oooo0ooooonoO 13460 20030 34-39

34

Complete hypersurfaces with infinite fundamental
group™
FEERFETFE R B (Qing-Ming Cheng)
Department of Mathematics
Faculty of Science and Engineering

Saga University, Saga 840-8502, Japan
cheng@ms.saga-u.ac.jp

1. Hypersurfaces with constant scalar curvature

Let M be an n-dimensional hypersurface in a unit sphere S**1(1) of dimension n+1.
In this section, we shall study curvature structures of complete hypersurfaces with
constant scalar curvature in a unit sphere. First of all, we present several examples.

Example 1. For any 0 < ¢ < 1, by considering the standard immersions
S 1) c R, SYV1-¢)cR?

and taking the Riemannian product vmmersion
SY VT = %) x §"7}(c) = R* x R™,

we obtain a compact hypersurface S*(vV/1 —c?) x S™Ye) in S™(1) with constant
scalar curvature n(n — 1)r, wherer = 222 > 1 — 2,

We know that this hypersurface SY(+v/1 — ¢?) x S™!(c) has the following character-
1zations:

Lr>1-2%
2. the number of its distinct principal curvatures s two.

3. its fundamental group is infinity.
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Example 2. By make using of the same construction as in example 1, we can obtain
a compact hypersurface S¥(c;) x S"*(cy), 1 < k < n — 1, in S*Y1) with constant
scalar curvature n(n — 1)r. This hypersurface has finite fundamental group and the
number of its distinct principal curvatures is two.

Example 3. We consider an isoparametric hypersurface M® in S7(1) with principal
curvatures Ay = Xp =0, dg = 25 A = ds = -1 As = where § = 4/ 131165

1- l+9 ’ 2
This hypersurface M® satisfiesr = 1 and the number of its distinct principal curvatures
is four.

In 1977, S.Y. Cheng and Yau [4] characterized compact hypersurfaces with constant
scalar curvature in S™*1(1). They proved

Theorem 1. Let M be an n-dimensional compact hypersurface with constant scalar
curvature n(n—1)r. Ifr > 1 and the sectional curvatures of M are non-negative, then
M s wsometric to the totally umbilical hypersurface S™(c) or the Riemannian product
S*(cy) x S K(ep) 1 <k < n— 1, where S*(c) denote the sphere of radius c.

Proof. For a C*-function f on M, we consider a differential operator O defined by

Df = i (nH&, - h,ij)Viij, (1.])

1,7=1

where h;; and H are components of the second fundamental form and the mean cur-
vature of M, respectively. Thus, we have

OnH = Z hZy — n’llgradH| + Y (A — Ay)?Ky, (1.2)

1,7,k=1 i,7=1

where M;’s are principal curvatures and h;j's denote components of the covariant
differentiation of the second fundamental form. From r > 1, we can prove

Z hiy > n?|grad H|?. (1.3)

1,7,k=1

Since M has non-negative sectional curvature, we have K;; > 0. Hence, we infer
UnH > 0. (1.4)

According to Stokes theorem, we know that H is constant and the number of distinct
principal curvatures is at most two. Therefore, M is an isoparametric hypersurface
with at most two distinct principal curvatures. From a theorem of Cartan, we know
that theorem 1 is true. U

Further, by making use of the similar method which was used by Nakagawa and
the author in [3] and the differential operator (1.1) introduced by S.Y. Cheng and Yau,
Li [5] proved
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Theorem 2. Let M be an n-dimensional com{mct hypersurface with constant scalar

curvature n(n — 1)r. Ifr > 1 and S < (n ynle 12+2 T .n(:i_1§+2’ then M 1is isometric

to either the totally umbilical hypersurface or the Riemannian product S'(v'1 — c?) X
S =Y(c) with ¢ = =2 < =2 where S is the squared norm of the second fundamental
form of M.

Proof. Since S < (n — 1)"(’;:_1;4'2 - n(f_"f) — holds, we can prove

n

> (= A)PKy > 0.

i,j=1

From r > 1, we know that (1.3) is satisfies. Thus, we infer that the inequality (1.4) is
true. Hence, theorem 2 is true by using the same assertion as in theorem 1. t

Remark 1. In proofs of theorems 1 and 2, the estimate ., Vhie = n?|gradH|?
is necessary. In order to prove it, the condition of r > 1 and the assumption of
constant scalar curvature is essential. Hence, the condition r > 1 and the assumption
of constant scalar curvature play an essential role in theorems 1 and 2.

Remark 2. From ezample 1, we know that some of S'(v/1—c2) x 5™ !(c) does not
appear in these results of theorems 1 and 2 becuase some of them does not satisfy the
conditton r > 1.

Moreover, Cheng [2] researched the inversed problem of example 1. The following
was proved.

Theorem 3. Let M be an n-dimensional complete hypersurface with constant scalar
curvature n(n — 1) in SPTY(1). If M has only two distinct principal curvatures one
of which is simple, then, r > 1 — 2 holds and M is isometric to S'(v'1 — ¢?) x S1(c)

: n— n{r—1)+2 n— n—
ifr#22and S > (n— 1) (n_; + ,n<rr‘_1§+2, where ¢? = =2

From the assertions above, it is natural and interesting to study the following:

Problem 1. Let M be an n-dimensional compact hypersurface with constant scalar
curvature n(n — 1)r in S*T(1). Ifr > 1—2 and S < (n— 1) “n_l;” + n(r’z_”12)+2,
then is M isometm’c to the totally umbilical hypersurface or the Riemannian product

SUVT = &) x S}

From theorem 2, we know that if 7 > 1, then the problem 1 was solved afﬁrmatwely
In [2], the author gave an affirmative answer for this problem when r = 2=2. But for
the other case, this problem seems to be a very hard problem.

Problem 2. Let M be an n-dimensional compact hypersurface with constant scalar
curvature n(n — 1)r in S™Y(1). Ifr > 1 — 2 and the sectional curvature is non-
negative, then is M isometric to the totally umbilical hypersurface or the Riemannian
product S*(\/c1) x S *(cy), 1 <k<n—17



2. Compact hypersurfaces with infinite fundamental group

In this section, we shall try to solve problems 1 and 2 introduced in the section
1. From example 1, we know that S'(v/1—c?) x S™"!(c) has infinite fundamental
group. We shall consider these problems under a topological condition. The following
theorems will be proved.

Theorem 4. Let M be an n-dimensional compact hypersurface with infinite funda-

mental group in S*(1). Ifr > 222 and S < (n — 1)"(’:_1%+2 + n(T"_”SH, then M 1is

isometric to the Riemannian product S*(v'1— ¢?) x S™1(c), where n(n — 1)r is the
scalar curvature of M and c? = 2=2,

nr

Proof. Since r > Z—:—f and S < (n— 1)”(2:2”2 + —2=2_ we infer

n(r—1)+2?
2 n—2
n+2nH?* -8 > Vn2H2(S — nH?). (2.1)
n{n —1)
For any point p and any unit vector @ € T,M, we choose a local orthonormal frame
field {ey,- - ,e,} such that e, = 4. From Gauss equation, we have
Ric(@) = (n~ 1) + nHhp, — > hZ, (2.2)
i=1
and we can prove
n—1 - 2
Ric(@) > ——={n+2mH? - S — ——=z /P H2(S —nH?%)}.  (2.3)
n n(n—1)

From (2.1), we have Ric(%) > 0. In particular, we can show that if S < (n— 1)M+

n—2
n—2

2173 holds, then Ric(@) > 0. Thus, if there exists a point p in M such that

S < (n- l)"(rn__lz),+2 + ,n(rn_"jﬂ, then, at the point p, the Ricci curvature is positive.
From the following Lemma 1 due to Aubin [1}, we know that there exists a metric on
M such that the Ricci curvature is positive on M. According to Myers theorem, we
know that the fundamental group is finite. This is impossible because M has infinite

fundamental group.
Lemma 1. (cf. Aubin [1, p. 344]). If the Ricci curvature of a compact Riemannian

manifold is non-negative and positive at somewhere, then the manifold carries a metric
with positive Ricct curvature.

Thus, we must have § = (n — l)n(r,,:_l%Jr2 + n(;‘:j — And at each point, there

exists a unit vector @ such that Ric(@) = 0. Thus, we can conclude that M has only

two distinct principal curvatures one of which is simple. Let {e;,--- ,e,} be a local
orthonormal frame field such that h;; = A;4;;, where \;’s are principal curvatures on
M. Without loss of generality, we can assume = Ay, A = A\; = -+ = \,_1. From

Gauss equation (2.2) and the definition of the Ricci curvature, we have 1+ puA = 0
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because of 1 + XA, = 1+ A? > 0, for any 4,5 = 1,--- ,n — 1. From Gauss equation,
we have (r—1) )
nir — n—
= - A
H=70 2
Hence \? = —————"(T U342 and p? = —1=2

We con51der the integral sulglr(rrlagﬁf’old of the corresponding distribution of the space
of principal vectors corresponding to the principal curvature A. Since the multiplicity
of the principal curvature A is greater than 1, we know that the principal curvature
A is constant on this integral submanifold (cf. Otsuki [6]). From A\? = —Tn—%tz and
p? = 554, we know that the scalar curvature n(n—1)r and the principal curvature
1 are constant. Thus, we obtain that M is isoparametric. Therefore, M is isometric to
the Riemannian product S'(v/1 — ¢2) x S*71(c) because S = (n—1) ”(Tn__l;” + n(r':?”
holds. This completes the proof of Theorem 4. O

Theorem 5. Let M be an n-dimensional compact hypersurface with infinite funda-
mental group in S"t1(1). If the sectional curvatures are non-negative, then M is
isometric to the Riemannian product S*(v/1 — ¢?) x S™ !(c).

Proof. Since the sectional curvatures are non-negative, we have that the Ricci curva-
ture is non-negative. From the arguments in the proof of theorem 4, we infer that at
each point, there exists a unit vector 7 such that Ric(@) = 0.

Let {e;, -- ,e,} be a local orthonormal frame field such that h;; = X;d;;, where
Ai’s are principal curvatures on M. Then, from Gauss equation, we have 1 + AA; > 0
for i # j. Further, there exists an ¢ such that » . (1 + A;A;) = 0 from the definition
of Ricci curvature. Hence, we must have 1 + A; /\ = 0 for j # ¢. Therefore, M has
only two distinct principal curvatures one of which is simple. Let = X, and A =
for j # 1. From Gauss equation, we have

nir—1) n-2
= - A 2.4
p 0 5 (2.4)

Since 1+ pA = 0 and (2.4) hold, we have \* = M and p? = n(fw—“lz)’% Hence, we
have

n(r—1)+2 n—2
n—2 n(r—1)+2
By making use of the same assertion as in the proof of theorem 4, we infer that M

is isometric to the Riemannian product S'(v/1 — ¢?) x S®7!(c). This completes the
proof of Theorem 5. O

S=mn-DAN+p2=(n-1)

Remark 3. In our theorems 4 and 5, we do not assume that the scalar curvature s
constant. And in our theorem 5, we do not assume any condition on scalar curvature.
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