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1. INTRODUCTION

We consider the semilinear elliptic equation

$\triangle u$ $+p(x)u+\phi(x, u)=0$ (1)

in an unbounded domain $\Omega$ containing $G_{a}=\{x\in \mathbb{R}^{N}:|x|>a\}$ for some $a>0$ and
$N\geq 3.$ $\mathrm{T}\mathrm{h}\mathrm{r}\mathrm{o}\mathrm{u}\mathrm{g}\mathrm{I}_{1}\mathrm{o}\mathrm{u}\mathrm{t}$ this paper, we call such a domain an exterior domain of $\mathbb{R}^{N}$ . We

assume that $p:\mathit{1}$ $arrow[0, \infty)$ and $\phi$ : $\Omega\cross \mathbb{R}arrow \mathbb{R}$ are locally Holder continuous with

exponent $\alpha\in$ $(0, 1)$ .

For convenience, let $C^{2+\alpha}(\overline{M})$ denote the space of all continuous functions on the

closure $M$ of a bounded domain $M$ CI $\Omega$ such that the usual Holder norm $||$ $||_{2+\alpha}$ , $\overline{M}$ is

finite. A solution of (1) in $\Omega$ is defined to be a function $u\in C^{2+\alpha}(\overline{M})$ for every bounded

subdomain $M\subseteq\Omega$ such that $u$ satisfies equation (1) at every point $x\in$ Q. A solution of

(1) is called oscillatory if it keeps neither positive nor negative in any exterior domain.

On the other hand, it is called nonoscillatory if it never changes the sign throughout

some exterior domain.

Equation (1) naturally includes the linear equation

$\triangle u+p(x)u=0$ (2)
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which has been widely studied by many authors. For example, see [2-5, 9]. When

$p(x)= \frac{\mu_{1}}{|x|^{2}}$ , $|x$ $|>1$ (3)

with $\mu_{1}$ positive, it is well known that equation (2) has the radial solution

$u(x)=\{$

$\sqrt{1/t(x)}\{K_{1}+K_{2}\log t(x)\}$ if $\mu_{1}=\lambda_{N}$ ,

$\sqrt{1/t(x)}\{K_{3}t(x)^{\zeta}+ \mathrm{t}(\mathrm{x}) -;\}$ if $\mu_{1}\neq\lambda_{N}$ ,

where $t(x)=(N-2)$ $|x|^{N-2}$ and $\lambda_{N}=(N-2)^{2}/4$ , and where $K_{i}(i=1,2,3,4)$ are

arbitrary constants and $\langle$ is a number satisfying

$(N-2)^{2}\zeta^{2}=\lambda_{N}-\mu_{1}$ .

For this reason, equation (2) with (3) has nonoscillatory solutions if $0<\mu_{1}\leq\lambda_{N}$ :

otherwise, all radial solutions are oscillatory. From Sturm’s separation theorem for linear

elliptic equations it follows that all non-radial solutions are also oscillatory. As for this

point, see $[1, 4]$ and [9, p. 187]. Hence, for equation (2) with (3) the critical value of $\mu_{1}$ is
$\lambda_{N}$ .

Next, consider the case that

$p(x)= \frac{\lambda_{N}}{|x|^{2}}+\frac{\mu_{2}}{|x|^{2}\{1\mathrm{o}\mathrm{g}t(x)\}^{2}}$ , $|x|>e$ (4)

with $\mu_{2}$ positive. Then radial solutions of (2) are represented as the form of

$u(x)=\{$

$\sqrt{\log t(x)/t(x)}\{K_{1}+K_{2}\log(\log t(x))\}$ if $\mu_{2}=\lambda_{N}$ ,

$\sqrt{\log t(x)/t(x)}\{K_{3}(\log t(x))^{\zeta}+K_{4}(\log t(x))^{-\zeta}\}$ if $\mu_{2}\neq\lambda_{N}$ ,

where $K_{i}$ $(\dot{l}=12,3,4)\}$ are arbitrary constants and $\zeta$ is a number satisfying

$(N-2)^{2}\zeta^{2}=\lambda_{N}-\mu_{2}$ .

Hence, the situation is the same as in the case (3), in other words, the critical value of

$\mu_{2}$ is also $\lambda_{N}$ for equation (2) with (4). From this point of view, we rnay regard cases (3)

and (4) as the first and the second stages for equation (2), respectively.



144

To go on to the nth stage for equation (2), we introduce three sequences of functions

as follows:

$\log_{1}t=|\log t|$ and $\log_{k+1}t=\log(\log_{k}t)$ ;

$l_{1}(t)=1$ and $l_{k+1}(t)=l_{k}(t)\log_{k}t$ ;

$S_{0}(t)=0$ and $S_{k}(t)$ $= \sum_{\iota=1}^{k}\frac{1}{\{l_{i}(t)\}^{2}}$

for $k\in \mathrm{N}$ The sequences are well-defined for $t>0$ sufficiently small or sufficiently large.

To make sure, we enumerate the sequences $\{l_{k}(t)\}$ and $\{S_{k}(t)\}$ :

$l_{2}(t)=|$ $\log$ $t|$ , $l_{3}(t)=|\log t|(\log|\log t|)$ ,

$l_{4}(t)=|\log t|(\log|\log t|)(\log(\log|\log t|))$ , $\cdots$ $\cdots\cdots\cdots$ . . ;

$S_{1}(t)=1,$ $S_{2}(t)=1+ \frac{1}{(\log t)^{2}}$ ,

$S_{3}(t)=1+ \frac{1}{(\log t)^{2}}+\frac{\mathrm{l}}{(\log t)^{2}(1\mathrm{o}\mathrm{g}|\log t|)^{2}}$ ,

We may consider the case

$p(x)= \frac{\lambda_{N}}{|x|^{2}}S_{n-1}(t(x))+\frac{\mu_{n}}{|x|^{2}\{l_{n}(t(x))\}^{2}}$ , $|x|>e_{n-1}$ (5)

to be $\mathrm{t}1_{1}\mathrm{e}$ nth stage for equation (2), whcre $\mu_{n}$ is a positive parameter and $\{e_{k}\}$ is a

sequence satisfying

$e_{0}=1$ and $e_{k}=\exp(e_{k-1})$ for $k\in$ N.

The reason for this is that equation (2) with (5) has the radial solution

$u(x)=\{$

$\sqrt{l_{n}(t(x))/t(x)}\{K1+K_{2}\log_{n}t(x)\}$ if $\mu_{n}=\lambda_{N}$ ,

$\sqrt{l_{n}(t(x))/t(x)}\{K_{3}(\log_{n-1}t(x))^{\zeta}+K_{4}(\log_{n-1}t(x))^{-\zeta}\}$ if $\mu_{n}\neq\lambda_{N}$ ,

where $l\mathrm{i}_{i}’$ $(i= 1, 2, 3, 4)$ are arbitrary constants and ( is a number satisfying

$(N-2)^{2}\zeta^{2}=\lambda_{N}-\mu_{n}$ .
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The critical value of $\mu_{n}$ is also $\lambda_{N}$ for equation (2) with (5).

For simplicity, let

$p_{n}(x)= \frac{\lambda_{N}}{|x|^{2}}S_{n}(t(x))$ .

Then, as shown above, the linear equation

$\triangle u+p_{n}(x)u=0$ (6)

has nonoscillatory solutions. Let us add a linear perturbation of the form $q(x)u$ to

equation (6). If

$|x|^{2}\{l_{n+1}(t(x))\}^{2}q(x)\leq\lambda_{N}$

for $|x|$ sufficiently large, then nonoscillatory solutions remain in the equation

$\triangle u+p_{n}(x)u+q(x)u=0.$ (7)

On the other hand, if there exists a $\nu$ $>\lambda_{N}$ such that

$|x|^{2}\{l_{n+1}(t(x))\}^{2}q(x)\geq\nu$

for $|x|$ sufficiently large, then all nonoscillatory solutions disappear from equation (7). It

is safe to say that the linear perturbation problem is solved. However, there remains an

unsettled question: what is the lower limit of the nonlinear perturbed term $\phi(x, u)$ for

all solutions of the elliptic equation

$\triangle u+p_{n}(x)u+\phi(x, u)=0$

to be oscillatory?

The purpose of this paper is to answer the above question and to discuss whether or

not equation (1) has nonoscillatory solutions under the assumption that equation (2) has

nonoscillatory solutions.

2. PRESERVATION OF NONOSCILLATORY SOLUTIONS

To begin with, we define a supersolution (resp., subsolution) of (1) in $\Omega$ as a function

$u\in C^{2+\alpha}(\overline{M})$ for every bounded domain $M\subset\Omega$ such that $u$ satisfies the inequality Itt $+$

$p(x)u+\phi(x, u)\leq 0$ (resp., $\geq 0$ ) at every point $x\in$ Q. Using the s0-called supersolution

$\mathrm{s}\mathrm{u}\mathrm{b}\mathrm{s}\mathrm{o}1\mathrm{u}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}^{)}$
’ method due to Noussair and Swanson [7], we have the following result.
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Lemma 1. If there exists a positive supersolution $\overline{u}$ of (1) and a positive subsolution $\underline{u}$

of (1) in $G_{b}$ such that $\underline{u}(x)\leq\overline{u}(x)$ for all $x\in G_{b}\cup C_{b}$ , where $b\geq a$ and $C_{b}=\{x\in \mathbb{R}^{N}$..
$|x|=b\}$ , then equation (1) has at least one solution $u$ satisfying $u(x)=\overline{u}(x)$ on $C_{b}$ and
$\underline{u}(x)\leq u(x)\leq\overline{u}(x)t,hroughG_{b}$ .

To find a suitable pair of positive supersolution and positive subsolution of (1) in $\Omega$ ,

we consider the nonlinear differential equation

$w’+ \frac{2}{t}u)’+\frac{1}{4t^{2}}S_{n}(t)w+\frac{1}{t^{2}}g(w)=0,$ $t>a,$ (8)

where $’=$ d/dt, and $g(w)$ is locally Lipschitz continuous on $\mathbb{R}$ and satisfies the signum
condition

$wg(w)>0$ if $w\neq 0.$ (9)

We say that a solution of (8) (or its equivalent equation) is oscillatory if the set of its
zeros is unbounded; otherwise it is nonoscillatory. Recently, the second author [8] has
presented a sufficient condition which guarantees the existence of a nonoscillatory solution

of (8) as follows.

Proposition 1. Assume (9) and suppose that

$\frac{g(w)}{w}\leq\frac{1}{4\{l_{n+1}(w^{2})\}^{2}}$ (10)

for $w>$ $0$ or $w<0,$ $|\mathrm{a}$} $|$ sufficiently small. Then equation (8) has a nonoscillatory

solution.

Letting $s=\log t$ , we can transform equation (8) into the system of Li\’enard type

$\dot{\xi}=\eta-\xi$ ,

$\dot{\eta}=-\frac{1}{4}S_{n}(e^{s})\xi-g(\xi)$ ,
(11)

where $=d/ds$ and $\xi(s)=w(e^{s})=w(t)$ . Since the global asymptotic stability of the

zero solution of (11) is shown in [8], all solutions $w(t)$ of (8) tend to zero as $tarrow\infty$ , that
$\mathrm{i}_{\mathrm{S}_{\backslash }}$

$\lim_{tarrow\infty}u\uparrow(t)=0.$

Also, we can estimate the decaying speed of nonoscillatory solutions of (8).
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Lemma 2. Assume (9). If $g(w)$ satisfies (10) for w $>0$ sufficiently small, then there

exist a $b>0$ and a positive solution of (8) such that

$w(t) \geq\frac{bw(b)}{t}$ for $t\geq b.$

Proof As in the proof of Proposition 1 we can find a solution $w(t)$ of (8) which is

eventually positive. Hence, there exists a $b>0$ such that

$w(t)>0$ for $t\geq b.$

Let $(\xi(s), \eta(s))$ be the solution of (11) corresponding to $w$ (9). Then we have the relation

$(\xi(s), \eta(s))=(w(t), w’(t)t+w(t))$ .

Since $\xi(s)>0$ for $s\geq\log b$ ,

$\dot{\eta}(s)$ $<0$ for $s\geq\log b$ (12)

by (9). Hence, we see that $\eta(s)\geq 0$ for $s\geq\log b$ . In fact, if $\eta(s_{0})<0$ for some $s_{0}\geq 1()\mathrm{g}b$ .

then by (12) we obtain

$\dot{\xi}(s)=\eta(s)-\xi(s)<\eta(s_{0})$

for $s\geq$ so- Integrating this inequality from $s_{0}$ to $s$ , we get

$\xi(s)<\xi(s_{0})+\eta(s_{0})(s-s_{0})arrow-\infty$ as $sarrow\infty$ .

This contradicts the fact that $\xi(s)$ is eventually positive. Bccause $\eta(s)>0$ for $s\geq\log b$ ,

$\dot{\xi}(s)=\eta(s)-\xi(s)\geq-\xi(s)$

for $s\geq\log$ b. Integrate the both sides to obtain

$\xi(s)\geq b\xi(\log b)e^{-s}$ for $s\geq\log b$ ,

namely, $w(t)\geq bw(b)/t$ for $t\geq 6.$ Thus, the lemma is proved. $\mathrm{t}\mathrm{g}$

We shall construct a positive supersolution of (1) and a positive subsolution of (1)

which is not larger than the supersolution by using the functions $w(t)$ and $bw(b)/t$ in

Lemma 2, respectively. Hence, by virtue of Lemma 1, we can supply the following answer

to our question in Section 1.
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Theorem 1. Suppose that there exists an $n$ CE $\mathrm{N}$ such that

$0\leq p(x)\leq p_{n}(x)$ , $x\in$ Q. (13)

Also suppose that there exists a locally Lipschitz continuous function $h(u)$ with $h(0)=0$

and $h(u)>0$ if $u>0$ such that

$0 \leq\phi(x, u)\leq\frac{h(u)}{|x|^{2}}$ , $x\in\Omega 1,$ $u\geq 0.$ (14)

If $h(u)$ satisfies
$\frac{h(u)}{u}\leq\frac{\lambda_{N}}{\{l_{n+1}(u^{2})\}^{2}}$ (15)

for $u>0$ sufficiently small, then equation (1) has a posiiive solution $u(x)$ in an exterior

domain with $\lim|x|arrow\infty u(x)=0.$

Remark 1. Theorem 1 is true even for $n=0.$ In this case, however, $p(x)$ is identically

equal to zero, in other words, equation (1) has no linear term. Hence, this case deviates

from the main subject.

Proof of $Theor\cdot em1$ . Define

$g(w)=\{$

$h(w)/4\lambda_{N}$ if $\prime w$ $\geq 0,$

$-h(-w)/4\lambda_{N}$ if $w<0.$

Then $g(w)$ is locally Lipschitz continuous on $\mathbb{R}$ and satisfies the signum condition (9).

Also, it follows from (15) that

$\frac{g(w)}{w}\leq\frac{1}{4\{l_{n+1}(w^{2})\}^{2}}$

for $w>0$ sufficiently small. Hence, by Lemma 2 equation (8) has a solution $w(t)$ which

is positive for $t\geq b$ with some $b\geq a$ and tends to zero as $tarrow\infty$ .

Let $\overline{u}(x)$ be the function defined in $G_{b}$ by

$\overline{u}(x)=v(r)=w(t)$ , $r=|x|$ , $t=(N-2)r^{N-2}$ .

Then, by (13) and (14) we have

$\triangle\overline{u}(x)+p(x)\overline{u}(x)+\phi(x, \overline{u}(x))\leq\triangle\overline{u}(\mathrm{x})$ $+p_{n}(x) \overline{u}(x)+\frac{1}{|x|^{2}}h(\overline{u}(x))$

$= \frac{d^{2}}{dr^{2}}v(r)+\frac{N-1}{r}\frac{d}{dr}v(r)+\frac{(N-2)^{2}}{4r^{2}}5_{n}((N-2)r^{N-2})v(r)+\frac{1}{r^{2}}h(v(r))$

$= \frac{(N-2)^{2}}{r^{2}}\{t^{2}w’(t)+2tw’(t)+\frac{1}{4}S_{n}(t)w(t)+g$(’w $(t)$ ) $\}=0,$
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and therefore, $\overline{u}(x)$ is a positive supersolution of (1) in $G_{b}$ . We next define $\underline{u}(x)=bw(b)/t$

for $t$ $\geq b.$ Then, by (13) and (14) again, we obtain

$\triangle \mathrm{u}(_{\mathrm{X}})$ $+p(x)\underline{u}(x)+\phi(x, \underline{u}(x))\geq\triangle \mathrm{u}(_{\mathrm{X}})$

$= \frac{(N-2)^{2}}{r^{2}}\{t^{2}(\frac{bw(b)}{t})’+2t(\frac{bw(b)}{t})’\}$

$= \frac{(N-2)^{2}}{r^{2}}\{t^{2}\frac{2bw(b)}{t^{3}}-2t\frac{bw(b)}{t^{2}}\}=0,$

so that $\underline{u}(x)$ is a positive subsolution of (1) in $G_{b}$ .

From Lemma 2 we see that

$\underline{u}(x)=\frac{bw(b)}{t}\leq w(t)=\overline{u}(x)$

for $|x|\geq b.$ Hence, by means of Lemma 1 we conclude that there exists a positive

solution $u(x)$ of (1) satisfying $\underline{u}(x)=u(x)$ $=\overline{u}(x)$ on $C_{b}$ and $\underline{u}(x)\leq u(x)\leq\overline{u}(x)$ through

$x\in G_{b}$ . Since $w(t)$ approaches zero as $tarrow\infty$ , the positive solution $u(x)$ also tends to

zero as $|x|arrow\infty$ . This completes the proof. $\square$

3. DISAPPEARANCE OF NONOSCILLATORY SOLUTIONS

We next give a converse theorem to Theorem 1 in some sense. To this end, we add

a nonlinear perturbation of the form $h(u)/|x|^{2}$ to equation (6), that is, we consider the

equation

$\triangle u+p_{n}(x)u+\frac{h(u)}{|x|^{2}}=0.$ (16)

In the case that $h(u)$ satisfies

$\frac{h(u)}{u}=\frac{\lambda_{N}}{\{l_{n+1}(u^{2})\}^{2}}$

for $u>0$ sufficiently smalj from Theorem 1 we see that there exists a nonoscillatory

solution $u(x)$ of (16) satisfying $\lim_{|x|arrow\infty}u(x)=0.$ However, Theorem 1 is inapplicable

to the case that

$\frac{h(u)}{u}=\frac{\mu}{\{l_{\mathfrak{n}+1}(u^{2})\}^{2}}$ , $\mu>\lambda_{N}$

for $u>0$ sufficiently small. As a matter of fact, all nontrivial solutions of (16) arc

oscillatory in this case.
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Theorem 2. Suppose that there exists an $n\in \mathrm{N}$ such that

$p(x)=p_{n}(x))$ $x\in l.$ (17)

Also suppose that there exists a locally Lipschitz continuous function $h(u)$ with $uh(u)>0$

if $u\neq 0$ such that

$\phi(x, u)\geq\frac{h(u)}{|x|^{2}}$ , $x\in\Omega$ , $u\geq 0$ (18)

and

$\phi(x, u)\leq\frac{h(u)}{|x|^{2}}$ , $x\in\Omega$ , $u<0.$ (19)

If $h(u)$ satisfies
$\frac{h(u)}{u}\geq\frac{\mu}{\{l_{n+1}(u^{2})\}^{2}}$ , $\mu>\lambda_{N}$ (20)

for $|$ $u|>0$ $S’ufficiently$ small, then all nontrivial solutions of (1) are oscillatory.

Remark 2. It is unnecessary to assume that $p(x)$ and $\phi(x,$u) are locally H\"older contin-

uous with exponent $\alpha\in(0,$ 1) in Theorem 2.

For the proof of Theorem 2 we need to prepare the following lemmas on the nonlinear

differential equation associated with (1):

$\frac{d}{dr}$ ( $r^{N-1}\mathrm{z}$ $v$ ) $+r^{N-1} \{\frac{\lambda_{N}}{r^{2}}S_{n}((N-2)r^{N-2})v+\frac{1}{r^{2}}h(v)\}=0.$ (21)

Lemma 3. If $h(u)$ satisfies (20) with $uh(u)>0$ if $u\neq 0$ , then all nontrivial solutions

of (21) are oscillatory.

Lemma 4. Assume (17) and (18). Suppose that equation (1) has a positive solution $u(x)$

existing on $|x|\geq b$ with some $b\geq a.$ Then the associated equation (21) has a positive

solution $v(r)$ on $[b, \infty)$ such that

$0<v(\mathfrak{s}\cdot)\leq \mathrm{m}\mathrm{i}_{\mathrm{I}1}u(x)|x|=r$ .

To prove Lemma 3, we use the oscillation theorem mentioned below. For the proof,

see [8].

Proposition 2. Assume (9) and suppose that there exists a $\nu$ $>1/4$ such that

$\frac{g(w)}{w}\geq\frac{\nu}{\{l_{n+1}(w^{2})\}^{2}}$

for $|w|>0$ sufficiently small. Then $al_{\mathrm{t}}$ nontrivial solutions of (8) are oscillatory.
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By putting $w(t)$ $=v(r)$ and $t=(N-2)r^{N-2}$ , equation (21) is transformed into

equation (8) with $g(w)=h(w)/4\lambda_{N}$ . In fact, we have

$t^{2}$ w/’ c) $+2tw’(t)+ \frac{1}{4}S_{n}(t)w(t)$ $+g(w(t))$

$=(t^{2}w’(t))’+ \frac{1}{4}S_{n}(t)w(t)+\frac{1}{4\lambda_{N}}h(w(t))$

$= \frac{1}{(N-2)^{2}r^{N-3}}\frac{d}{dr}(r^{N-1}\frac{d}{dr}v(r))+\frac{1}{4}S_{n}((N-2)r^{N-2})v$ e) $+ \frac{1}{4\lambda_{N}}h(v(r))$

$= \frac{1}{4\lambda_{N}r^{N-3}}[\frac{d}{dr}(r^{N-1}\frac{d}{dr}v(r))+r^{N-1}\{\frac{\lambda_{N}}{r^{2}}S_{n}((N-2)r^{N-2})v(r)+\frac{1}{r^{2}}h(v(r))\}]$

$=0.$

From $wh(w)>0$ if $w\mathrm{z}$ $0$ , we see that $g(w)$ satisfies assumption (9). Let $\nu=\mu/4\lambda_{N}$ .

Then, by (20) we obtain

$\frac{g(w)}{w}=\frac{h(w)}{4\lambda_{N}w}\geq\frac{\mu}{4\lambda_{N}\{l_{n+1}(w^{2})\}^{2}}=\frac{\nu}{\{l_{n+1}(w^{2})\}^{2}}$

with $\nu>1/4$ . Hence, from Proposition 2 we conclude that Lemma 3 is true.

Naito et al. [6] have shown that the existence of a positive solution for the elliptic

equation $\triangle u+?f^{l}$) $(x, u)$ $=0$ implies the existence of a positive solution for its associated

ordinary differential equation. In the same way, we can prove Le nma 4 which guarantees

the simultaneity of positive solutions for equations (1) and (21). As space is limited, we

omit the proof.

Remark 3. Similarly, under the assump tions (17) and (19), we can show that if equation

(1) has a negative solution on $G_{b}$ with some $b\geq a,$ then equation (21) also has a negative

solution on $[b, \infty)$ .

We are now ready to prove Theorem 2.

Proof of Theorem 2. By way of contradiction, we suppose that equation (1) has a nonoscil-

latory solution $u(x)$ in some exterior domain. Then there exists a $b\geq a$ such that $u(x)$

is positive for $|x|\geq b$ or negative for $|x|\geq b.$

In the former case, by (17), (18) and Lemma 4, equation (21) has a positive solution

$v(r)$ for $r\geq b.$ On the other hand, since $h(u)$ satisfies (20) with $uh(u)>0$ if $u\neq 0,$ all

nontrivial solutions of (21) are oscillatory by Lemma 3. This is a contradiction.
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Noticing Remark 3, we can carry out the proof of the latter case in the same manner.

We have thus proved the theorem. $\square$

4. AN EXAMPLE

To show the value of Theorems 1 and 2, we consider the equation

$\triangle u+\frac{\mu_{1}}{|x|^{2}}u+\phi(x, u)=0,$ $|x|>1,$ (22)

where $\mu_{1}$ is positive, and $\phi(x, u)$ is locally Holder continuous and satisfies

$\phi(x, -u)$ $=-\phi(x, u)$ for $u\in \mathbb{R}$

and

$\phi(x, u)=\{$

$\frac{\mu_{2}}{|x|^{2}}(\frac{3}{4}u-\frac{1}{2e})$i if $u \geq\frac{1}{e}$ ,

$\frac{\mu_{2}}{|x|^{2}}\frac{u}{(\log u^{2})^{2}}$ if $0<u< \frac{1}{e}$ ,

where $\mu_{2}$. is positive. Let us examine an effect of positive parameters $\mu_{1}$ and $\mu_{2}$ on the

oscillation of solutions of (22).

Case 1. $\mu_{1}>\lambda_{N}$ . Suppose that equation (22) has a nonoscillatory solution $u(x)$ in $G_{b}$

with some $b\geq 1.$ We may assume that $u(x)$ is positive on $G_{b}$ , because the argument of

the case that $u(x)$ is negative is carry out in the same way. The positive solution $u(x)$

also satisfies the linear equation

$\triangle u+(\frac{\mu_{1}}{|x|^{2}}+\frac{\phi(x,u(x))}{u(x)})u=0,$ $|x|>b.$ (23)

On the other hand, as mentioned in Section 1, all nontrivial solutions of the equation

$\triangle u+\frac{\mu_{1}}{|x|^{2}}u=0,$ $|x|>1$

are oscillatory. Hence, from Sturm’s comparison theorem, we see that all nontrivial

solutions of (23) are oscillatory. This contradicts the fact that equation (23) has the

positive solution $u(x)$ . We therefore conclude that all nontrivial solutions of (22) are

oscillatory.

Case 2. $\mu_{1}\leq\lambda_{N}$ . We can not judge whether or not all nontrivial solutions of (22) are

oscillatory by means of Sturm’s comparison theorem. Using Theorems 1 and 2 we give
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judgment on the matter. For this purpose, we classify Case 2 into three subcases as

follows.

(i) $\mu_{i}\mathrm{E}$ $\lambda_{N}$ for $i=1,2$ . Since

$\frac{\mu_{1}}{|x|^{2}}\leq\frac{\lambda_{N}}{|x|^{2}}=p_{1}(x)$

for $|x|>1,$ condition (13) is satisfied with $n=1.$ Let

$h(u)=\{$

$\mu_{2}(3u/4-1/2e)$ if $’\geq 1/e$ ,

$\mu_{2}u/(\log u^{2})^{2}$ if $0<u<1/e$ ,

0 if $u=0.$

(24)

Then condition (14) holds and condition (15) is satisfied with $n=1.$ Hence, by $\mathrm{T}\}_{1}\mathrm{e}\mathrm{o}\mathrm{r}\mathrm{e}\mathrm{m}1$

equation (22) has a nonoscillatory solution which decays at infinity.

(ii) $\mu_{1}=\lambda_{N}<\mu_{2}$ . It is clear that condition (17) is satisfied with $n=1.$ Let $h(u)$ be

the odd function satisfying (24). Then conditions (18) and (19) hold. Since

$\frac{h(u)}{u}=\frac{\mu_{2}}{(\log u^{2})^{2}}=\frac{\mu_{2}}{\{l_{2}(u^{2})\}^{2}}$

for $|u|>0$ sufficiently small, condition (20) is also satisfied with $n=1.$ Hence, from

Theorem 2 it turns out that all nontrivial solutions of (22) are oscillatory,

(iii) $\mu_{1}<\lambda_{N}<\mu_{2}$ . Let $\overline{p}(x)\equiv 0$ and

$\tilde{\phi}(x, u)=\frac{\mu_{1}}{|x|^{2}}u+\phi(x, u)$ .

We show that $\tilde{p}(x)$ and $\tilde{\phi}(x, u)$ satisfy conditions (13)-(15). Since $p_{0}(x)\equiv 0,$ condition

(13) is satisfied with $n=0.$ Define

$h(u)=\{$

$\mu_{1}u+\mu_{2}(3u/4-1/2e)$ if $u\geq 1/e$ ,

$\mu_{1}u+\mu_{2}uf(\log u^{2})^{2}$ if $0<u<1/e$ ,

0 if $u=0.$

Then we have

$0 \leq 6(x, u)\leq\frac{h(u)}{|x|^{2}}$

for $|x|>1$ and $’\geq 0,$ namely, condition (14). We also see that

$\frac{h(u)}{u}\leq\mu_{1}+\frac{\mu_{2}}{(\log u^{2})^{2}}<\lambda_{N}=\frac{\lambda_{N}}{\{l_{1}(u^{2})\}^{2}}$



154

for $u>0$ sufficiently small. Hence, condition (15) is satisfied with $n=0.$ Thus, from

Theorem 1 we see that equation (22) has a decaying nonoscillatory solution.

$\mu_{1}<\lambda_{N}$ $\mu_{1}=\lambda_{N}$ $\mu_{1}>\lambda_{N}$

Case $2(\mathrm{i})$ Case $2(\mathrm{i})$ Case 1
$\mu_{2}<\lambda_{N}$ by Theorem 1 $( =1)$ by Theorem 1 $(=1)$ by Sturm’s theorem

$\exists_{\mathrm{s}\mathrm{o}1}$ . of (22): nonosci. $\exists_{\mathrm{s}\mathrm{o}1}$ . of (22): nonosci. $\forall_{\mathrm{S}01}$ . of (22): osci.

Case $2(\mathrm{i})$ Case $2(\mathrm{i})$ Case 1

$2=$ $\mathrm{x}N$ by Theorem 1 $( =1)$ by Theorem 1 $(=1)$ by Sturm’s theorem
$\exists_{\mathrm{S}01}$ . of (22): nono ci. $\exists_{\mathrm{S}01}$ . of (22): nonosci. $\forall_{\mathrm{S}01}$ . of $(2^{\eta})$ : osci.

Case $2(\mathrm{i}\mathrm{i}\mathrm{i})$ Case $2(\mathrm{i}\mathrm{i})$ Case 1

$7’>$ $\lambda N$
$)\mathrm{y}$ Theorern 1 $(=0)$ by Theorem 2 $(n=1)$ by Sturm’s theorem

$\exists_{\mathrm{S}01}$ . of (22): nono sci. $\forall_{\mathrm{s}\mathrm{o}1}$ . of (22): osci. $\forall_{\mathrm{s}\mathrm{o}1}$ . of (22) : osci.

Case $2(\mathrm{i})$ Case $2(\mathrm{i})$ Case 1
$\mu_{2}<\lambda_{N}$ by Theorem 1 $( =1)$ by Theorem 1 $(=1)$ by Sturm’s theorem

$\exists_{\mathrm{s}\mathrm{o}1}$ . of (22): nonosci. $\exists_{\mathrm{s}\mathrm{o}1}$ . of (22): nonosci. $\forall_{\mathrm{S}01}$ . of (22): osci.

Case $2(\mathrm{i})$ Case $2(\mathrm{i})$ Case 1
$2=\lambda_{N}$ by Theorem 1 $( =1)$ by Theorem 1 $(=1)$ by Sturm’s theorem

$\exists_{\mathrm{S}01}$ . of (22): nono ci. $\exists_{\mathrm{S}01}$ . of (22): nonosci. $\forall_{\mathrm{S}01}$ . of $(2^{\eta})$ : osci.

Case $2(\mathrm{i}\mathrm{i}\mathrm{i})$ Case $2(\mathrm{i}\mathrm{i})$ Case 1
$l’>\lambda_{N}$ $)\mathrm{y}$ Theorem 1 $(=0)$ by Theorem 2 $(n=1)$ by Sturm’s theorem

$\exists_{\mathrm{S}01}$ . of (22): nono\urcorner ci. $\forall_{\mathrm{s}\mathrm{o}1}$ . of (22): osci. $\forall_{\mathrm{s}\mathrm{o}1}$ . of (22): osci.
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