {\rm Min}(u_{1}+\epsilon/2,u_{2}-\epsilon/2)]$ ,
$N_{i}=[{\rm Max}(u:-\epsilon/2,u_{i-1}+\epsilon/2), {\rm Min}(ui+\epsilon/2,u_{i+1}-\epsilon/2)]$ , for $1<i<2k$ ,

and
$N_{2k}=[{\rm Max}(u2k-\epsilon/2,u2k-1+\epsilon/2),u2k+\epsilon/2]$ .

We define afunction $f$ : $\bigcup_{i=1}^{2k}N_{i}arrow S^{1}\wedge X$ by
$f(t)=[p_{\dot{l}}((t-u_{\dot{f}})/\epsilon+(-1)^{i}/2)]\wedge x_{G((\dot{\iota}+1)/2)}$ , if $t\in N_{\dot{l}}$

where $S^{1}$ is regarded as $[$-1, $1]/\{\pm 1\}$ and $G(q)$ denotes the largest integer which does
not exceed $q$ . We can extend $f$ continuously to $[0, s]$ in such away that it is piecewise
constant outside $\bigcup_{i=1}^{2k}N_{\dot{l}}$ .

This definition does not depend on the choice of arepresentative, so we obtain amap
$\alpha_{s}^{\epsilon}$ : $I_{1}’(X)_{s}arrow\Omega_{s}(\Sigma X)$ ,

which is clearly an abelian partial monoid homomorphism. Then we define amap
$\alpha$ : $\tilde{I}_{1}(X)arrow\Omega\Sigma X$ by $(\xi,\epsilon, s)$ $\mapsto\alpha_{s}^{e}(\xi)$ , which is also all abelian partial monoid hom0-
morphism, if we regard $\Omega\Sigma X$ as an abelian partial monoid appropriately.

Then we define amap at: $I\sim n(X)arrow\Omega C_{n-1}(\Sigma X)$ by the composite

$\tilde{I}_{n}(X)arrow C_{n-1}(\tilde{I_{1}}(X))arrow C_{n-1}(\Omega\Sigma X)c_{\mathfrak{n}-1(\alpha)}arrow\Omega C_{n-1},(\Sigma X)$,

where the first map is given by an inclusion $I_{1}^{\epsilon}(X)arrow\tilde{I_{1}}(X)$ , while the last map is given
by

$[v_{1}, l_{1}; \cdots ; vk, lk]$ $\mapsto$ $(t\mapsto[v_{1},l_{1}(t);\cdots ; vk, lk(t)])$ , $l_{:}\in\Omega\Sigma X$ .
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