Approximation of a Reaction-Diffusion Equation with a Nonlocal Term

広島大学大学院理学研究科・数理分子生命理学専攻 岡田 浩嗣 (Koji Okada) Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University

1 Introduction.

We consider a scalar bistable reaction-diffusion equation

(RD)
$$\epsilon u_t = \epsilon^2 \Delta u + f(u) - v, \quad t > 0, \ x \in \Omega,$$

under the Neumann boundary condition

(BC)
$$\frac{\partial u}{\partial \mathbf{n}} = 0, \quad t > 0, \ x \in \partial \Omega.$$

Here u is an order parameter while v an additional parameter (acting as inhibitors). Ω is a smooth bounded domain in \mathbb{R}^N ($N \ge 2$) and \mathbf{n} stands for the outward unit normal vector on the boundary $\partial\Omega$. The nonlinear term f is assumed to be the negative derivative of a smooth double-well potential W: f(u) = -W'(u). A typical example is $f(u) = u - u^3$. The parameter $\epsilon > 0$ is supposed to be very small, and we intend to study the problem above as the singular perturbation problem.

We will treat in this paper a situation in which the spacial average of the order parameter is preserved:

$$(\mathrm{PP}) \qquad \qquad \frac{1}{|\Omega|} \int_{\Omega} u(t,x) \, dx \equiv m \quad (\mathrm{constant}), \qquad t \geq 0,$$

i.e., a case where v in (RD) is given by

(NL)
$$v(\cdot) = \frac{1}{|\Omega|} \int_{\Omega} f(u(\cdot, x)) dx.$$

When $\epsilon > 0$ is very small, the solution u(t, x) of (RD) with an appropriate initial condition creates a sharp transition layer with width of $O(\epsilon)$ and it is expected to move according to some motion laws, called interface equations. Our purpose of this paper is (1) to derive interface equations from (RD); and (2) to investigate how solutions of interface equations evolve.

Remark 1. From a variational point of view, the equation (RD) is characterized as the $L^2(\Omega)$ -gradient system for the energy functional of van der Waals type

$$E^{\epsilon}(u) := \int_{\Omega} \frac{\epsilon}{2} |\nabla u|^2 + \frac{1}{\epsilon} W(u) \, dx$$

subject to the constraint (PP), and the nonlocal term v is regarded as the Lagrange multiplier (see [2] for example).

2 Derivation of interface equations.

Throughout the remaining part of this paper, an interface is meant to be a smooth, closed, N-1 dimensional hypersurface emmbedded in $\Omega \subset \mathbb{R}^N$. We will derive some interface equations from (RD) by the method of matched asymptotic expansions (see [9] for more details).

2.1 Preliminaries.

We now present precise assumptions on f and prepare some notations for our problem.

(A1) The function f is C^{∞} on \mathbb{R} and the curve f(u) - v = 0 consists of three sub-branches of solutions

$$\mathcal{C}^{-} = \{(u, v) \mid u = h^{-}(v), v \in I^{-} := (\underline{v}, \infty)\},\$$

$$\mathcal{C}^{+} = \{(u, v) \mid u = h^{+}(v), v \in I^{+} := (-\infty, \overline{v})\}.$$

and

$$\mathcal{C}^{0} = \{(u, v) \, | \, u = h^{0}(v), \, v \in I^{0} := I^{-} \cap I^{+} = (\underline{v}, \overline{v}) \},\$$

satisfying $f'(h^{\pm}(v)) < 0$ (or equivalently $h_v^{\pm}(v) < 0$) on I^{\pm} .

- (A2) For each $v \in I^0$, it holds that $h^-(v) < h^0(v) < h^+(v)$.
- (A3) For each $v \in I^0$, we define

$$\mathcal{S}(v) := \int_{h^-(v)}^{h^+(v)} f(u) - v \, du.$$

Then there exists a unique point $v^* \in I^0$ such that $\mathcal{S}(v^*) = 0$ and $\mathcal{S}'(v^*) < 0$.

Remark 2. We may regard the point $(h^0(v^*), v^*)$ as the origin (0, 0) by appropriate translations.

An unknown interface $\Gamma(t)$, which is to be determined, is expressed as a smooth embedding from a fixed N-1 dimensional reference manifold \mathcal{M} to \mathbb{R}^N :

(2.1)
$$\gamma(t,\cdot): \mathcal{M} \to \Gamma(t) \subset \Omega, \qquad \mathcal{M} \ni y \mapsto x = \gamma(t,y) \in \Gamma(t).$$

Let $\Omega^{\pm}(t)$ be subregions (called bulk regions) in Ω decomposed by $\Gamma(t)$ such as

$$\Omega = \Omega^{-}(t) \cup \Gamma(t) \cup \Omega^{+}(t),$$

and $\nu(t, y) \in \mathbb{R}^N$ the unit normal vector on $\Gamma(t)$ at $x = \gamma(t, y)$ pointing into the interior of the bulk region $\Omega^+(t)$. In advance we standardize the parametrization as in (2.1) in such a way that $\gamma_t(t, y)$ is always parallel to $\nu(t, y)$ [3]. For sufficiently small $\delta > 0$, a point xin a neighborhood $\{x \in \Omega \mid \text{dist}(x; \Gamma(t)) < \delta\}$ is uniquely represented as

(2.2)
$$x = \gamma(t, y) + r\nu(t, y),$$

which gives us a new coordinate system (t, r, y). We denote by J(t, r, y) Jacobian associated with (2.2). Namely,

$$J(t,r,y) = \prod_{i=1}^{N-1} (1 + r\kappa_i(t,y)) =: 1 + \sum_{i=1}^{N-1} H_i(t,y)r^i,$$

where $\kappa_i(t, y)$ $(i = 1, \dots, N-1)$ stand for the principal curvatures of $\Gamma(t)$ at $x = \gamma(t, y)$. Let u^{ϵ} be a solution of (RD) for an appropriate initial condition:

(2.3)
$$\epsilon u_t^{\epsilon}(t,x) = \epsilon^2 \Delta u^{\epsilon}(t,x) + f(u^{\epsilon}(t,x)) - v^{\epsilon}(t), \quad t > 0, \ x \in \Omega,$$

(2.4)
$$v^{\epsilon}(t) = \frac{1}{|\Omega|} \int_{\Omega} f(u^{\epsilon}(t,x)) dx, \quad t > 0.$$

We define an interface $\Gamma^{\epsilon}(t)$ as a level set of the solution u^{ϵ} to (RD). Since transition layers are expected to develop in regions $\{x \in \Omega \mid u^{\epsilon}(t,x) \approx h^{0}(v^{*})\}$, we set (cf. Remark 2)

(2.5)
$$\Gamma^{\epsilon}(t) := \{ x \in \Omega \mid u^{\epsilon}(t, x) = 0 \}.$$

On the other hand, $\Gamma^{\epsilon}(t)$ is also assumed to be expressed as a graph of a smooth function over the interface $\Gamma(t)$:

(2.6)
$$\Gamma^{\epsilon}(t) = \{ x \in \Omega \mid x = \gamma(t, y) + \epsilon R^{\epsilon}(t, y)\nu(t, y), y \in \mathcal{M} \}.$$

 R^{ϵ} , of course, is a priori unknown and is to be determined.

2.2 Outer expansion.

We separate the whole domain Ω into two components $\Omega^{\epsilon,\pm}(t)$ by the interface $\Gamma^{\epsilon}(t)$ such as $\Omega = \Omega^{\epsilon,-}(t) \cup \Gamma^{\epsilon}(t) \cup \Omega^{\epsilon,+}(t)$, and substitute the formal expansions

(2.7)
$$U^{\epsilon}(t,x) = U^{\epsilon,\pm}(t,x) = \sum_{j\geq 0} \epsilon^j U^{j,\pm}(t,x), \quad v^{\epsilon}(t) = \sum_{j\geq 0} \epsilon^j v^j(t)$$

into (2.3) in order to see the profile of solutions away from layer regions. Equating to zero the coefficient of each power of ϵ in the resulting equation, we obtain the following series of equations:

(2.8)
$$f(U^{0,\pm}) - v^0 = 0.$$

(2.9)
$$f'(U^{0,\pm})U^{j,\pm} = v^j + F_j^{\pm}, \quad j \ge 1.$$

Here F_j^{\pm} stand for functions depending on $U^{k,\pm}$ $(0 \le k < j)$ only. As the solution of (2.8), noting that (A1), we choose

(2.10)
$$U^{0,\pm}(t,x) := h^{\pm}(v^{0}(t)).$$

Once we make this choice, $U^{j,\pm}$ $(j \ge 1)$ can be successively expressed by (2.9) as

(2.11)
$$U^{j,\pm}(t,x) = h_v^{\pm}(v^0(t))v^j(t) + V_j^{\pm}(t)$$

with V_j^{\pm} being some functions depending on v^k $(0 \le k < j)$. Therefore once v^j is known, $U^{j,\pm}$ are determined completely. v^j $(j \ge 0)$ will be determined later so that the C^1 matching conditions are satisfied (cf. subsection 2.5). We note, in particular, that the outer solution $U^{\epsilon}(t,x)$ is independent of x, and therefore is denoted simply as $U^{\epsilon}(t)$ in the sequel.

2.3Inner expansion.

To deal with layer phenomena near $r = \epsilon R^{\epsilon}(t, y)$ (cf. (2.2), (2.6)), we use a stretched variable $z := \epsilon^{-1} [r - \epsilon R^{\epsilon}(t, y)]$ and recast our problem (2.3) in terms of (t, z, y):

$$(2.12) \quad \tilde{u}_{zz}^{\epsilon} + (\gamma_t \cdot \nu)\tilde{u}_z^{\epsilon} + f(\tilde{u}^{\epsilon}) + \epsilon R_t^{\epsilon}\tilde{u}_z^{\epsilon} - v^{\epsilon} + \mathcal{D}^{\epsilon}\tilde{u}^{\epsilon} = 0, \quad z \in (-\delta/\epsilon - R^{\epsilon}, \ \delta/\epsilon - R^{\epsilon}),$$

where \mathcal{D}^{ϵ} stands for a differential operator including R^{ϵ} .

We will seek an asymptotic solution to (2.12) of the form

$$(2.13) \qquad \tilde{u}^{\epsilon}(t,z,y) = U^{\epsilon}(t,x)|_{x=\gamma(t,y)+(\epsilon z+\epsilon R^{\epsilon}(t,y))\nu(t,y)} + \phi^{\epsilon}(t,z,y) = U^{\epsilon}(t) + \phi^{\epsilon}(t,z,y),$$

i.e., we will determine ϕ^{ϵ} in such a way that \tilde{u}^{ϵ} in (2.13) asymptotically satisfies (2.12) for $z \in (-\infty, \infty)$. We substitute the formal expansions

(2.14)
$$R^{\epsilon}(t,y) = R^{1}(t,y) + \epsilon R^{2}(t,y) + \epsilon^{2} R^{3}(t,y) + \cdots,$$

(2.15)
$$\tilde{u}^{\epsilon}(t,z,y) = \tilde{u}^{\epsilon,\pm}(t,z,y) = U^{\epsilon,\pm}(t) + \phi^{\epsilon,\pm}(t,z,y)$$

$$= \sum_{j\geq 0} \epsilon^j U^{j,\pm}(t) + \sum_{j\geq 0} \epsilon^j \phi^{j,\pm}(t,z,y) =: \sum_{j\geq 0} \epsilon^j \tilde{u}^{j,\pm}(t,z,y)$$

together with the expansion for v^{ϵ} into (2.12) to obtain some series of equations for $\tilde{u}^{j,\pm}$ and $\tilde{\phi}^{j,\pm}$ in $\pm z \in (0,\infty)$. We now exibit equations for $\tilde{u}^{j,\pm}$ only:

(2.16)
$$\tilde{u}_{zz}^{0,\pm} + (\gamma_t \cdot \nu)\tilde{u}_z^{0,\pm} + f(\tilde{u}^{0,\pm}) - v^0 = 0.$$

(2.17)
$$\tilde{u}_{zz}^{j,\pm} + (\gamma_t \cdot \nu)\tilde{u}_z^{j,\pm} + f'(\tilde{u}^{0,\pm})\tilde{u}^{j,\pm} = v^j - R_t^j \tilde{u}_z^{0,\pm} + \mathcal{F}_j^{\pm}, \qquad j \ge 1.$$

Here \mathcal{F}_{j}^{\pm} stand for functions depending on \mathbb{R}^{k} , v^{k} , $\tilde{u}^{k,\pm}$ $(0 \leq k < j)$ with $\mathbb{R}^{0} := \gamma$. We impose the following conditions:

• Boundary conditions at z = 0 (cf. (2.5)):

(2.18)
$$\tilde{u}^{j,\pm}(t,0,y) = U^{j,\pm}(t) + \phi^{j,\pm}(t,0,y) = 0.$$

• Boundary conditions at $z = \pm \infty$ (outer-inner matching conditions): (2.19) $\phi^{j,\pm}(t,z,y) \to 0$ exponentially as $z \to \pm \infty$.

• C¹-matching conditions at z = 0: (2.20) $\tilde{u}_z^{j,-}(t,0,y) = \tilde{u}_z^{j,+}(t,0,y)$.

2.4 Expansion of nonlocal term.

(2.4) is recast as follows:

$$\begin{aligned} \dot{U}^{\epsilon,-}|\Omega^{-}| + \dot{U}^{\epsilon,+}|\Omega^{+}| \\ &= (\dot{U}^{\epsilon,+} - \dot{U}^{\epsilon,-}) \sum_{i\geq 0} \int_{\mathcal{M}} \frac{H_{i}(t,y)}{i+1} \Big(\epsilon R^{\epsilon}(t,y)\Big)^{i+1} dS_{y}^{\gamma(t,\cdot)} \\ &+ \int_{\mathcal{M}} \int_{-\infty}^{0} [\phi_{zz}^{\epsilon,-} + (\gamma_{t}\cdot\nu)\phi_{z}^{\epsilon,-} + \epsilon R_{t}^{\epsilon}\phi_{z}^{\epsilon,-} + \mathcal{D}^{\epsilon}\phi^{\epsilon,-}] J^{\epsilon} dz dS_{y}^{\gamma(t,\cdot)} \\ &+ \int_{\mathcal{M}} \int_{0}^{\infty} [\phi_{zz}^{\epsilon,+} + (\gamma_{t}\cdot\nu)\phi_{z}^{\epsilon,+} + \epsilon R_{t}^{\epsilon}\phi_{z}^{\epsilon,+} + \mathcal{D}^{\epsilon}\phi^{\epsilon,+}] J^{\epsilon} dz dS_{y}^{\gamma(t,\cdot)} \\ &+ O(\epsilon^{-1}e^{-\delta/\epsilon}). \end{aligned}$$

Here $J^{\epsilon}(t, z, y) := J(t, r, y)|_{r=\epsilon z+\epsilon R^{\epsilon}(t,y)}$ and $dS_{y}^{\gamma(t,\cdot)}$ stands for the volume element on \mathcal{M} induced from $dS_{x}^{\Gamma(t)}$, the surface element on $\Gamma(t)$ at x, by the embedding $\gamma(t, \cdot)$. These are denoted simply as dS_{x} and dS_{y} in the sequel.

We substitute the outer and inner expansions into (2.21) to obtain some series of equations:

$$(2.22) \qquad \dot{U}^{0,-}|\Omega^{-}| + \dot{U}^{0,+}|\Omega^{+}| = \int_{\mathcal{M}} \int_{-\infty}^{0} [\phi_{zz}^{0,-} + (\gamma_{t} \cdot \nu)\phi_{z}^{0,-}] dz dS_{y} + \int_{\mathcal{M}} \int_{0}^{\infty} [\phi_{zz}^{0,+} + (\gamma_{t} \cdot \nu)\phi_{z}^{0,+}] dz dS_{y}$$

$$\begin{aligned} \dot{U}^{j,-} |\Omega^{-}| + \dot{U}^{j,+} |\Omega^{+}| \\ &= (\dot{U}^{0,+} - \dot{U}^{0,-}) \int_{\mathcal{M}} R^{j} \, dS_{y} \\ &+ \int_{\mathcal{M}} \int_{-\infty}^{0} [\phi_{zz}^{0,-} + (\gamma_{t} \cdot \nu)\phi_{z}^{0,-}]\kappa R^{j} \, dz dS_{y} \\ &+ \int_{\mathcal{M}} \int_{0}^{\infty} [\phi_{zz}^{0,+} + (\gamma_{t} \cdot \nu)\phi_{z}^{0,+}]\kappa R^{j} \, dz dS_{y} \\ &+ \int_{\mathcal{M}} \int_{-\infty}^{0} [\phi_{zz}^{j,-} + (\gamma_{t} \cdot \nu)\phi_{z}^{j,-} + R_{t}^{j}\phi_{z}^{0,-}] \, dz dS_{y} \\ &+ \int_{\mathcal{M}} \int_{0}^{\infty} [\phi_{zz}^{j,+} + (\gamma_{t} \cdot \nu)\phi_{z}^{j,+} + R_{t}^{j}\phi_{z}^{0,+}] \, dz dS_{y} + \mathcal{I}^{j}, \quad j \ge 1. \end{aligned}$$

Here $\kappa := \kappa_1 + \cdots + \kappa_{N-1}$ is the mean curvature of $\Gamma(t)$ at $x = \gamma(t, y)$, and $\mathcal{I}^j(t)$ stands for a function calculated by using functions \mathbb{R}^k , $U^{k,\pm}$ and $\phi^{k,\pm}$ $(0 \le k < j)$.

2.5 C^1 -matching.

We note that the following problem

(2.24)
$$\begin{cases} Q_{zz} + c Q_z + f(Q) - v = 0, \quad z \in (-\infty, \infty), \\ Q(\pm \infty) = h^{\pm}(v), \quad Q(0) = 0, \end{cases}$$

has a unique solution pair (Q(z; v), c(v)) for each $v \in I^0$. Then (2.16) with (2.18)-(2.20) have unique solutions if and only if

(2.25)
$$\gamma_t(t,y) \cdot \nu(t,y) = c(v^0(t)) \qquad v^0(t) \in I^0,$$

and solutions are given by

(2.26)
$$\tilde{u}^{0,\pm}(t,z,y) = Q(z;v^0(t)), \quad \pm z \in (0,\infty)$$

Once (2.25) is satisfied and we have (2.26), we can successively show the existence and uniqueness of $\phi^{j,\pm}$ satisfying (2.19) for all $j \ge 0$.

As for $\tilde{u}^{j,\pm}$ $(j \ge 1)$, equations (2.17) with (2.18)-(2.20) have unique solutions if and only if a solvability condition of (2.17)

$$\int_{-\infty}^{\infty} e^{cz} Q_z (v^j - R_t^j Q_z + \mathcal{F}_j) \, dz = 0$$

is satisfied, which is equivalent to

(2.27)
$$R_t^j(t,y) = c'(v^0(t)) v^j(t) + \rho_j(t,y)$$

with ρ_j being a function calculated by using R^k , v^k and \tilde{u}^k $(0 \le k < j)$. For instance, ρ_1 is given by

(2.28)
$$\rho_1 = -\kappa + \frac{\int_{-\infty}^{\infty} e^{c(v^0)z} Q_z(z;v^0) Q_v(z;v^0) dz}{\int_{-\infty}^{\infty} e^{c(v^0)} [Q_z(z;v^0)]^2 dz} \dot{v}^0$$

On the other hand, (2.22) and (2.23) with (2.18)-(2.20) respectively yield

(2.29)
$$\dot{v}^{0}(t) = \frac{h^{+}(v^{0}(t)) - h^{-}(v^{0}(t))}{h_{v}^{-}(v^{0}(t))|\Omega^{-}(t)| + h_{v}^{+}(v^{0}(t))|\Omega^{+}(t)|} c(v^{0}(t))|\Gamma(t)|,$$

(2.30)
$$\dot{v}^{j}(t) = \int_{\mathcal{M}} a(t,y) R^{j}(t,y) \, dS_{y} + b(t) \, v^{j}(t) + \sigma_{j}(t).$$

Here a and b are some functions depending only on (Γ, v^0) given by

(2.31)
$$a := \frac{[h^+(v^0) - h^-(v^0)] c(v^0) \kappa + [h_v^+(v^0) - h_v^-(v^0)] \dot{v}^0}{h_v^-(v^0) |\Omega^-| + h_v^+(v^0) |\Omega^+|},$$

50

 $b := \frac{h^{+}(v^{0}) - h^{-}(v^{0})}{h_{v}^{-}(v^{0})|\Omega^{-}| + h_{v}^{+}(v^{0})|\Omega^{+}|} c'(v^{0})|\Gamma| + \frac{h_{vv}^{+}(v^{0}) - h_{v}^{-}(v^{0})}{h_{v}^{-}(v^{0})|\Omega^{-}| + h_{vv}^{+}(v^{0})|\Omega^{+}|} \dot{v}^{0}}{h_{v}^{-}(v^{0})|\Omega^{-}| + h_{v}^{+}(v^{0})|\Omega^{+}|},$

while σ_j stands for a function computed by employing R^k , v^k and $\phi^{k,\pm}$ $(0 \le k < j)$. For instance, σ_1 is given by

$$\begin{split} \sigma_{1} &= -\frac{h^{+}(v^{0}) - h^{-}(v^{0})}{h_{v}^{-}(v^{0})|\Omega^{-}| + h_{v}^{+}(v^{0})|\Omega^{+}|} \int_{\mathcal{M}} \kappa \, dS_{y} \\ &+ \left[h_{v}^{-}(v^{0})|\Omega^{-}| + h_{v}^{+}(v^{0})|\Omega^{+}| \right]^{-1} \times \left[c(v^{0}) \left(\int_{-\infty}^{\infty} z Q_{z}(z;v^{0}) \, dz \right) \int_{\mathcal{M}} \kappa \, dS_{y} \\ &- \frac{d}{dt} \left(h_{v}^{-}(v^{0})\dot{v}^{0} \right) |\Omega^{-}| - \frac{d}{dt} \left(h_{v}^{+}(v^{0})\dot{v}^{0} \right) |\Omega^{+}| \\ &- \left(\int_{-\infty}^{0} (Q_{v}(z;v^{0}) - h_{v}^{-}(v^{0})) \, dz + \int_{0}^{\infty} (Q_{v}(z;v^{0}) - h_{v}^{+}(v^{0})) \, dz \right) \dot{v}^{0} \left| \Gamma \right| \\ &+ \left(h_{v}^{+}(v^{0})^{2} - h_{v}^{-}(v^{0})^{2} \right) c(v^{0}) \left(\dot{v}^{0} \right)^{2} \left| \Gamma \right| \\ &+ \left(h^{+}(v^{0}) - h^{-}(v^{0}) \right) \frac{\int_{-\infty}^{\infty} e^{c(v^{0})z} Q_{z}(z;v^{0}) Q_{v}(z;v^{0}) \, dz}{\int_{-\infty}^{\infty} e^{c(v^{0})z} [Q_{z}(z;v^{0})]^{2} \, dz} \dot{v}^{0} \left| \Gamma \right| \Big] \end{split}$$

We finally arrived at the following interface equations:

(IE⁰)
$$\gamma_t \cdot \nu = c(v^0), \quad \dot{v}^0 = \frac{h^+(v^0) - h^-(v^0)}{h_v^-(v^0)|\Omega^-| + h_v^+(v^0)|\Omega^+|} c(v^0) |\Gamma|,$$

(IE^{*j*})
$$R_t^j = c'(v^0) v^j + \rho_j, \quad \dot{v}^j = \int_{\mathcal{M}} a R^j dS_y + b v^j + \sigma_j, \quad j \ge 1.$$

3 Analysis of interface equations.

We are now ready to study the interface equations. Let us begin with the 0-th order equation (IE^{0}).

3.1 0-th order equation.

The equation is as follows:

$$(\mathrm{IE}^{0}\text{-}\mathbf{a}) \qquad \qquad \mathbf{v}(x;\Gamma(t))=c(v(t)), \qquad t>0, \ x\in\Gamma(t),$$

(IE⁰-b)
$$\dot{v}(t) = \frac{h^+(v(t)) - h^-(v(t))}{h_v^-(v(t))|\Omega^-(t)| + h_v^+(v(t))|\Omega^+(t)|} c(v(t)) |\Gamma(t)|, \quad t > 0,$$

(IE⁰-c)
$$\Gamma(0) = \Gamma_0, \quad v(0) = v_0.$$

Here $\mathbf{v}(x;\Gamma(t)) := \gamma_t(t,y) \cdot \nu(t,y)$ is the normal velocity of $\Gamma(t)$ at $x = \gamma(t,y)$. We note that the superscript '0' in $v^0(t)$ has been suppressed.

It immediately turns out, due to (IE⁰-a), that the normal speed is independent of the position $x \in \Gamma(t)$ and is regulated by the (0-th order) nonlocal term v. Thanks to the identity

(3.1)
$$\frac{d}{dt}|\Omega^{-}(t)| = -\frac{d}{dt}|\Omega^{+}(t)| = \int_{\Gamma(t)} \mathbf{v}(x;\Gamma(t)) \, dS_x,$$

the interface equation (IE^0) implies

(3.2)
$$h^{-}(v(t))\frac{|\Omega^{-}(t)|}{|\Omega|} + h^{+}(v(t))\frac{|\Omega^{+}(t)|}{|\Omega|} \equiv m_{0}, \quad t \ge 0,$$

where $m_0 = m_0(\Gamma_0, v_0)$ is given by

(3.3)
$$m_0 := h^-(v_0) \frac{|\Omega_0^-|}{|\Omega|} + h^+(v_0) \frac{|\Omega_0^+|}{|\Omega|}$$

with Ω_0^{\pm} being initial bulk regions such as $\Omega = \Omega_0^- \cup \Gamma_0 \cup \Omega_0^+$. We note that (3.2) corresponds to (PP) for (RD) as $\epsilon \to 0$ (cf. (2.10)).

We recast (IE⁰) as a system of ordinary differential equations after the manner of Sakamoto [11]. For a given initial interface Γ_0 we express $\Gamma(t)$ as the graph of a function r(t, y) over Γ_0 : $\gamma(t, y) = \gamma(0, y) + r(t, y)\nu(0, y)$. Then some elementary calculations yield $\nu(t, y) \equiv \nu(0, y)$ and $r(t, y) \equiv r(t)$, and therefore (IE⁰-a) is recast as $\dot{r}(t) = c(v(t))$. On the other hand, the surface area of an interface $\{x \in \Omega \mid x = \gamma(0, y) + r\nu(0, y), y \in \mathcal{M}\}$ is given by

$$g(r) := \int_{\mathcal{M}} J(0,r,y) \, dS_y^0 = |\Gamma_0| + \sum_{i=1}^{N-1} \left(\int_{\mathcal{M}} H_i(0,y) \, dS_y^0 \right) r^j, \quad dS_y^0 := dS_y^{\gamma(0,\cdot)},$$

so we have $|\Gamma(t)| = g(r(t))$. Moreover, (3.2) together with $|\Omega^{-}(t)| + |\Omega^{+}(t)| \equiv |\Omega|$ implies that the volume of the bulk regions are represented in terms of v as

(3.4)
$$|\Omega^{-}| = \frac{h^{+}(v) - m_{0}}{h^{+}(v) - h^{-}(v)} |\Omega|, \qquad |\Omega^{-}| = \frac{m_{0} - h^{-}(v)}{h^{+}(v) - h^{-}(v)} |\Omega|,$$

from which the first factor in the right hand side of (IE⁰-b) is rewritten as h(v(t)) with

(3.5)
$$h(v) = h(v; v_0) := \frac{1}{|\Omega|} \frac{[h^+(v) - h^-(v)]^2}{h_v^-(v)[h^+(v) - m_0] + h_v^+(v)[m_0 - h^-(v)]}.$$

In particular, if the initial pair (Γ_0, v_0) is chosen so that $m_0 \in (\underline{u}, \overline{u})$, it follows that $|\Omega^{\pm}| > 0$ in (3.4) and therefore we have h(v) < 0 for all $v \in I^0$ (cf. (A1), (A2)). Thus the interface equation (IE⁰) are equivalent to the following initial value problem:

(ODE⁰)
$$\begin{cases} \dot{r} = c(v), \\ \dot{v} = h(v) c(v) g(r), \\ r(0) = 0, \quad v(0) = v_0 \end{cases}$$

By virtue of reformulation above and an equivalent expression of c(v)

(3.6)
$$c(v) = -\frac{S(v)}{\int_{-\infty}^{\infty} [Q_z(z;v)]^2 dz},$$

the interface dynamics are summerized as follows:

- v ∈ (v^{*}, v̄) ⇒ r̄ > 0, v̄ < 0; the interface Γ(t) evolves in such a way that the bulk region Ω⁻(t) grows uniformly.
- $v \in (\underline{v}, v^*) \implies \dot{r} < 0, \quad \dot{v} > 0;$ the interface $\Gamma(t)$ evolves in such a way that the bulk region $\Omega^-(t)$ shrinks uniformly.
- $v = v^* \implies \dot{r} = 0, \quad \dot{v} = 0;$ the interface $\Gamma(t)$ does not evolve.

We also obtain the following

Theorem 3 (Unique existence of solutions). Let Γ_0 be a smooth initial interface, and a pair (Γ_0, v_0) is assumed to satisfy $v_0 \in I^0$ and $m_0 \in (\underline{u}, \overline{u})$. Then the following statements hold true:

- (1) There exists a constant T > 0 such that (IE⁰) has a unique smooth solution pair (Γ, v) on a time interval [0, T].
- (2) If in addition v_0 is sufficiently close to v^* , then the unique solution (Γ, v) in (1) exists globally in time.

Proof. (2) immediately follows from the existence of a constant R > 0 such that rcomponent $r(\cdot)$ of the solution to (ODE^0) remains in a neighborhood (-R, R) while the corresponding interface $\Gamma(\cdot) = \{x \in \Omega \mid x = \gamma(0, y) + r(\cdot)\nu(0, y), y \in \mathcal{M}\}$ is smooth for all |r| < R when we choose $v_0 \approx v^*$.

Theorem 4 (Stability of equilibrium solutions). Suppose that a pair (Γ_0, v_0) is as in Theorem 3. Then the following statements hold true:

- (1) (Γ_0, v_0) is an equilibrium solution of (IE⁰) if and only if $v_0 = v^*$.
- (2) The equilibrium solution (Γ_0, v^*) is asymptotically stable relative to (ODE^0) .

Proof. (2) We linearize (ODE⁰) around the corresponding equilibrium solution $(0, v^*)$ to obtain the eigenvalues 0 and $h(v^*) c'(v^*) |\Gamma_0| < 0$.

For each $v \in I^0$, the nonlinear term f(u) - v defines a new double-well potential $\mathcal{W}(u; v)$ with two wells located at $u = h^{\pm}(v)$. Moreover, the potential difference is related to $\mathcal{S}(v)$ and c(v) as follows:

$$\mathcal{W}(h^+(v);v) - \mathcal{W}(h^-(v);v) = -\mathcal{S}(v) = c(v) \int_{-\infty}^{\infty} [Q_z(z;v)]^2 dz.$$

Hence it turns out that the 0-th order nonlocal effect equalizes the potential of two wells no matter how the initial state is.

3.2 Higher order equations.

The *j*-th $(j \ge 1)$ order equations are as follows:

(IE^j-a)
$$R_t^j(t,y) = c'(v^0(t))v^j(t) + \rho_j(t,y), \quad t > 0, \ y \in \mathcal{M},$$

(IE^{*j*}-b)
$$\dot{v}^{j}(t) = \int_{\mathcal{M}} a(t,y) R^{j}(t,y) dS_{y} + b(t) v^{j}(t) + \sigma_{j}(t), \quad t > 0,$$

(IE^{*j*}-c)
$$R^{j}(0,y) = R^{j}(y), \quad v^{j}(0) = v_{0}^{j}.$$

Recall that a and b are functions depending only on the solution (Γ, v^0) to (IE⁰) (cf. (2.31), (2.32)), while ρ_j and σ_j are some functions which can be calculated by using functions with index k ($0 \le k < j$) in outer and inner expansions.

Each equation (IE^j) can be recast as a system of linear non-homogeneous ordinary differential equations. Indeed, by employing a function r^j given by

$$r^{j}(t) := R^{j}(t,y) - R^{j}(y) - \int_{0}^{t} \rho_{j}(s,y) \, ds,$$

 $(IE^{j}-a)$ and $(IE^{j}-b)$ are respectively expressed as

$$\dot{r}^{j}(t) = c'(v^{0}(t)) v^{j}(t),$$

$$\dot{v}^{j}(t) = \left(\int_{\mathcal{M}} a(t,y) \, dS_{y} \right) r^{j}(t) + b(t) \, v^{j}(t) + \int_{\mathcal{M}} a(t,y) \left(R^{j}(y) + \int_{0}^{t} \rho_{j}(s,y) \, ds \right) dS_{y} + \sigma_{j}(t),$$

from which we obtain an initial value problem of the form

(ODE^j)
$$\begin{cases} \dot{r}^{j}(t) = B(t) v^{j}(t), \\ \dot{v}^{j}(t) = C(t) r^{j}(t) + D(t) v^{j}(t) + E_{j}(t), \\ r^{j}(0) = 0, \quad v^{j}(0) = v_{0}^{j}. \end{cases}$$

Due to this reformulation, we have the following

Theorem 5 (Unique existence of solutions). Once the initial pair $(R^j(y), v_0^j)$ is given, the equations (IE^j) $(j \ge 1)$ are successively solvable on a finite time interval [0, T].

In particular, we can construct a smooth approximate solution u_A^{ϵ} of (RD) in the sense that

$$\begin{split} \left\| \epsilon \frac{\partial u_A^{\epsilon}}{\partial t} - \epsilon^2 \Delta u_A^{\epsilon} - f(u_A^{\epsilon}) + \frac{1}{|\Omega|} \int_{\Omega} f(u_A^{\epsilon}(\cdot, x)) \, dx \right\|_{L^{\infty}([0,T] \times \Omega)} &= O(\epsilon^{K+1}), \\ \frac{\partial u_A^{\epsilon}}{\partial \mathbf{n}} = 0, \qquad (t, x) \in [0, T] \times \partial\Omega, \end{split}$$

by means of unique solutions (Γ, v^0) and (R^j, v^j) of (IE^j) for $0 \le j \le K$.

As the solution $v^{0}(t)$ approaches the equilibrium state v^{*} , the 0-th order equation (IE⁰) becomes powerless to approximate the layer dynamics. In this case, we must move our attention to the equation (IE¹) for (R^{1}, v^{1}) in order to capture the further dynamics of layers. An investigation in such a direction will be our future work.

References

- [1] F. Bethuel, G. Huisken, S. Müller and K. Steffen, *Calculus of variations and geometric* evolution problems, Lecture Notes in Math., **1713**, Springer (1999).
- [2] L. Bronsard and B. Stoth, Volume-preserving mean curvature flow as a limit of a nonlocal Ginzburg-Landau equation, SIAM J. Math. Anal., 28 (1997), no.4, 769-807.
- [3] P. de Mottoni and M. Schatzman, Geometric evolution of developed interfaces, Trans. Amer. Math. Soc., 347 (1995), 1533-1589.
- [4] 儀我美一, 界面ダイナミクス ー 曲率の効果, 北海道大学数学講究録, No.56 (1998).
- [5] G. Huisken, The volume preserving mean curvature flow, J. Reine Angew. Math., 382 (1987), 35-48.
- [6] J. E. Hutchinson and Y. Tonegawa, Convergence of phase interfaces in the van der Waals-Cahn-Hilliard theory, Calc. Var., 10 (2000), 49-84.
- [7] H. Ikeda, On the asymptotic solutions for a weakly coupled elliptic boundary value problem with a small parameter, Hiroshima Math. J., 16 (1986), 227-250.
- [8] K. Okada, Dynamical approximation of a nonlocal reaction-diffusion equation via interfacial approach, master thesis, Hiroshima University (2002).
- [9] K. Okada, Asymptotic expansions for nonlocal reaction-diffusion equations, Preprint (2002).
- [10] K. Sakamoto, Asymptotic expansion of interface equation for a reaction-diffusion system, Tohoku Math. Publications, 8 (1998), 149-158.
- K. Sakamoto, Spatial homogenization and internal layers in a reaction-diffusion system, Hiroshima Math. J. 30 (2000), 377-402.
- [12] K. Sakamoto, Interfaces in activator-inhibitor systems -asymptotics and degeneracy-, Preprint (2003).