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1. Hypersurfaces with constant scalar curvature

Let $\mathit{1}VI$ be an $71$-dilnensional hypersurface in a unit sphere $S^{n+1}$ (1 ) of dimension $n+1$ .

In this section, we shall study curvature structures of complete hypersurfaces with
constant scalar curvature in a unit sphere. First of all, we present several examples.

Example 1. For any $0<c<1_{f}$ by considering the standa$rd$ irrvmersiorts

$S^{n-1}(c)\subset \mathrm{R}_{:}^{n}$ 5 $(\sqrt{1-c^{2}})\subset \mathrm{R}^{2}$

and taking the Riemannian product immersion

$S^{1}(.\sqrt{1-c^{2}})\cross S^{n-1}(c)arrow \mathrm{R}^{2}\cross \mathrm{R}^{n}$ ,

and taking the $Riem,a$nnian product $i\uparrow nmersi$on

$S^{1}(.\sqrt{1-c^{2}})\cross S^{n-1}(c)arrow \mathrm{R}^{2}\cross \mathrm{R}^{n}$ ,

we obtain a compact hypersurface $S^{1}(\sqrt{1-c^{2}})\cross S^{n-1}(c)$ in $S^{n+1}(1)$ with constant
scalar curvature $n(7l-1)$ r, where $r= \frac{n-2}{nc^{\underline{9}}}>1-\frac{2}{n}$ .

We know that this hypersurface $S^{1}(\sqrt{1-c^{2}})\cross S^{n-1}(c)$ has the following character-
izations:

1. $r>1- \frac{2}{n}$ ,

2. the number of its distinct principal curvatures is two.

3. its fundamental group is infinity.
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Example 2. By make using of the same construction as in example 1, we can obtain
a compact hypersurface $\mathrm{S}^{k}(c_{1})\cross S^{n-k}(c_{2})$ , $1<k<n-$ $1$ , in $S^{n+1}(1)$ with constant
scalar $cur\cdot uaturen(n-1)$r. This hypersurface has finite fundamental group and the
number of its distinct prlncipal curvatures is two.

Example 3. We consider an isoparametric hypersurface $M^{6}$ in $S^{7}(1)$ .w$ith$ pincipaf

$curvatures \lambda_{1}=\lambda_{2}=\theta ThishypersurfaceM^{6}satisfies1artd\lambda_{3}=\frac{\theta+1}{r=1-\theta},\lambda_{4}=$ $thenu \uparrow nber\lambda_{5}=-\frac{1}{\theta}$$\lambda_{6}=-\frac{1-\theta}{1+\theta,st},where\theta=ofitsdiinct\prime princi\prime pal$

$\sqrt{arrow 13:_{2}\subset 16_{\mathrm{c}}^{\ulcorner})}curvat\cdot ure$

s
is four.

In 1977, $\mathrm{S}.\mathrm{Y}$ . Cheng and Yau [4] characterized compact hypersurfaces with constant
scalar curvature in $S^{n}41$ (1 ). They proved

Theorem 1. Let $lVI$ be an $n$ -dimensional compact hypersurface with constant scalar
curvature $n(n-1)$ r. If $r\geq 1$ and the sectional curvatures of $lVI$ cvre non-negative, th en
$l\mathcal{V}I$ is isometric to the totally umbilical hypersurface $Sn(c)$ or the Riemannian product
$S^{k}(c_{1})\cross S^{n-k}(c_{2})1\leq k\leq n-$ 1, where $S^{k}(c)$ denote the sphere of radius $c$ .

Proof. For a $C^{2}$-function $f$ on $\mathrm{W}$ we consider a differential operator $\square$ defined by

$\square f=\sum_{i,j=1}^{n}(nH\mathit{6}_{ij}-f\iota_{\dot{x}j})\nabla_{i}\nabla_{j}f$ , (1.1)

where $h_{\dot{x}j}$. and $H$ are components of the second fundamental form and $\mathrm{t}_{1}\mathrm{h}\mathrm{e}$ rnean cur-
vature of $i\vee I_{j}$ respectively. Thus, we have

$\square nH=\sum_{i,j,k=1}^{n}h_{jk}^{\frac{9}{i}}-n^{2}||\mathrm{g}\mathrm{r}\mathrm{a}\mathrm{d}H||4i1E(\lambda_{i}-\lambda_{j})^{2}\mathrm{A}_{ij}^{\nearrow}$ , (1.2)

where Aj’s are principal curvatures and $h_{ijk}$ ’s denote components of the covariant
differentiation of the second fundamental form. From $r\geq 1,$ we can prove

$\sum_{i,j,k=1}^{n}h_{ijk}^{2}\geq n^{2}|\mathrm{g}\mathrm{r}\mathrm{a}\mathrm{d}H|^{2}$ . (1.3)

Since $M$ has non-negative sectional curvature, we have $I\{_{\mathrm{i}j}’\geq 0.$ Hence, we infer

$\square nH\geq 0.$ (1.4)

According to Stokes theorem, we know that $H$ is constant and the number of distinct
principal curvatures is at most two. Therefore, $M$ is an isoparametric hypersurface
with at most two distinct principal curvatures. From a theorem of Cartan, we know
that theorem 1 is true. [Il

Further, by making use of the similar method which was used by Nakagawa and
the author in [3] and the differential operator (1.1) introduced by $\mathrm{S}.\mathrm{Y}$ . Cheng and Yau,
Li [5] proved
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$\mathrm{T}\mathrm{h}\mathrm{e},\mathrm{o}\mathrm{r}\mathrm{e}\mathrm{m}2.LetMcur\tau at\cdot ure71(7\tau-1)r$

.
$Ifr \geq 1andS\leq(n-1)\frac{n\theta_{r-1)+2}^{act}}{n-2}+\frac{urfacn-2}{n(r-1)+2},thenNIisisbean\cdot n- di_{7}nensionalcomhypersewithconstan$ tomsceatlna\dot cr

to either the totally umbilical hypersurface or the Riemannian product $S^{1}(\sqrt{1-c^{2}})\cross$

$S$”(c) with $c^{2}= \frac{n-2}{nr}\leq\frac{n-2}{n}$ , $w/iere$ $S$ is the squared no$r?n$ of the second $fu$ nda\uparrow \gamma bental

form of $M$ .

Proof Since $\mathrm{S}$ $\leq(n-1).\frac{n(r-1)+2}{n-2}+\frac{n-2}{n(r-1)+2}$ holds, we can prove

$1$ ( $\lambda_{i}-$ A$j$ ) $2K_{ij}$ $\geq 0.$

$i,j=1$

From $r\geq 1,$ we know that (1.3) is satisfies. Thus, we infer that the inequality (1.4) is
true. Hence, theorem 2 is true by using the same assertion as in tbeorean 1. $\square$

Remark 1. In proofs of theorems 7 and 2, the estimate $\sum_{i,j,k=1}^{a}h_{jk^{\wedge}}^{\frac{9}{i}}\geq\uparrow\tau^{2}|gr\zeta f,dH|^{2}$

is necessary. In order to prove it, the condition of $r\geq 1$ and the assumption of
constant scalar curvature is essential. Hence, the condition $r\geq 1$ and the assumption

of constant scalar curvature play an essential role $ir\iota$. theorems 1 and 2.

Remark 2. From example 1 , ?1) $e$ know that some of $S^{1}(\sqrt{1-c^{2}})\cross S^{n-1}(c)$ does not
appear in these results of theorems 1 and 2 becuase some of them does not satisfy the
condition $r>1$ .

Moreover, Cheng [2] researched the inversed problem of example 1. The following
was proved.

Theorem 3. Let $M$ be an $?\tau$ -dimensional complete hypersurface with constant scalar
curvat $uren(n -1)r$ in $S^{n+1}(1)$ . If $M$ has only two distinct principal curvatures one
of which is simple, then, $r>1- \frac{2}{n}$ holds and $IVI$ is isometric to $5^{1}(\sqrt{1-c^{2}})\cross S^{n-1}(c)$

if $r \neq\frac{n-2}{n-1}$ and $S \geq(n-1)\frac{n(r-1)+2}{\mathrm{n}-2}+\frac{n-2}{n(r-1)+2}$ , where $c^{2}= \frac{n-2}{nr}$ .

From the assertions above, it is natural and interesting to study the following

Problem 1. Let $\mathrm{i}\mathrm{l},\mathrm{f}$ be an $n$ -dimensional compact hypersurface with constant scalar
curvat $ure_{J}$ $n(\uparrow\tau-1)r$ in $5^{n- 11}(1)$ . If $r>1-$ , and $S$ $\leq(\cdot n -1)$ $\frac{n(r-1)+2}{n-2}+.\frac{n-2}{n(r-1)+2}$ ,

then is NI isometric to the totally umbilical hypersurface or the Riemannian product
$S^{1}( \frac{1-c^{2}}{})\cross S^{n-1}(c)$ ?

From theorem 2 we know that if $r\geq 1,$ then the problem 1 was solved affirmatively.
In [2], the author gave an affirmative answer for this problem when $r= \frac{n-2}{n-1}$ . But for
the other case, this problem seems to be a very hard problem.

Problem 2. Let $M$ be an $n$ -dimensional compact hypersurface with constant scalar
curvature $n(n-1)r$ in 5 $(1)$ . If $r>1- \frac{2}{n}$ and the sectional curvature is non-
negative, then is $M$ isometric to the totally umbilical hypersurface or the Riemannian
product 5 $(\sqrt{c_{1}})\cross S^{n-k}(c_{2})$ , $1\leq k\leq n-1$ ?
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2. Compact hypersurfaces with infinite fundamental group

In this section, we shall try to solve problems 1 and 2 introduced in the section
1. From example 1, we know that $\mathrm{S}^{1}(\sqrt{1-c^{2}})\cross S^{n-1}(c)$ has infinite funda mental
group. We shall consider these problems under a topological condition. The following
theorems will be proved.

Theorem 4. Let $lVI$ be an $n$ -dimensional compact hypersurface with infinite funda-
mental group in $S^{n+1}$ $(1)$ . If $r \geq\frac{n-2}{n-1}$ and $S\leq(n -1)$ $.. \frac{n(r-1)+2}{n-2}+\frac{n-2}{n(r-1)\vdash 2}$ , then All is
isometric to the Riemannian product $\mathrm{S}^{1}(\sqrt{1-c^{2}})\cross S^{n-1}(c)$ , where $\uparrow\tau(n-1)r$ is the
scalar curvature of $M$ and $c^{2}= \frac{n-2}{nr}$ .

Proof. Since $r \geq\frac{n-2}{n-1}$ and $S \leq(n-1)^{\frac{n(r-1+2}{n-2}}+\frac{n-2}{n(r-1)+2}$ , we infer

$r\tau$ $+2 \uparrow \mathit{1}H^{2}-S\geq\frac{n-2}{\sqrt{|\mathrm{z}(,n-1)}}\sqrt{7\tau^{2}H^{\underline{9}}(S-\prime nH^{2})}$ . (2.1)

For any point $p$ and any unit vector $\vec{u}\in T_{p}I_{1}/I$ , we choose a local orthonormal $\mathrm{f}\mathrm{r}\mathrm{a}$ me
field $\{e_{1}, \cdots, e_{n}\}$ such that $e_{n}=\vec{v_{1}}$ . From Gauss equation, we have

$\mathrm{R}\mathrm{i}\mathrm{c}(\mathrm{f}1)=(n-1)$ $+nHh_{n?\tau}- \sum_{i=1}^{n}h_{in}^{2}$ (2.2)

and we can prove

$\mathrm{R}\mathrm{i}\mathrm{c}(\vec{u})\geq$

lb

$.–’ \iota[perp]\{n+2\cdot nH^{2}-S -\frac{lL-4}{\sqrt{|\tau(\cdot n-1)}}\sqrt{n^{\wedge}H^{2}\mathrm{o}(S-|f.H^{2})}.\}$ . (2.3)

From (2.1), we have $\mathrm{R}\mathrm{i}\mathrm{c}(\mathrm{w})\geq 0$ . In particular, we can show that if $S<(\uparrow\iota-1)^{nr}4_{2}^{)-\vdash 2}+$

$\frac{n-2}{n(r-1)+2}$ holds, then $\mathrm{R}\mathrm{i}\mathrm{c}(\mathrm{f}\mathrm{l})>$ 0. Thus, if there exists a point $p$ in $\#$ such that
$S<$ $(n-1)$ $\frac{n(r-1)+2}{n-2}+\frac{n-2}{n(r-1)+2})$ then at tlle point $p$ , the Ricci curvature is positive.
From the following Lemma 1 due to Aubin [1], we know that there exists a metric on
$M$ such that the Ricci curvature is positive on $\Lambda$#. According to Myers theorem, we
know that the fundamental group is finite. This is impossible because $M$ has infinite
fundamental group.

Lemma 1. (cf. Aubin [1, p. 344]). If the Ricci curvature of a $\mathrm{C}O7\Gamma_{)}’\beta act$ Ricrnarrnian,

manifold is non-negative and positive at somewhere, then the manifold carries a metric
with positive Ricci curvature.

Thus, we must have $S=$ $(n-1) \frac{n(r-1)+2}{n-2}+\frac{n-2}{n(r-1\rangle+2}$ . And at each point, there
exists a unit vector $\vec{u}$ such that $\mathrm{R}\mathrm{i}\mathrm{c}(\vec{u})=0.$ Thus, we can conclude that $M$ has only
two distinct principal curvatures one of which is simple. Let $\{\mathrm{e}\mathrm{i}, \cdots, e_{n}\}$ be a local
orthonormal frame field such that $h_{ij}=\lambda_{i}\mathit{6}_{ij}$ , where $\lambda_{i}$ ’s are principal curvatures on
M. Without loss of generality, we can assume $\mathrm{u}$ $=\mathrm{A}_{n}$ , $\mathrm{k}$ $=\lambda_{1}=\cdot$ . $=$ $\lambda_{n-1}$ . From
Gauss equation (2.2) and the definition of the Ricci curvature, we have $1+\mu\lambda=0$
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because of $1+\lambda_{i}\lambda_{j}=1+$ $\lambda^{2}>0,$ for any $\dot{\iota}$ , $j=1$ , $\cdots$ , $n-$ l. From Gauss equation,
we have

$\mu=\frac{n(r-1)}{2\lambda}-\frac{n-2}{2}\lambda$ .

Hence $\lambda^{2}=\frac{n(r-1)+2}{n-2}$ and $\mu^{2}=\frac{n-2}{n(r-1)+2}$ .

We consider the integral submanifold of the corresponding distribution of the space
of principal vectors corresponding to the principal curvature A. Since the multiplicity
of the principal curvature A is greater than 1, we know that the principal curvature
A is constant on this integral submanifold (cf. Otsuki [6]). From $\lambda^{2}=\frac{n(r-1)+2}{n-2}$ and
$\mu^{2},=\frac{n-2}{n(r-1)+2}$ , we know that the scalar curvature $n$ ($n-$ l)r and the principal curvature
$\mu$ are constant. Thus, we obtain that $IVI$ is isoparametric. Therefore, $I\downarrow\#$ is isometric to
the Riemannian product $5^{1}(\sqrt{1-c^{2}})\cross S^{n-1}(c)$ because $S=(n-1) \frac{n(r-1)+2}{n-2}+\frac{n-2}{\coprod^{n(\tau-1)+2}}$ ,
holds. This completes the proof of Theorem 4.

Theorem 5. Let $M$ be an $n$ -dimensional compact hypersurface with infinite funda-
rnental group in $S^{n+1}(1)$ . If the sectional curvatures are non-negative, then $M$ is
isometric to the Riemannian product $S^{1}(\sqrt{1-c^{2}}.)\cross S^{n-1}(c)$ .

Proof. Since the sectional curvatures are non-negative, we have that the Ricci curva-
ture is non-negative. From the arguments in the proof of theorem 4, we infer that at
each point, there exists a unit vector $u\prec$ such that $\mathrm{R}\mathrm{i}\mathrm{c}(\mathrm{i}\mathrm{i})=0$ .

Let $\{e_{1}, \cdots, e_{n}\}$ be a local orthonormal frame field such that $h_{ij}=\lambda_{i}\delta_{ij)}$ where
Aj’s are principal curvatures on $M$ . Then, from Gauss equation, we have $1+\lambda_{i}\lambda_{j}\geq 0$

for $i\neq j.$ Further, there exists an $i$ such that $\sum_{j\neq i}$. $(1+ \mathrm{X}i\mathrm{X},)$ $=0$ from the definition
of Ricci curvature. Hence, we must have $1+$ A $i$ A$j=0$ for $j\neq i.$ Therefore, $lVI$ has
only two distinct principal curvatures one of which is simple. Let $\mu=$ $\lambda_{\iota}$ and A $=\lambda_{j}$

for $j\neq i.$ From Gauss equation, we have

$\mu=\frac{n(r-1)}{2\lambda}-\frac{n-2}{2}.\lambda$ . (2.4)

Since 1+ $\mu\lambda$ $=0$ and (2.4) hold, we have $\lambda^{2}=\frac{n(r-1)+2}{n-2}$ and $\mu^{2}=\frac{n-2}{n(r-1)+2}$ . Hence, we
have

$S=(n-1) \lambda^{2}+\mu^{2}=(n-1)\frac{n(r-1)+2}{n-2}+\frac{n-2}{n(r-1)1\ulcorner 2}$ .

By making use of the same assertion as in the proof of theorem 4, we infer that $M$

is isometric to the Riemannian product 5 $(\sqrt{1-c^{2}})\cross S^{n-1}(c)$ . This completes the
proof of Theorem 5. $\square$

Remark 3. In our theorems 4 and 5, we do not assume that the scalar curvature is
constant. And in our theorem 5, we do not assume any condition on scalar curvature.
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