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EQUIVARIANT APPROXIMATION TO EQUIVARIANT LOOP
SPACES

MR B2 ER B/ fIA (Kazuhisa Shimakawa)
Department of Mathematics, Okayama University

ABSTRACT. The “approximation theorem” states that the n-fold loop space
Q"E"X can be approximated by the configuration space of finite sets in R™
parametrized by X. An equivariant analogue of the approximation theorem
holds when X has a finite group action. But this type of approximation theorem
no longer holds in the case of positive dimensional Lie transformation groups.
In this paper we shall introduce an equivariant configuration space C(V, X) of
“smooth submanifolds” (instead of “finite sets”) in the orthogonal G-module V'
parametrized by a countable G-CW complex X and show that there is a weak
G-equivalence C(V, X) ~ QVIV X at least if V' contains an infinite-dimensional
trivial G-module.

1. INTRODUCTION

Let C(R™, X) be the configuration space of finite point sets in R™ (1 < n < 00)
parametrized by a pointed space X; that is,

CR" X)= {(C) :L')},

where c is a finite subset of R” and z: ¢ — X is a map. But (c,z) is identified
with (¢, z') if ¢ C ¢, 2'|lc = z, and z'(p) = * when p & c. Then the classical
“approximation theorem” states that

Theorem 1 (May, Segal). There exists an approzimation map
C(R™ X) — Q"= X,

which is an equivalence if X is path-connected and in general is a group-completion.
(When n = oo this yields a form of the Barratt-Priddy-Quillen theorem.)

The aim of this work is to establish an equivariant generalization of the theo-
rem above in the compact Lie case. More precisely, we shall construct a sort of
“equivariant configuration space” C(V, X) and a weak G-equivalence

CV,X) g QVEV X,

where G is a compact Lie group, V is an orthogonal G-module containing the
trivial G-module R*, and X is a pointed G-space.
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Remark 2. (a) When G is finite, this can be achieved by taking C(V, X) to be the
usual configuration space of finite point sets in V' parametrized by X, and letting
G act on C(V, X) in the obvious manner.

(b) J. Caruso and S. Waner [1] gives a group-completion

Ce(V, X) — (QVZV X)C,

where V is an orthogonal G-module such that V > R* and Cg(V, X) is the
configuration space of finite G-orbits in V' parametrized by a pointed G-space X.
But this is definitely a non-equivariant result and never imply “equivariant
approximation,” for there exists no reasonable G-equivariant model C(V, X) sat-
isfying
CV,X)¥ ~Cu(V,X), H<LG.
(c) Our approximation theorem implies that
CV, X ~(QY2VX)¥, H<G

holds for any (not necessarily G-connected) X, and is related to Caruso-Waner’s
result via group-completion maps

Cu(V,X) = C(V,X)", HZG.
(d) Caruso and Waner [loc. cit.] asked:
Can we construct a manageable global model C(W, X)) so that
(C(W, X)) =Cyg(W,X) foral HL G

(as for the case where G is finite)?

The previous remark says that the answer is YES if we replace Cy (W, X) by its
(naturally constructed) group-completion. But the answer will be NO if we stick
to Caruso-Waner’s Cy(W, X).

2. THE SPACE C(V, X)

Definition 3. Given an orthogonal G-module V and a pointed G-space X let
C(V, X) denote the set of pairs (P, f), where P is a smooth submanifold of V
and f is a map P — X; but (P, fo) is identified with (P, f;) if there exists a
submanifold P C Py N P, such that ‘

P-f1(x)CcP@i=0,1), flP=flP.

Here the closure P of P should be a compact smooth submanifold, with possible
corners, such that P — P is a closed submanifold of P. Furthermore every

component of P should be of finite-dimensional, although different components

may have different dimensions.
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To define a topology on C(V, X) let P be the set of pairs (K, L) consisting of a
finite polyhedron K C R* and its subpolyhedron L, and consider the space

B(v,X)= ] {(X.L)} x C*(K,V) x Map(K, X)/ ~ .
(K,L)eP

Here C*(K, V) is the space of piecewise differentiable maps from K to V, and ~
is the least equivalence relation such that

((Ko, Lo), %0, fo) ~ (K1, L1), 41, f1)
if there exists a simplicial map ¢: Ko — K satisfying the following conditions:
(Cl) For e =0, 1 let i, X f. denote the composite
KMy X sV X/Vxx=VxX.
Then we have
i X fo(Ko) — o X fo(Lo) C 4y X fr(K1) — 41 x fi(L1)
C iy X fi(Ky — Ly) Cig X fo(Ko — Lo)
(C2) The maps
Ko— Lo — ¢~ (Ly) = Ky — Ly,
¢~ (L1) = Li Np(Ko),
@™ (Ly) N Lo — Ly N p(Ko)

induced by ¢ are “contractible,” in the sense that the inverse image of a
point in the target space is always a compact contractible set.

Definition 4. We denote by C(V, X)’ the subspace of B(V, X consisting of those
classes [(K, L),1, f] where i: K — V is an embedding such that (K is a smooth
manifold and #(L) is a closed submanifold of 9%(K).

With respect to the action

9l(K, L),i, f]) = [(K, L), g, 9f], 9€G

C(V, X)' is a pointed G-space with basepoint 0.
By (C1), (C2) and the “Hauptvermutung” for smooth manifolds we see that
the correspondence

((K,L),4, f) = (i(K) —i(L), fi")
induces a well-defined bijection
C(V,X) =C(V,X),
hence C(V, X) can be regarded as a pointed G-space.
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Clearly, the correspondence X — C(V, X) defines a G-equivariant continuous
functor of the category of pointed G-spaces and pointed maps, with G acting by
conjugation, to itself.

Proposition 5. (a) C(V, —) preserves G-homotopy.
(b) If A is a pointed G-NDR of X then

C(V, A) = C(V, X) — C(V, X UCA)
is a G-homotopy fibration sequence.

Observe that if X has a disjoint basepoint then for any subgroup H the fixpoint
set C(V,X)H can be identified with the set of pairs (P, f), where P is an H-
invariant submanifold of V and f: P — X is an H-equivariant map such that
x & f(P).

For general X, we can study C(V, X) by using the G-homotopy fibration se-
quence

C(V,8% — C(V, X;) = C(V, X UCS®) ~¢ C(V, X).

Here S°® — X, = X U S° is the pointed map which takes the non-basepoint of S°
to the original basepoint of X (which is assumed to be non-degenerate).

3. THE GROUP mC(V, S%)¢

Let us write C(V) = C(V,S°). Then each element of C(V)€ can be identified
with a G-invariant smooth submanifold of V.. For given P, Q € C(V)¢ we write
P ~ Q if they belong to the same path-component of C(V)%, ie. [P] = [Q] in
WoC(V)G.

Example 6. Show that the following holds in C(R").
(a) [0,1) ~ @. In fact lim [t,1) = @ in C(R*®). Here

(Ko, Lo) = ([0,1],{1}), (K1, Ly) = ({1}, {1}),

and @: [0,1] — {1} is the evident map.
(b) [0,1) ~ S'. Here

(Ko, LO) = ([0, 1],{1}), (KlaLl) = (8A2,0)a

and ¢: [0,1] — OA? = S is the exponential map.

(c) Let us write P = K — L where K is a smooth triangulation of Pand L
is a subcomplex of K. Let A be the set of open cells contained in K — L.
Then P is equivalent to the disjoint union [ ., 0.

Let B™ denote the n-dimensional open ball. Then B? ~ B2U S! = B? ~ point,
and hence
B™ ~ point, B>~ B
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Thus even-dimensional open balls are equivalent with each other, and similarly
for odd-dimensional open balls.

On the other hand, even-dimensional open balls are never equivalent to odd-
dimensional open balls. For we have

Xc(BZn) — 1) XC(B2n+1) — _1,

where x°(—) denotes the Euler characteristic computed with Alexander-Spanier
cohomology with compact support. Note that if P has a cellular decomposition
then its Euler characteristic is given by the formula

X(P)=)_ (=17

where b, is the number of open n-cells in the decomposition of P. It follows by
(C2) that ~ preserves Euler characteristics, hence

X°(P) # x°(Q) implies P #Q.
Now we have a well-defined homomorphism
mC(R") — Z, [P]— x°(P)
As every P (or more precisely, its closure P) admits a smooth triangulation, P is

equivalent in C'(R") to the union of m distinct points and n distinct open intervals,
where m — n = x¢(P). Hence we can show

Proposition 7. The correspondence P — x°(P) induces an isomorphism
mC(R") 2 Z, 1< n<oo.

For general G we can use the G-CW decomposition of smooth G-manifold to
show that there is a well-defined monomorphism:

2: mO(V)e — D, 2 2(P) = (<(P™)

Here (H) ranges over conjugacy classes of closed subgroups of G such that |NH :

Propositidn 8. Let G be a compact Lie group and V an orthogonal G-module. If
V is sufficiently large then ® induces an isomorphism of moC(V )€ to the Burnside
ring A(G).

Proof. 1t suffices to show that the image of ® coincides with the image of the
inclusion A(G) C € y)Z. By definition, elements of A(G) are the equivalence
classes of closed G-manifolds. Hence A(G) C Im®. Conversely, if P € C(V)®
then by attaching (P — P) x S* to P along P — P we obtain a compact G-ENR
whose H-fixpoint set has the same Euler characteristic as P¥. By the alternative
description of A(G) as the set of equivalence classes of compact G-ENR’s not just
closed manifolds, we see that P represents an element of A(G). O
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4. STATEMENT OF THE MAIN RESULT

If W is a finite-dimensional G-module let C(W, X) denote the space of “thick
submanifolds” in W parametrized by X, i.e. C(W, X) consists of pairs (v, f) where
v is an e-neighborhood of some P C W and (P, f) € C(W, X). Then there is a
diagram of pointed G-spaces

CW,X) & T(W, X) 2% VeV X,
where yw (v, f) = (P, f) and aw(v, f) is the composite
SV s Tyv->Twer)=S'P, — S'X.

If V is the direct limit of its finite-dimensional subspaces then we define C(V, X) =
lim C(W, X), and

v = limyw: C(V, X) = C(V, X) = lim C(W, X),
ay = limaw: C(V,X) - 0'2V X = limQ¥EVX,

where W ranges over finite-dimensional G-subspaces of V.
Now we have a diagram of pointed G-spaces

CV,X) & TV, X) 2% QVEV X,
and the main result can be stated as follows:

Theorem 9. Let X be a countable G-CW complex. If V contains an infinite-
dimensional trivial G-module R® then both vy and oy are weak G-equivalences,
hence

C(V,X) ~c QVZV X,

5. OUTLINE OF THE PROOF

We need to show that for any closed subgroup H < G the arrows v¥ and of
in the diagram below are weak equivalences.

H __
CW, X)¥ 2T, X)H <5 VsV X)H
But the argument for the case H = G automatically applies to general H. Hence
we need only treat the case H = G. Also, as 7€ is clearly an equivalence, we shall
concentrate on aF.

Now the proof consists of two parts:

(1) Apply the standard argument using orbit-type families to reduce the prob-
lem to the non-equivariant case, that is, the case G =e.
(2) Validate the non-equivariant case.
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Part 1. If F is an orbit-type family, let C'(V, X)$ denote the subspace of C(V, X)¢
consisting of those elements (P, f) such that all the conjugacy classes of isotropy
subgroups of the points of P belong to F.

Let F; and F; be orbit-type families such that 73 C F; and F; — F, consists
of just one conjugacy class (H). Let NH be the normalizer of H in G. Then both
VH and X are NH-spaces, and there is a diagram

vV, X)%, — Cv,Xx)§, —2— CTVH xH)NH

oG l acl lm

-l

Q'VX)§ — (VEVX)E, L (VY X )
in which both rows are homotopy fibration sequences.

Therefore, if we can show that o™ is an equivalence then we can proceed by
induction with respect to some cofinal sequence of adjacent families

{}crcCc---CcF,C---
But if (H) is maximal in F we can construct a commutative diagram
C(vH xH\\¥g =, C(R®,EJ, Ay SEXH)

| !

(QVHEVHXH)}’H —_ Q°°2°°(EJ+ Ay SLXH)
where J = NH/H and L is the Lie algebra of J. Thus everything can be reduced
to the non-equivariant case.

Part 2. We need to show that
a: C(R®, X) — Q®°L>®X
is a weak equivalence for any X.
A submanifold of R® = R""! xR is called a “vertical interval” if it is of the form
{v} x J, where v € R"! and J C R is a bounded interval. Let I(R", X) be the
subset of C(R™, X) consisting of those elements (P, f) such that P is the disjoint

union of finite vertical intervals in R”. Similarly, let 7(R", X) be its thickened
version. Then there is a natural equivalence I(R*, X) — I(R", X).

Lemma 10. The inclusion I(R®, X) — C(R*®, X) is a weak equivalence, hence
s0 is I(R*®, X) — C(R*, X).

Consequently, the main theorem is a consequence of the following result due to
S. Okuyama [2).

Theorem 11 (8. Okuyama). Let 1 < n < 0o. For any pointed space X,
a: I(R", X) - Q"2"X

1S a weak equivalence.
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