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Abst ract

In this rport, we shall give a tentative argument on bounding
probelm of Calabi Yau ’

$\mathrm{s}$ the study of which was started by B.Hunt
and M.Gross.

1 Introduction
Many families of projective smooth Calabi-Yau threefolds defined over the
complex number field have been found, but as far as I know, they are all
bounded ($\mathrm{i}.\mathrm{e}.$ , parametrized by quasi projective schemes over the complex
number field. It is natural to ask how many families of projective smooth
Calabi-Yau threefolds exitst. So far, specialists seem to think that their defor-
rnation types are maybe finite or maybe not. Reid’s fantasy asserts that there
are essentially just one family which corresp onds to the fact (conjectured by
A.Weil-A.Andreotti and solved affirmatively by K.Kodaira) that eveiy $K3$

surface is a deformation of a non-singular quartic surface in a projective
3-spaces. If Reid’s fatasy is true, even if there are non finitely many fami-
lies of projective smooth Calabi-Yau threefolds, they are “transformed” to a
bounded family and one may get feedback. For example, let us recall that
K.Kodaira showed that any $K3$ surface can be deformed to an elliptic $K3$

surface in a one family which implies the conj ture of A.Weil-A.Andreott $\mathrm{i}$

is true. In this direction, B.Hunt ([9]) asserted the Euler numbers of pro
jective smooth Calabi-Yau threefolds with a fiber structure are bounded but
unfortunately his proof based on the theory of variation of Hodge structures
contains many crucial gaps. Obviously more geometric information seems
to be needed. Later, M.Gross ([7]) showed, extending the Ogg-Shafarevich
theory, the surprizingly strong result that elliptic Calabi-Yau threefolds with
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a rational base is birationally bounded. In this report, we shall consider the
other cases of Calabi-Yau threefolds with a fiber structure, that is, the cases
where a general fibre is a surface with trivial canonical bundle and the base
is a projective line.

2 Bimeromorphic invariants of degenerations
of surfaces of Kodaira dimension zero

In this section, we define bimeromorphic invariants of degenerations of sur-
faces of Kodaira dimension zero.

Definition 2.1 Let $(X, \mathrm{X})$ be a normal $\log$ variety and let $\triangle’$ be a boundary
on $X$ such that $\triangle’\leq\triangle$ . Assume that $(X, \mathrm{x})$ is $\log$ canonical and that
$K_{X}+2’$ is $\mathrm{Q}$-Cartier. $(X, \mathrm{X})$ is said to be moderately $Og$ canonical uith
respect $K_{X}+\triangle’$ if for any exceptional prime divisor $E$ of the function field
of $X$ with $ai(E;X, \mathrm{x})$ $=0,$ the inequality $a_{l}(E\mathrm{i}X, \triangle’)$ $>1$ holds.

Let $f$ : $Xarrow B$ be a proper connected morphism from a normal Q-
factorial variety defined over the complex number field $C$ (resp. a normal
$\mathrm{Q}$-factorial complex analytic space) $X$ onto a smooth projective curve (resp.
a unit disk $V$ $:=$ $\{z\in C;|z|< 1\}$ $)$ $B$ such that a general fibre $f^{*}(p)$ (resp.
any fibre $f^{*}(p)$ where $p$ is not the origin) is a normal algebraic variety with
only terminal singularity. Let $\Sigma$ be a set of points in $B$ (resp. the origin 0)
such that the fibre $f^{*}.(p)$ is not a normal algebraic variety with only terminal
singularity. Put $\ominus_{p}:=$ $7$

’
$($7 $)_{\mathrm{r}\mathrm{e}\mathrm{d}}$ and $\mathrm{O}-:=\sum_{p\in\Sigma}\Theta_{p}$ . We shall consider the

following three birational ( or bimeromorphic ) models.

Definition 2.2 We define the following three birational ( $\mathrm{b}$ imeromorphi $\mathrm{c}$ )
mo dels.

(1) $f$ : $Xarrow B$ is called a minimal fibration (resp. degeneration) $)$ if $X$ has
only terminal singularity and $K_{X}$ is /-nef ($\mathrm{i}.\mathrm{e}.$ , the intersection number
of $K_{X}$ and any complete curve contained in a fibre of $f$ is non-negative).

(2) $f$ : $Xarrow B$ is called a Ogarithmic minimal (or abbreviated, 0 $g$ minimal)
fibration (resp. degeneration) if $(X, \Theta)$ is divisorially $\log$ terminal and
$K_{X}+\ominus$ is f-nef.

(3) $f$ : $Xarrow B$ is called a strictly Ogarithmic minimal (or abbreviated,
stri ctly 0 $g$ minimal) fibration (resp. degeneral on) if $(X, \ominus)$ is $\log$

canonical with $K_{X}$ , $\mathrm{O}-$ being both /-nef.
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Given a rations (resp. degenerations) of algebraic surfaces with Ko
daira dimension zero over a smooth projective curve (resp. 1-dimensional
unit disk) $B$ , one can get the model (1), (2) by using MMP and LMMP.
The model (3) can be constructed also by LMMP starting from the model
(2). The model (3) constructed as above enjoyies also the following property;
$(X, \ominus)$ is moderately $\log$ canonical with respect to $K_{X}$ . Moreover, the model
(3) is good in the following sense.

Proposition 2.1 ( $\mathrm{c}.\mathrm{f}$ . [11], Theorem 4.9) Let $f_{i}^{s}$ : $X_{i}^{s}arrow B(i=1,2)$ be
trvo strictly $Og$ minimal fibration (or degeneration) of surfaces with Kochira
dimension zero projective over $B$ which are birationally equivalent to each
other over B. Assume that $(X_{i)}^{s}\ominus_{\dot{\iota}p}^{g})\dot{\mathfrak{B}}$ moderately $Og$ canonical with respect
$t(jK_{X_{i}^{s}}$ for $i=1,2$ . Then $f_{1}^{s}$ : $X_{1}^{s}arrow B$ and $f_{2}^{s}$ : $X_{2}^{s}" i$ $B$ are connected
by a sequence of $Og$ flips over a neighbourhood of $p\in B_{f}$ that is, there
exist birational morphisms be rween normal threefolds over a neighbourhood
of $p\in B$ which are isomorphic in codimension me:

$X_{1}^{s}:=X^{(0)}arrow Z^{(0)}arrow X^{(1)}arrow Z^{(1)}\cdotsarrow X^{(n)}=:X_{2}^{s}$ ,

where $X^{(k)}u$
\dot

$\mathrm{Q}$ -factorial for $k=0,1$ , $\ldots$ $n$ .

Let $f^{s}$ : $X^{s}arrow B$ be a strictly $\log$ minimal fibration ( or degeneration ) of
surfaces with Kodaira dimension zero projective over $B$ such that $(X^{s}\Theta))$ ’)
is moderately $\log$ canonical with respect to Kx-. Since $K_{X^{s}}$ is numerically
trivial over $B$ , there exists a positive integer $\ell_{p}^{*}\in N$ such that $f^{s*}(p)=\ell_{p}^{*}\ominus_{p}^{s}$

for any $p\in$ B, where $\ominus_{p}^{s}:=$ $fs$’(p)red $\cdot$ Let $\mu$ : $Yarrow X^{s}$ be a minimal
model over $X^{s}$ , that is, $\mu$ is a projective birational morphism from a normal
$\mathrm{Q}$-factorial $Y$ with only terminal singularity to $X^{s}$ such that $K_{Y}$ is /x-nef.
By running the minimal model program over $B$ starting from the induced
morphism $g:=f^{s}\circ\mu$ : $Yarrow B$ , we obtain a minimal fibration $h$ : $Z$ $arrow B$

and a dominating rational map A: $Y-arrow Z$ over $B$ . Since $X^{s}$ has only $\log$

terminal singularity, there exists an effective $\mathrm{Q}$-divisor $\triangle$ with $\lfloor 2$ $\rfloor=0$ on
$Y$ such that

$K_{Y}+\triangle=\mu^{*}K_{X^{s}}$ .
Since $K_{Y}+$ :s, $K_{Z}+\lambda_{*}\triangle$ and $K_{Z}$ are all numerically trivial over $B$ , there
exists a non-negative rational $\mathrm{n}$ umber $\mu_{p}^{*}\in Q$ such that

$\lambda_{*}\triangle_{p}=\mu_{p}^{*}h^{*}(p)$ , (2.1)

where $\triangle_{p}$ denotes the restriction of $\triangle$ in a neighbourhood of the fibre over
$p\in B.$ Put

$\mathrm{t}\mathrm{s}_{p}^{*}:=b(\frac{\ell_{p}^{*}-1}{l_{p}^{*}}-\mu_{p}^{*})$ , $c_{p}^{*}:=\mu^{*}P\mathit{7}_{p}^{*}$ .
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Proposition 2.1 gives the following:

Corollary 2.1 $P_{p}^{*}\in N$ and $\mu_{p}^{*}\in Q$ crre birational (or bimeromorphic) in-
variants of germs of singular fibres over $p\in B$ and hence so are $s_{p}^{*}$ and
$c_{p}^{*}$ .

Let $f$ : $Xarrow B$ be a minimal fibration of surfaces with Kodaira dimension
zero projective over a projective smooth connected curve $B$ defined over the
complex number field. The above invariants fit into the canonical bundle
formula as foUows:

$K_{X}=f^{*}(K_{B}+ \frac{1}{b}L_{X/B}^{ss}+\sum_{p\in B}(\frac{l_{p}^{*}-1}{\ell_{p}^{*}}-\mu_{p}^{*})p)$ . (2.2)

where $\frac{1}{b}L_{X/B}^{ss}$ is a $Q$-divisor on $B$ defined in [4].

Example 2.1 For degenerations of elliptic curves, one can define invariants
$4_{p}^{*}$ , $\mu_{p}^{*}$ and $s_{p}^{*}$ in the same way and it can be checked that $l_{p}^{*}$ coincides with
the multiplicty if the singular fibre is of type $m$ I $b$ or otherwise, with the order
of the semisimple part of the monodromy group around the singular fibre.
We can also obtain the following table:

Table $\mathrm{V}$

$m$ I$b$
$\mathrm{I}_{b}^{*}$ II Ir III III IV $\mathrm{I}\mathrm{V}^{*}$

$m$ I$b$
$\mathrm{I}_{b}^{*}$ II $\mathrm{I}\mathrm{I}^{*}$ III III’ IV $\mathrm{I}\mathrm{V}^{*}$

Here we are using the Kodaira’s notation ([10]). See also [6].

Seeing the above table, naively one may expect that the invariatnt $c_{p}^{*}$ is the
one determined by the variation of Hodge structure around $p$ , but $c_{p}^{*}$ involves
the index of $Kxs$ which is usually a minimal model theoretic invariant not
the Hodge theoretic one. So, in higher dimensional cases, $c_{p}^{*}$ seems to be
extremely complicated, but still one may hope;

Conjecture 2.1 For any degeneration of algebraic surfaces with Kodaira
dimension zero over a one- imensional complex disk, the number of possible
values of $c_{p}^{*}$ is finite

For the above conjecture, we have a partial affirmative answer.
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Theorem 2.1 For any degeneration of abelian surfaces over $a$ one-dimensional
complex disk, we have

$c_{p}^{*}\in\{0,1/5,1/4,1/3,2/5,1/2,2/3, 1, 3/2, 2, 3, 4, 5, 6\}$ .

3 Bounding the number of singular fibres of
Abelian Fibred Calabi-Yau threefolds over
a projective line

In [9], there is no argument on the number of singular fibres which is impor-
tant to get the certain finiteness result. For, recalling the $\mathrm{A}^{\backslash }\mathrm{a}\mathrm{k}\mathrm{e}1\mathrm{o}\mathrm{v}$G.FaLtings
theory which was developed for solving Shafarevich conjecture, smooth fam-
ilies over fixed base tends to have a certain finiteness property. The study of
$\mathrm{t}1_{1}\mathrm{e}$

$\mathrm{n}\mathrm{u}\mathrm{m}$ ber of singular fibres was started by Oguiso ([12]).
Let $f$ : $Xarrow B$ is a projective connected morphism from a normal Q-

factorial projective varicty $X$ with only canonical singularity onto a $B$ . We
define the subset of closed points of $B$ , $\Sigma_{f}$ by

$\Sigma_{f}:=$ {$p\in B|f$ is not smooth over a neighbourhood of $p$ }.

Definition 3.1 Let $C\mathcal{Y}_{B,\mathrm{a}\mathrm{b}}^{3}$ be the set of all the triple $(X, f, B)$ where $X$

is a normal projective threefold $X$ with only canonical singularity whose
canonical divisor $K_{X}$ is $\mathrm{n}$ umerically trivial and $f$ : $Xarrow B$ is a projective
connected morphism onto $B\simeq P^{1}$ whose geometric generic fibre is an ab elian
surface.

From Theorem 2.1 : we can deduce the following theorem using G.FaLtings
theory and Zarhin’s trick.

Theorem 3.1 There exists $s\in$ N, such that for any triple $(X, f, B)\in$
$\mathrm{C}\mathcal{Y}_{B,\mathrm{d})^{\rangle}}^{3}$

$s_{f}:=$ Card $\Sigma_{f}\leq s,$

that is, the number of singular fibres of Abelian Fibred Calabi-Yau threefolds
$\sigma v$ er a $pro|ectivehne$ is bounded frarn above by a universal constant.

4 Further tentative argument
To get more results on Abelian Fibred Calabi-Yau threefolds over a projective
line, we should study albanese fibration, which is defined from $\mathrm{A}1\mathrm{b}^{0}(X_{\eta})$
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(see, [8] and also [3]). Albanese fibration plays a role of jacobian fibration
for elliptic fibrations. Since jacobian fibrations of eliiptic fibered Calabi-Yau
threefolds are again a birationaHy Calabi-Yau threefolds( [7] ), It is natural
to hope;

Conjecture 4.1 Albanese fibration of Abelian Fibred Calabi-Yau are again
Calabi-Yau.

For the above conjecture, we have:

Proposition 4.1 Let $f$ : $Xarrow B$ be a projective connected morphism from $a$

normal $\mathrm{Q}$ -factorial $\Psi\dot{q}ective$ variety $X$ with only canonical singularity onto
$B$ whose geometric generic fiber is an abelian variety arid $tt$ $p$ : $Aarrow B$ be
the Albanese group scheme associated to $f$ . Let $\overline{\varphi}$ : $\overline{A}arrow B$ be a projective
fibration from a smooth $\overline{A}$ which $\uparrow s$ birational to $A$ over $B$ .

(i) we have $L_{X/B}^{ss}\sim_{Q}L_{A/B}^{s_{\frac{s}{}}}$ an $d$

(ii) moreover, if we assume that $\dim X=3$ and that $f$ : $Xarrow|$ $B$ admits
an analytic Ocal section in a neighbourhood of any clos $ed$ pcint.c; $p\in B,$

then we have $\Sigma_{f}=\Sigma_{\overline{\varphi}}$ and $s_{p}^{*}(f)=s_{p}^{*}(\overline{\varphi})$ , where $s_{p}^{*}(f)$ arid $s_{p}^{*}(\overline{\varphi})$ are
the analytic Ocal bimeromorphic invariants $s_{p}^{*}$ of the fibres of $f$ and 2
over $p\in B$ respectively. In particular, the Kodaira dimensions of $X$

and $\overline{A}$ are the same.

One may also hope;

Conjecture 4.2 Abelian Fibred Calabi-Yau has local sections everywhere.

For farther investigation, R-R will be useful.

Proposition 4.2 Let $f$ : $Xarrow B$ be a $\Psi$ ($\dot{\eta}ective$ fibroli $on_{\rangle}$ where $X$ is a Q-
factorial normal variety with on $ly$ canonical singularity and $Bs$ a connected
smooth projective curve defined over the carnplex number field. Then,

$\sum_{q}(-1)^{q}\deg R^{q}f_{*}\mathcal{O}(K_{X/B})=(-1)^{\dim X}\{\chi(\mathcal{O})-\chi(\mathcal{O}_{X_{\eta}})\chi(\mathcal{O}_{B})\}$

In pcrti $cular_{f}$ If $\dim X=3,$ we $have$

$\deg f_{*}\mathcal{O}(K_{X/B})-\deg$ $R^{1}f_{*} \mathcal{O}(K_{X/B})=\frac{c_{2}(X_{\overline{\eta}})}{24}\deg(L_{X/B}^{ss}+\sum_{p\in B}s_{p}^{*}.)-\sum_{P_{\alpha}}\frac{r_{\alpha}^{2}-1}{247_{\alpha}}$.

(see [14] for notation).
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If $q(X_{\eta})=0$ (for example, $K3$ fibred case), we have

$\deg f_{*}\mathcal{O}(K_{X/B})=\frac{c_{2}(X_{\overline{\eta}})}{24}\deg(L_{X/B}^{ss}+\sum_{p\in B}s_{p}^{*})-\sum_{P_{\alpha}}\frac{r_{\alpha}^{2}-1}{24r_{\alpha}}$ .

[9] asserts that boundedness results follows if we fix $\deg f_{*}\mathcal{O}(K_{X/B})$ (for ex-
ample, $\deg f_{*}\mathcal{O}(K_{X/B})=2$ if $X$ is Calabi-Yau) not using any other prop-
ert $\mathrm{y}$ of Calabi-Yau. But seeing the above formula, it seems that fixing
$\deg f_{*}\mathcal{O}(K_{X/B})$ is geomertrically nonsense.
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