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ABSTRACT. The “approximation theorem” states that the $n$-fold loop space
$\Omega^{n}\Sigma^{n}X$ can be approximated by the configuration space of finite sets in $R^{n}$

parametrized by $X$ . An equivari ant analogue of the approximation theorem
holds when $X$ has afinite group action. But this type of approximation theorem
no longer holds in the case of positive dimensional Lie transformation groups.
In this paper we shall introduce an equivariant configuration space $C(V, X)$ of
“smooth submanifolds” (instead of “finite sets”) in the orthogonal $G$-module $V$

parametrized by acountable G-CW complex $X$ and show that there is aweak
$G$-equivalence $C(V, X)\simeq\Omega^{V}\Sigma^{V}X$ at least if $V$ contains an infinite dimensional
trivial G-module.

1. INTRODUCTION

Let $C(\mathbb{R}^{n}, X)$ be the configuration space of finite point sets in $\mathbb{R}^{n}(1\leq n\leq\infty)$

parametrized by apointed space $X$ ;that is,

$C(\mathbb{R}^{n}, X)=\{(c, x)\}$ ,

where $c$ is afinite subset of $\mathbb{R}^{n}$ and $x:carrow X$ is amap. But $(c, x)$ is identified
with $(d, x’)$ if $c\subset d$ , $x’|c=x$ , and $\mathrm{x}’\{\mathrm{p}$) $=*\mathrm{w}\mathrm{h}\mathrm{e}\mathrm{n}p\not\in c$ . Then the classical
“approximation theorem” states that

Theorem 1(May, Segal). There exists an approimation map

$C(\mathbb{R}^{n}, X)arrow\Omega^{n}\Sigma^{n}X$,

which is an equivalence $ifX$ is path-connected and in general is a group-completion.
(When $n=\infty$ this yields a form of the $Ba\mathrm{r}ratt- P\uparrow\dot{\tau}ddy$-Quillen theorem.)

The aim of this work is to establish an equivariant generalization of the the0-
rem above in the compact Lie case. More precisely, we shall construct asort of
“equivariant configuration space” $C(V, X)$ and aweak G-equivalence

$C(V, X)\simeq_{G}\Omega^{V}\mathrm{I}^{V}X$ ,

where $G$ is acompact Lie group, $V$ is an orthogonal $G$-module containing the
trivial $G$-module $\mathbb{R}^{\infty}$ , and $X$ is apointed G-space
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Remark 2. (a) When $G$ is finite, this can be achieved by taking $C(V, X)$ to be the
usual configuration space of finite point sets in $V$ parametrized by $X$ , and letting
$G$ act on $C(V, X)$ in the obvious manner.

(b) J. Caruso and S. Waner [1] gives agroup-completion

$C_{G}(V, X)arrow(\Omega^{V}\Sigma^{V}X)^{G}$ ,

where $V$ is an orthogonal $G$-module such that $V\geq \mathbb{R}^{\infty}$ and $C_{G}(V, X)$ is the
configuration space of finite $G$-orbits in $V$ parametrized by apointed $G$ space $X$ .

But this is definitely anon-equivariant result and never imply “equivariant
approximation,” for there exists no reasonable $G$-equivariant model $\mathrm{C}(V, X)$ sat-
isfying

$\mathrm{C}(\mathrm{V}, X)^{H}\simeq C_{H}(V, X)$ , $H\leq G$ .

(c) Our approximation theorem implies that

$C(V, X)^{H}\simeq(\Omega^{V}\Sigma^{V}X)^{H}$ , $H\leq G$

holds for any (not necessarily $G$-connected) $X$ , and is related to CarusO-Waner’ $\mathrm{s}$

result via group-completion maps

$C_{H}(V, X)arrow C(V, X)^{H}$ , $H\leq G$ .

(d) Caruso and Waner $[1\mathrm{o}\mathrm{c}. \mathrm{c}\mathrm{i}\mathrm{t}.]$ asked:

Can we cons truct a manageable global model $C(W, X)$ so that

$(C(\mathrm{I}M, X))^{H}=C_{H}(W, X)$ for all $H\leq G$

(as for the case where $G$ is finite) 9

The previous remark says that the answer is YES if we replace $C_{H}(W,X)$ by its
(naturally constructed) group-completion. But the answer will be NO if we stick
to CarusO-Waner’s $C_{H}(\mathrm{M}^{\gamma}, X)$ .

2. THE SPACE $C(V, X)$

Definition 3. Given an orthogonal $G$-module $V$ and apointed $G$ space $X$ let
$C(V, X)$ denote the set of pairs $(P, f)$ , where $P$ is asmooth submanifold of $V$

and $f$ is amap $Parrow X$ ;but $(P_{0}, f_{0})$ is identified with $(P_{1}, f_{1})$ if there exists a
submanifold $P\subset P_{0}\cap P_{1}$ such that

$P_{i}-f_{i}^{-1}(*)\subset P(i=0,1)$ , $f_{0}|P\equiv f_{1}|P$.

Here the closure $\overline{P}$ of $P$ should be acompact smooth submanifold, with possible
corners, such that $\overline{P}-P$ is aclosed submanifold of $\partial\overline{P}$. Furthermore every
component of $\overline{P}$ should be of finite-dimensional, although different components
may have different dimensions
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To define atopology on $C(V, X)$ let $\prime \mathcal{P}$ be the set of pairs $(K, L)$ consisting of a
finite potyhedron $K\subset \mathbb{R}^{\infty}$ and its subpolyhedron $L$ , and consider the space

$B(V, X)= \prod_{(K,L)\in P}\{(K.L)\}\cross C^{\infty}(K, V)\cross \mathrm{M}\mathrm{a}\mathrm{p}(K, X)/\sim$
.

Here $C^{\infty}(K, V)$ is the space of piecewise differentiate maps from $K$ to $V$ , and $\sim$

is the least equivalence relation such that

$((K_{0}, L_{0})$ , $i_{0}$ , $f\circ)\sim((K_{1}, L_{1}),$ $i_{1}$ , $f_{1})$

if there exists asimplicial map $\varphi:K_{0}arrow I\mathrm{f}_{1}$ satisfying the following conditions:
(C1) For $\epsilon=0,1$ let $i_{\epsilon}\ltimes$ $f_{\epsilon}$ denote the composite

$K_{\epsilon}arrow(i_{e},f_{\epsilon})V\mathrm{x}Xarrow V\cross X/V\cross*=V\kappa X$.

Then we have

$i_{0}\ltimes f_{0}(I\zeta 0)$ $-i_{0}\ltimes$ $f_{0}(L_{0})\subset i_{1}\ltimes$ $f_{1}(K_{1})-i_{1}\ltimes$ $f_{1}(L_{1})$

$\subset i_{1}\ltimes$ $f_{1}(K_{1}-L_{1})\subset i_{0}\ltimes f_{0}(IC_{0}-L_{0})$

(C2) The maps

$I\mathrm{f}_{0}-L_{0}-\varphi^{-1}(L_{1})arrow I\mathrm{f}_{1}-L_{1}$ ,
$\varphi^{-1}(L_{1})arrow L_{1}\cap\varphi(K_{0})$ ,

$\varphi^{-1}(L_{1})\cap L_{0}arrow L_{1}\cap\varphi(I\mathrm{f}_{0})$

induced by $\varphi$ are “contractible,” in the sense that the inverse image of a
point in the target space is always acompact contractible set.

Definition 4. We denote by $C(V, X)’$ the subspace of $B(V, X)$ consisting of those
classes $[(K, L), i, f]$ where $i:Karrow V$ is an embedding such that $i(K)$ is asmooth
ma nifold and $i(L)$ is aclosed submanifold of $\partial i(I\mathrm{f})$ .

With respect to the action

$g[(K, L), i, f])=[(K, L),gi, gf]$ , $g\in G$

$C(V, X)’$ is apointed $G$-space with basepoint 0.
By (C1), (C2) and the “Hauptvermutung” for smooth manifolds we see that

the correspondence

$((K, L)$ , $i$ , $f)\mapsto(i(K)-i(L), fi^{-1})$

induces awell-defined bijection

$C(V, X)’\cong C(V, X)$ ,

hence $C(V, X)$ can be regarded as apointed G-space
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Clearly, the correspondence X $\mapsto C(V,$X) defines a $G$-equivariant continuous
functor of the category of pointed $G$-spaces and pointed maps, with G acting by
conjugation, to itself.

Proposition 5. (a) $C(V, -)$ preserves G-homotopy.
(b) If $A$ is a pointed G-NDR of $X$ then

$C(V, A)arrow C(V, X)arrow C(V, X\cup CA)$

is a $G$ -homotopy fibration sequence.

Observe that if $X$ has adisjoint basepoint then for any subgroup $H$ the fixpoint
set $C(V, X)^{H}$ can be identified with the set of pairs $(P, f)$ , where $P$ is an H-
invariant submanifold of $V$ and $f:Parrow X$ is an $H$-equivariant map such that
$*\not\in f(P)$ .

For general $X$ , we can study $C(V, X)$ by using the $G$-homotopy fibration se-
quence

$\mathrm{c}(\mathrm{v}, S^{0})arrow C(V, X_{+})arrow C(V, X\cup CS^{0})\simeq_{G}C(V, X)$.
Here $S^{0}arrow X_{+}=X\cup S^{0}$ is the pointed map which takes the non-basepoint of $S^{0}$

to the original basepoint of $X$ (which is assumed to be non-degenerate).

3. THE GROUP $\pi_{0}C(V, S^{0})^{G}$

Let us write $C(V)=C(V, S^{0})$ . Then each element of $C(V)^{G}$ can be identified
with a $G$-invariant smooth submanifold of $V$ . For given $P$, $Q\in C(V)^{G}$ we write
$P\sim Q$ if they belong to the same path-component of $C(V)^{G’}$ , i.e. $[P]=[Q]$ in
$\pi_{0}C(V)^{G}$ .

Example 6. Show that the following holds in $C(\mathbb{R}^{n})$ .
(a) [0,$1)\sim\emptyset$ . In fact $1\mathrm{i}\ln tarrow 1$ [t,$1)=\emptyset$ in $C(\mathbb{R}^{\infty})$ . Here

$(I\mathrm{f}_{0},L_{0})=([0,1],\{1\})$ , $(I\mathrm{f}_{1},L_{1})=(\{1\},\{1\})$ ,

and $\varphi:[0,1]arrow\{1\}$ is the evident map.
(b) $[0, 1)\sim S^{1}$ . Here

$(I\acute{\iota}_{0}, L_{0})=([0,1], \{1\})$ , $(I\mathrm{f}_{1}, L_{1})=(\partial\Delta^{2}, \emptyset)$ ,

and $\varphi:[0,1]arrow\partial\Delta^{2}\cong S^{1}$ is the exponential map.
(c) Let us write $P=K-L$ where $K$ is asmooth triangulation of $\overline{P}$ and $L$

is asubcomplex of $IC$ . Let Abe the set of open cells contained in $K-L$.
Then $P$ is equivalent to the disjoint union $11_{\sigma\in\Lambda}\sigma$ .

Let $B^{n}$ denote the $n$-dimensional open ball. Then $B^{2}\sim B^{2}\cup S^{1}=\overline{B}^{2}\sim \mathrm{p}\mathrm{o}\mathrm{i}\mathrm{n}\mathrm{t}$ ,
and hence

$B^{2n}\sim \mathrm{p}\mathrm{o}\mathrm{i}\mathrm{n}\mathrm{t}$ , $B^{2n+1}\sim B^{1}$ .
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Thus even-dimensional open balls are equivalent with each other, and similarly
for odd-dimensional open balls.

On the other hand, even-dimensional open balls are never equivalent to odd-
dimensional open balls. For we have

$\chi^{c}(B^{2n})=1$ , $\chi^{c}(B^{2n+1})=-1$ ,

where $\chi^{c}(-)$ denotes the Euler characteristic computed with Alexander-Spanier
cohomology with compact support. Note that if $P$ has acellular decom position
then its Euler characteristic is given by the formula

$\chi^{c}(P)=\sum_{n\geq 0}(-1)^{n}b_{n}$

where $b_{n}$ is the number of open $n$-cells in the decomposition of $P$ . It follows by
(C2) that $\sim \mathrm{p}\mathrm{r}\mathrm{e}\mathrm{s}\mathrm{e}\mathrm{r}\mathrm{v}\mathrm{e}\mathrm{s}$ Euler characteristics, hence

$\chi^{c}(P)\neq\chi^{c}(Q)$ implies $P \oint Q$ .
Now we have awell-defined homomorphism

$\pi_{0}C(\mathbb{R}^{n})arrow \mathbb{Z}$ , $[P]\mapsto\chi^{c}(P)$

As every $P$ (or more precisely, its closure $\overline{P}$) admits asmooth triangulation, $P$ is
equivalent in $C(\mathbb{R}^{n})$ to the union of $m$ distinct points and $n$ distinct open intervals,
where $m-n=\chi^{c}(P)$ . Hence we can show

Proposition 7. The correspondence $P\mapsto\chi^{c}(P)$ induces an isomorphism

$\pi_{0}C(\mathbb{R}^{n})\cong \mathbb{Z}$ , $1\leq n\leq\infty$ .

For general $G$ we can use the G- $CW$ decomposition of smooth $G$-manifold to
show that there is awell-defined monomorphism:

$\Phi:\pi_{0}C(V)^{G}arrow\oplus_{(H)}\mathbb{Z}$ , $\Phi([P])=(\chi^{c}(P^{H}))$

Here (H) ranges over conjugacy classes of closed subgroups of $G$ such that $|NH$ :
$H|<\infty$ .

Proposition 8. Let $G$ be a compact Lie group and $V$ an orthogonal $G$ -module. If
$V$ is sufficiently large then (I) induces an isomorphism of $\pi_{0}C(V)^{G}$ to the $Bu$ nside
ring $A(G)$ .

Proof. It suffices to show that the image of 4coincides with the image of the
inclusion $A(G)\subset\oplus_{(H)}\mathbb{Z}$ . By definition, elements of $A(G)$ are the equivalence
classes of closed $G$-manifolds. Hence $A(G)\subset{\rm Im}\Phi$ . Conversely, if $P\in C(V)^{G}$

then by attaching $(\overline{P}-P)\mathrm{x}S^{1}$ to $P$ along $\overline{P}-P$ we obtain acompact G-ENR
whose $H$-fixpoint set has the same Euler characteristic as $P^{H}$ . By the alternative
description of $A(G)$ as the set of equivalence classes of compact $G$-ENR’snot just
closed manifolds, we see that $P$ represents an element of $A(G)$ . $\square$
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4. STATEMENT OF THE MA1N RESULT

If $\mathrm{I}4^{f}$ is afinite-dimensional $G$-module let $\overline{C}(\mathrm{i}/, X)$ denote the space of “thick
submanifolds” in $W$ parametrized by $X$ , i.e. $\overline{C}(\mathrm{I}\prime V, X)$ consists of pairs $(\nu, f)$ where
$\nu$ is an $\epsilon$-neighborhood of some $P\subset \mathrm{I},\prime V$ and $(P, f)\in C(\mathrm{I}\mathrm{f}^{\gamma}, X)$ . Then there is a
diagram of pointed G-spaces

$C$ (1 ) $X)\gamma_{1V}arrow\overline{C}(\mathrm{I}\mathrm{f}\mathrm{i}^{\gamma}, X)aarrow\Omega^{W}w\Sigma^{1V}X$,

where $\gamma_{1\mathrm{f}^{\gamma}}(\nu, f)=(P, f)$ and $\alpha_{W}(\nu, f)$ is the composite

$S^{V}arrow T\nuarrow T$ ( $\nu$ @r) $\cong S^{V}P_{+}arrow S^{V}X$.

If $V$ is the direct limit of its finite-dimensional subspaces then we define $\overline{C}(V, X)=$

$\lim\overline{C}(\mathrm{i}/, X)$ , and

$\gamma_{V}=\lim\gamma\iota\nu:\overline{C}(V, X)arrow C(V, X)=\lim C(\mathrm{I}\prime V, X)$,

$\alpha_{V}=\lim\alpha_{W}$ : $\overline{C}(V, X)arrow\Omega^{V}\Sigma^{V}X=\lim\Omega^{W}\Sigma^{11^{J}}X$ ,

where $W$ ranges over finite-dimensional $G$ subspaces of $V$ .
Now we have adiagram of pointed G-spaces

$C(V, X)\gamma_{1’}arrow\overline{C}(V, X)\alpha_{V}arrow\Omega^{V}\Sigma^{V}X$ ,

and the main result can be stated as follows:

Theorem 9. Let $X$ be a countable G-CW complex. If $V$ contains an infinite-
dimensional rrivial $G$ -module $\mathbb{R}^{\infty}$ then both $\gamma v$ and $\alpha_{V}$ are weak G-equivalences,
hence

$C(V, X)\simeq_{G}\Omega^{V}\Sigma^{V}X$ .

5. OUTLINE OF THE proof

We need to show that for any closed subgroup $H\leq G$ the arrows $\gamma^{H}$ and $\alpha^{H}$

in the diagram below are weak equivalences.

$C(V, X)^{H\gamma^{H}a^{H}}arrow\overline{C}(V, X)^{H}arrow(\Omega^{V}\Sigma^{V}X)^{H}$

But the argument for the case $H=G$ automatically applies to general $H$ . Hence
we need only treat the case $H=G$. Also, as $\gamma^{G}$ is clearly an equivalence, we shall
concentrate on $\alpha^{G}$ .

Now the proof consists of two parts:

(1) Apply the standard argument using orbit-type families to reduce the prob-
lem to the non-equivariant case, that is, the case $G=e$ .

(2) Validate the non-equivariant case
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Part 1. If $F$ is an orbit-type family, let $C(V, X)_{F}^{G}$ denote the subspace of.C$(V, X)^{G}$

consisting of those elements $(P, f)$ such that all the conjugacy classes of isotropy
subgroups of the points of $P$ belong to $\mathcal{F}$ .

Let $F_{1}$ and $F_{2}1\supset \mathrm{e}$ orbit-type families such that $\mathcal{F}_{1}\subset \mathcal{F}_{2}$ and $\mathcal{F}_{2}-F_{1}$ consists
of just one conjugacy class (if). Let $NH$ be the normalizer of $H$ in $G$ . Then both
$V^{H}$ and $X^{H}$ are $NH$-spaces, and there is adiagram

$\overline{C}(V, X)_{\mathcal{F}_{1}}^{G}$
$arrow i$

$\overline{C}(V, X)_{\mathcal{F}_{2}}^{G}$
$arrow p$

$\overline{C}(V^{H}, X^{H})_{\mathcal{F}_{2}}^{NH}$

$\alpha^{G\downarrow}$ $\alpha^{G\downarrow}$ $\downarrow a^{NH}$

$(\Omega^{V}\Sigma^{V}X)_{\mathcal{F}_{1}}^{G}arrow(\Omega^{\mathcal{V}}\Sigma^{V}X)_{F_{2}}^{G}arrow p’i’(\Omega^{V^{H}}\Sigma^{V^{H}}X^{H})_{F_{2}}^{NH}$

in which both rows axe homotopy fibration sequences.
Therefore, if we can show that $\alpha^{NH}$ is an equivalence then we can proceed by

induction with respect to some cofinal sequence of adjacent families
$\{1\}\subset F_{1}\subset\cdots\subset F_{n}\subset\cdots$

But if (H) is maximal in $F$ we can construct acommutative diagram
$\overline{C}(V^{H}, X^{H})_{F}^{NH}$ $arrow\simeq\overline{C}(\mathbb{R}^{\infty}, EJ_{+J}\Lambda S^{L}X^{H})$

$(\Omega^{V^{H}}\Sigma^{V^{H}}X^{H})_{F}^{NH}\alpha^{NH}\downarrowarrow\simeq\Omega^{\infty}\Sigma^{\infty}(EJ_{+}\Lambda_{J}S^{L}X^{H})\downarrow\alpha$

where $J=NH/H$ alld $L$ is the Lie algebra of J. Thus everything can be reduced
to the non-equivariant case.
Part 2. We need $\mathrm{t}_{1}\mathrm{o}$ show that

$\alpha:\overline{C}(\mathbb{R}^{\infty}, X)arrow\Omega^{\infty}\Sigma^{\infty}X$

is aweak equivalence for any $X$ .
Asubmanifold of $\mathbb{R}^{n}=\mathbb{R}^{n-1}\mathrm{x}\mathbb{R}$ is called a“vertical interval” if it is of the form

$\{v\}\cross J$ , where $v\in \mathbb{R}^{n-1}$ and $J\subset \mathbb{R}$ is abounded interval. Let $I(\mathbb{R}^{n}, X)$ be the
subset of $C(\mathbb{R}^{n}, X)$ consisting of those elements $(P_{1}f)$ such that $P$ is the disjoint
union of finite vertical intervals in $\mathbb{R}^{n}$ . Similarly, let $\overline{I}(\mathbb{R}^{n},X)$ be its thickened
version. Then there is anatural equivalence $\overline{I}(\mathbb{R}^{n}, X)arrow I(\mathbb{R}^{n}, X)$ .

Lernma 10. The inclusion $I(\mathbb{R}^{\infty}, X)arrow \mathrm{C}(\mathrm{V}, X)$ is a weak equivalence, hence
so is $\overline{I}(\mathbb{R}^{\infty}, X)arrow\overline{C}(\mathbb{R}^{\infty}, X)$ .

Consequently, the main theorem is aconsequence of the following result due to
S. Okuyama [2].

Theorem 11 (S. Okuyama). Let $1\leq n\leq\infty$ . For any pointed space $X$ ,

$\alpha:\overline{I}(\mathbb{R}^{n}, X)arrow\Omega^{n}\Sigma^{n}X$

is a weak equivalence
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