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Derived Categories in Representation Theory
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We survey recent methods of derived categories in the representaion theory of al-
gebras.

1 Triangulated Categories and Brown Representabil-
ity

Definition 1.1 A triangulated category C is an additive category together with

(1) an autofunctor T :C 5 C (i.e. there is T~! such that ToT'=T"10T = 1.)
called the translation, and
2) a collection T of sextuples (X,Y, Z,u,v,w):

X575 Z5T(X)
called (distinguished) triangles. These data are subject to the following four azioms:
(TR1) (1) Every sextuple (X,Y,Z,u,v,w) which is isomorphic to a (distinguished) tri-
angle is a (distinguished) triangle.
(2) BEvery morphism u: X — Y is embedded in a (distinguished) triangle

X3YSHZ51TX) Z

(3) For any X € C,
o X5 X —0-T(X)
is a (distinguished) triangle
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(TR2) A sextuple
X3YL7Z5T(X)

is a (distinguished) triangle if and only if

Y4z 5 1) 29 )

is a (distinguished) triangle.

(TR3) For any (distinguished) triangles (X, Y, Z, u, v, w), (X', Y, Z',«/,v',w') and a
commutative diagram

X—=Yy——7—T(X)

P

X2y e g W (XY

there exists h: Z — Z' which makes a commutative diagram
‘Y U },r v Z w T(X)

b

X —Y ——7 —>T(X)

(TR4) (Octahedral aziom) For any two consecutive morphisms u : X — Yand v :
Y — Z, if we embed u, vu and v in (distinguished) triangles (X,Y, Z' uz,4'),
(X, Z,Y' vu,k, k') and (Y, Z, X',v,4,7'), respectively, then there exist morphisms
f:2' =Y g:Y' — X' such that the following diagram commute

NJ

X—t>y ‘~Z" —T(X)

N
u | v v / r
X v Z L - .}/l,, k T(‘X)
7 1g ]T(u)
V jl _
X' X' TY
i lT(i)J”
7(v) 2% 7(7)

and the third column is a triangle.
Sometimes, we write X[i] for T(X).

Definition 1.2 (9-functor) Let C, C' be triangulated categories. An additive functor
F :C — C s called a O-functor (sometimes exact functor) provided that there is a

functorial isomorphism o : FTe 5 TerF such that

F(x) 29 peyy 29 pozy 2P, 7 pox))
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. . . ) ) w - . . . e
is @ triangle i C" whenever X — Y — Z — Te(X) is a triangle in C. Moreover, if
@ O-functor F' is an equivalence, then F is called o triangulated equivalence . In this

A
case, we denote by C = (',
For (F,a),(G,3): C — C' d-functors, a functorial morphism ¢ : F — G is called a
O-functorial morphism f

(Terg) o= o ¢l

We denote by 9(C,C’) the collection of all d-functors from C to C', and denote by
dMor(F,G) the collection of d-functorial morphisms from F to G.

Proposition 1.3 Let F : C — C’' be a O-functor between triangulated categories. If
G : C' — C is a right (or left) adjoint of F, then G is also a d-functor.

Definition 1.4 A contravariant (resp., covariant) additive functor H : C — A from «
triangulated category C to an abelian category A is called a homological functor (resp.,
a cohomological functor), if for any triangle (X,Y, Z,u,v,w) in C the sequence

H(T(X)) - H(Z) — H(Y) - H(X)
(resp., H(X) — H(Y) — H(Z) — H(T(X)) )
is ezact. Taking H(T'(X)) = H'(X), we have the long exact sequence:
- — HY(X) - H(Z) - H(Y) - H(X) - ---
(resp., -+ — H(X)— HY(Y) - H(Z) —» HP(X) = --)
Proposition 1.5 The following hold.
1. If (X,Y,Z,u,v,w) is a triangle, then vu =0, wv = 0 and T'(v)w = 0.

2. For any X € C, Hom¢(—,X) : C — 2Ab (resp., Home(X,—) : C — 2Ab) is a
homological functor (resp., a cohomological functor).

3. For any homomorphism of triangles
X —Y 4 7 25 T(X)
lf lg lh 1T(f)
x Y,y 2,z 2, X

if two of f, g and h are isomorphisms, then the rest is also an isomorphism.

Definition 1.6 (Compact Object) Let C be « triangulated category. An object C €
C is called a compact object in C if the canonical morphism

]_I Home(C, X;) = Home/(C, ]_[ X;)
i€l i€l
is an isomorphism for any set {Xi}ier of objects (if [];c; Xi ewists in C).
For a triangulated category C, a set S of compact objects is called a generating set
if Home(S,X) =0=> X =0, and if T(S) = S. A triangulated category C is compactly
generated if C contains arbitrary coproducts, and if it has a generating set.



104

Definition 1.7 (Homotopy Limit) Let C be a triangulated category which contains
arbitrary coproducts (resp., products). For a sequence {X; — X1 Lien (resp., {Xip1 —
Xitien) of morphisms in C, the homotopy colimit (resp., homotopy limit) of the se-
quence s the third (resp., second) term of the triangle

[ x =25 [ L% = hocolim x; — T (Hi.x;)
(resp., T} (H.,-X") — hc:_li_m X, — HiX,- 1= shift Hin.) A

where the above shift morphism is the coproduct (resp., product) of X; ELR Xiq1 (resp.,
Xipn 3 Xi) (i e N).

Proposition 1.8 Let C be a triangulated category which contains arbitrary coproducts,
{X; = X1 }ien a sequence of morphisms in C. For a compact object C in C, we have

Hom(C, hocolimX;) = lim Hom(C, Xj)

Proof. We have an exact sequence

0— [ [. Hom(C, Xi) — [ [ Hom(C, Xi) — Hom(C, hocolim X;) =0 O

Theorem 1.9 (Brown Representability Theorem [Ne]) LetC be a compactly gen-
erated triangulated category. If a homological functor H : C — b sends coproducts
to products, then it is representable, that is , there is an object X € C such that
H = Home(—, X).

Sketch of Proof. Let S be a generating set of C. There exist a coproduct X; of
objects of S and a morphism hx, — H such that Hom¢(C, X;) —» H(C) is surjective
for any C € 8. For a functor K; = Ker(hx, — H) there exists a coproduct Z, of
objects in & and a morphism hz, — K such that Home(C, Z,) —» K;(C) is surjective
for any C' € S§. Then we have a triangle Z; — X; — X, — Z;[1]. Since H is a
homological functor, we have a commutative diagram '

H(X;) —— H(X,) —— H(Zy)

L L b

Mor(hy,, H) —— Mor(hx,, H) —— Mor(hz,, H)

Then there is a morphism X; — X, satisfying a commutative diagram

0 » K,y » Home(—, X;) —— H

L |

0 y Ko » Home(—, X3) —— H
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and we have a morphism of exact sequence
0 — Ki(C") —— Home(C,X;) —— H(C) —— 0
e | |
0 — K,(C) —— Hony(C,X;) —— H(C) —— 0

for any C' € §. By inductive step, we have a triangle

]—L‘Xi 1= shift, ]_LX,- — hoco]im X;—=T (]_LX,-)

—

and we have an exact sequence

H(hocolim X;) —— TLH(X:) — ILH(X:)

iy

L b L

MOI‘(hhocoﬁm X H) —— Hi Mor(hxi, H) —_— Hi MOI‘(hxi, H)
Therefore there is a morphism Home(—, hocolim X;) — H such that
Hom¢(C, hocolimX;) = H(C)

for any C € §. Hence we have Home(—, hocolimX;) & H. a

Corollary 1.10 (Adjoint Functor Theorem [Ne]) Let C be a compactly generated
triangulated category. If a d-functor F : C — D commutes with arbitrary coproducts,
then there exists a O-functor G : D — C which is a right adjoint of F.

Proof. For any Y € D, the functor
Homp(F(~),Y):C — Ab

is a homological functor. By Brown representability theorem there is an object GY € C
such that
Homp(F(-),Y) = Home(—,GY) O

Definition 1.11 (Multiplicative System) LetS be a multiplicative system in a tri-
angulated category C which satisfies the following conditions:

(FRO) For a morphism s in C, if there exist f,g such that sf,gs € S, then s € S.

(FR1) (1) 1x €S for every X € C.
(2) For s,t €S, if st is defined, then st € S.
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(FR2) Every diagram in C

X —5Y

/]
X’
with s € S, can be completed to a commutative square

X —2-Y
L b
X' t y!
with s,t € S. Ditto for the statement with all arrows reversed.

(FR3) For f,g € Home(X,Y') the following are equivalent.
(1) There exists s € S such that sf = sg.
(2) There existst € S such that ft = gt.

(FR4) For a morphism u in C, uw € S if and only if T'(u) € S.

(FR5) For triangles (X,Y, Z,u,v,w), (X', Y', Z',4/,v',w') and morphisms f : X — X',
g:Y =Y inS with gu =u'f, there exists h: Z — Z' in S such that (f,g,h) is
a homomorphism of triangles.

Definition 1.12 (Quotient Category) We define the quotient category S™'C of C,
as follows:

1. Ob(S71C) = Ob(C).

2. For X,Y € Ob(C), let V(X,Y) = {(s, Y, f)ls : ¥ » Y' €5, : X = Y}. In
V(X,Y), we define (s,Y', f) ~ (&, Y", f) if there is (8", Y", f') such that all

triangles are commutative in the following diagram:

Then we define a morphism from X to Y by an equivalence class s™1 f of (s,Y", f).
3. Fors7'f : X - Y,t7'g: Y — Z, by (FR2) there are ' : Z' — Z" € S and
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g Y — Z" such that s'og = g'os. Then we define (t71g)o(s71f) = (s'ot)"lgof.

Moreover, we define the quotient functor Q : C — S™1C by
(Ql) QX)=X for X eC.
(Q2) Q(f) = 171 f for a morphism f: X — Y in C.
Remark 1.13 Can we define (2) in the above?

Definition 1.14 (Epaisse Subcategory) Let C be a triangulated category. A full
subcategory U of C is called a full triungulated subcategory if X — Y is a morphism in
U, then there is a triangle X - Y — Z - TX with Z € U.

A full triangulated subcategory U is called an épaisse subcategory if it is closed
under direct summands. In this case, let S(U) be the collection of morphisms s such
that X Y — Z — X[1] is a triangle with Z € U. Then S(U) is « multiplicative
system satisfying (FR0) - (FR5). We write CJ/U = S(U)IC.

In the case that C contains arbitrary coproducts, a full triangulated subcategory U
is called a localizing subcategory if it is closed under coproducts.

Remark 1.15 The above definition of an épaisse subcategory U is the same as the
origininal definition [Ve], that is, a full triangulated category :atz’sfying that if X Y
factors through some object in U and if there is a triangle _X LY - Z - T X) with
Z €U, then XY el.

Proposition 1.16 ([BN]) Let C be a triangulated category which contains arbitrary
coproducts. Then any localizing subcategory is an épaisse subcategory.

Sketch of Proof. Let U be a localizing subcategory, and X e Y with X =Y @ Z
in C. We take a morphism e : X —» Y — X, and consider th sequence of morphisms
(%) XSxsx5

Then it is easy to see that ¥ = hocolim(x) € U. g

Proposition 1.17 Let C be o triangulated category. For a multiplicative system S
satisfying the conditions (FRO) - (FR5), let U(S) be the full triangulated subcategory
consisting of objects Z which is in « triangle X Y — Z — X[1] with s € S. Then
the following hold.
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1. S(U) and U(S) induce an 1 - 1 correspondence between the collection of multi-
plicative systems S satisfying the conditions (FR0O) - (FR5) and the collection of
€paisse subcategories U.

2. For an épaisse subcategory U, CJ/U is a triangulated category whose (distin-
guished) triangles are defined to be isomorphic to (distinguished) triangles of C.

3. Assume C contains arbitrary coproducts. For a localizing subcategoryl, C /U also
contains arbitrary coproducts.

Definition 1.18 (stable t-structure) For full subcategories U and V of a triangu-
lated category C, (U,V) is called a stable t-structure in C provided that

1. U and V are stable for translations.
2. Homc(L{, V) = 0.

3. For every X € C, there exists a triangle U — X — V — TU with U € U and
Vev.

Proposition 1.19 ([BBD], c.f. [Mi]) Let C be a triangulated category, (i4,V) a sta-
ble t-structure in C, and ¢, : U — C,j. : V — C the canonical embeddings. Then the
following hold.

1. U and V is épaisse subcategories of C.
2. i, (resp., j.) has a right adjoint i* (resp., a left adjoint j*).
3. The adjunction arrows induce a triangle
D =t LN LS G ¢
for any X € C.
4. C/U (resp., C[V) exists , and it is triangulated equivalent to V (resp., U).

c/y
tx J

U C '7V
d \ 11

c/u

Corollary 1.20 Let C be a compactly generated triangulated category, and U a localiz-
ing subcategory of C. Then C/U can be defined if and only if there is a full triangulated
subcategory V such that (U,V) a stable t-structure in C.

Proof. If C/l{ can be defined, then the quotient functor Q : C — C/U commutes with
coproducts. By Adjoint Functor Theorem, @ has a right adjoint F' : C/i{ — C. By
Proposition 1.19, it is easy to see that (I,Im F') is a stable t-structure in C. g
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2 Derived Categories

Throughout this section, A is an abelian category and B is an additive subcategory of
A which is closed under isomorphisms.

Definition 2.1 (Complex) A (cochain) complex is a collection X* = (X", d% : X™ —
XY ,ez of objects and morphisms of B such that d}"'ld} = 0. A complex X' =
(X" d% : X™ — X", cn is called bounded below (resp., bounded above, bounded) if
X*=0forn <0 (resp., n >0, n <0 andn > 0).

A complex X = (X", d%) is called a stalk complex if there exists an integer ng such
that X' = O if 1 # ny. We identify objects of B with a stalk complezes of degree 0.

A morphism f: X — Y of complezes is a collection of morphisms f*: X® — Y™
which makes a commutative diagram

o d% ,
C—_— X X, Xl L.

l fn 1 fn+1

n
., yn __dL, yr+r L.

We denote by C(B) (resp., C*(B), C™(B), C°(B)) the category of complezes (resp.,
bounded below complexes, bounded above complezes, bounded complexes) of B. An
autofunctor T : C(B) — C(B) is called translation if (TX )" = X" and (Tdx)" =
—d% for any complex X* = (X", d%).

In C(A), a morphism u : X' — Y is called a quasi-isomorphism if H,(u) is an
isomorphism for any n.

In this section, “+” means “nothing”, “+”, “~” or “b”.

Definition 2.2 For u € Homcs)(X',Y"), the mapping cone of u is a complex M'(u)

with
M™(u) = X" @Y™,
- nt i () 2% n
At (u) = [ °x 0] s XY™ — Xntigy ™t

n+1
u dy

Definition 2.3 (Homotopy Relation) Two morphisms f,g € Homcs)(X",Y") are
said to be homotopic (denote by f = g) if there is a collection of morphisms h = (h"),

R™ o X™ — Y™ such that f* — ¢" = d7 A" + h"TAdY for alln € Z.

Definition 2.4 (Homotopy Category) The homotopy category K*(B) of B is de-
fined by

1. Ob(K*(B)) = Ob(C*(B)),
2. Homy»z)(X",Y") = Homce () (X", Y")/ > for X', Y € Ob(K*(B)).
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Proposition 2.5 A4 category K*(B) is a triangulated category whose (distinguished)
triangles are defined to be isomorphic to

X 5Y - M(u) - T(X)
foranyu: X — Y in K(B).

Definition 2.6 (Derived Category) The derived category D*(A) of an abelian cat-
egory A is K*(A)/ K**(A), where K**(A) is the full subcategory of K*(A) consisting
of null complexes, that is, complexes whose all cohomologies are 0.

Proposition 2.7 The following hold.

1. D*(A) is a triangulated category, and the canonical functor @ : K*(A) — D*(A)
is a O-functor.

2. The i-th cohomology of complexes is a cohomological functor in the sense of Def-
wnition 1.4.

Proposition 2.8 If0 — X' =5 Y" 5 Z' — 0 is a exact sequence in C(A), then it can
be embedded in a triangle in D(A)

Q(x) 2 Q(v) 2 Q(2) - TQ(X)).

Definition 2.9 (K-injective Complex) A complez X of K(B) is called K-injective
(resp., K-projective) if

Homks)(N', X') =0 ( resp., Homgs) (X' ,N')=0)
for any null complex N".

Example 2.10 Let A be a ring, Mod A the category of right A-modules, and Inj A
(resp., ProjA) the category of injective (resp., projective) right A-modules. Then any
complez I' € K*(Inj A) (resp., P € K™(Proj A)) is a K-injective (resp., K-projective)
compler in K(Mod A).

Example 2.11 Let k be a field, A = k[2]/(2?), and
X:--5Aa545...

Then X' is a null complex of finitely generated projective-injective A-modules. But it
is neither K-projective nor K-injective, because Homgmod 4)(X ', X°) # 0.

Theorem 2.12 ([Sp], [Ne], [LAM], [Fr]) Let K™ (Mod A) (resp., K”°*(Mod A)) be
the category of K-injective (resp., K-projective) complexes, then the following hold.

1. (Kp”’j(Mod A), K?*(Mod A)) is a stable t-structure in K(Mod A), and hence D(Mod A)
exists and is triangulated equivalent to KP™(Mod A).
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2. (K*(Mod A), K"”(Mod A)) is a stable t-structure in K(Mod A), and hence D(Mod A)
is triangulated equivalent to K™ (Mod A).

3. For a Grothendieck category A, (K?(A), K™(A)) is a stable t-structure in K(A),
and hence D(A) exists and is triangulated equivalent to K™ (A).

Proof. For a complex X" = (X' d'), we define the following truncations:

e -2 - -
O X v = X2 5 X S Kerd” — 00— -

Osp X t+o-—=0— Cokd™ ! — Xl 5 xn+2 _, ...

(1) For any n, there is a complex P, € K™ (Proj A) which has a quasi-isomorphism
P, — 0<,X". Then we have the following quasi-isomorphisms ( qis)

- . . qis . ~. qis . .
X' Z1lim 0¢, X" «— hocolim o<, X" «— hocolim P,
1 o< \ <

Since Home([],, P;, —) = ], Home(P,, —), I, P, is K-projective. Here h™ = Home (M, —)
for any object M. It is easy to see that hocolim P, is K-projective by the following

exact sequence

hlaPa _, U Pa _, phocelimPe 5 T Pr) _, 1,7, P

(2) For any n, there is a complex I, € K¥(InjA) which has a quasi-isomorphism
0>-n X" — I,. Then we have the following quasi-isomorphisms (qis)

- . - qis . . qis . .
X' =lim oy, X" — h9_l!_m 0>-n X — holim I,

—

by the same reason of (1), we have the statement.
(3) Because there is a ring A such that A is a localization of Mod A (Gabriel-Popescu
Theorem). See [LAM] or [Fr] for details. O

Remark 2.13 If P is a K-projective complezx (e.g. a bounded above complex of pro-
Jjective A-modules), then we have

Homkmod 4)(P', X*) = Homp(mod 4)(P", X ")

for any complex X*. Similarly, for a K-injective complez I' (e.g. bounded below complex
of injective A-modules), then we have

HomK(Mod A)()(‘, I) = HomD(Mod A)(;X", I)
for any complex X*. In particular, given A-modules M, N, we have

Ext'y(M, N) = Homp vod.a)(M. N[i])
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Definition 2.14 (Double Complex, Total complex) A double complex C'" is a bi-
graded object (CP1), ez of A together with di® : CP9 — CP+Y gpd dff? : CP — CPat!
such that

= (CPY, d?,q oLl RN Cﬂp+1,q)’ c? = (Cvp-q,d%:q (P9, Cﬂp,q-l-l')

; ; ] 1 » ’ ’ .
are complexes satisfying & d% — & = 0. For a double complex C, we define
the total complexes

o snoogny ] S ’ "o __ P9 —1\p P9
Totd ¢ = (X, d"), where X™ = L[pﬂ:ncpq,d = ]_[m:n (d2 + (~1)Pd2)
Totl " = (Y™, d"), where Y" =[] _ crt,d* =]  _ (" +(=1)pdf").

pHe=n
Definition 2.15 (Cartan-Eilenberg Resolution) For a complez X' € D(Mod A),
let :
v PV PY S5 X 50 (resp, 0 2 X = I = IV —..0)
be an exact sequence with P™ (resp., I'™) being « complex of projective (resp., injec-
tive) A-modules. We call --- — P~Y — P% (resp., I® — I'' — --.) a Cartan-
Eilenberg projective (resp., injective) resolution of X' if the induced complexes --- —
B*(P~Y) - B"(P%) and --- —» H*(P~1V) — H*(P%) (resp.,B*(I*) — B*(I*) — ---
and H*(I*) — H™(I¥') — ---) are also projective (resp., injective) resolutions of
B™"(X"),H"(X"), respectively.

Proposition 2.16 Under the setting of Definition 2.15, the following hold.

1. TotU P~ is K-projective, and the induced morphism of complexes Totd P~ — X
1S @ quasi-isomorphism.

2. Totll I is K-injective, and the induced morphism of complezes X — Totll I is
a quasi-isomorphism.

Sketch of Proof. We consider the following truncations
O‘iénp":”'.—)onsnphl__)JSnPO, Ugnl":UZnIO—)UZnII“"“'

Then it is easy to see Totl ol P (resp., Totll o, I") is K-projective (resp., K-injective),
and that the induced morpﬂism of complexes TotH ol P — 0<, X" (resp., Osn X' —
Tot! o8 T")is a quasi-isomorphism. Therefore we have the following quasi-isomorphisms
CON | . ‘

X' &= hocolim 0¢, X" <= hocolim Totl o, P* % Totll P~

——

(resp., X <, holim O>_n X 2, holim TotlT ol I & otll 1+
— =2 2-n

E—

and Tot! P~ (resp., TotlT 1) is K-projective (resp,m K-injecive). O
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Definition 2.17 (Right Derived Functor) For a d-functor F : K*(A) — K(A'),
the right derived functor of F is a 9-functor

R'F :D*(A) — D(A)
together with a functorial morphism of 9-functors
¢ € OMor(Qu o FyR*F 0 Q%)

with the following property:
For G € 9(D*(A),D(A")) and ¢ € OMor(Qu o F,G o Q%), there exists a unique
morphism 1 € @ Mor(R"F, G) such that

¢ = QL)€

In other words, we can simply write the above using functor categories. For trian-
gulated categories C,C’, the O-functor category O(C,C’) is the category (?) consisting
of 0-functors from C to C' as objects and d-functorial morphisms as morphisms. Then
we have

OMor(Qu o F,—Q%) = dMor(R*F,-) K*(A) L= K(A)

QAl JQ.A'
 R'F
D*(A) —_D(A")
G

as functors from (D*(A),D(A")) to Get.

Proposition 2.18 Let A, A’ be abelian categories, F : K(A) — K(A') a d-functor. If
A is a Grothendieck category, then we have the right derived functor RF : D(A) —
D(A") such that F(X') 2 RF(X") for any K-injective complex X".

Remark 2.19 In the setting of Definition 2.17, the left derived functor L*F : D*(A) —
D(A’) can be also defined by reversing arrows of d-functorial morphisms. LetR™ F(X') =
H*(RF(X")), L" F(X') = H*(LF(X")), then R* F (resp., L" F ) coincides with the or-
dinary definition of the n-th right (resp., left) derived functor. According to Proposition
2.16, if F' commutes with products (resp., coproducts), then the n-th hypercohomology
R"F (resp., hyperhomology L"F') coincides with R* F (resp., L" F') (c.f. [CE], [Mc],
[We)).

Definition 2.20 (Hom),®4) Let X,Y" be complexes in C(Mod A), Z' a complex in
C(Mod A°?). We define the compler Hom (X", Y") in C(Ab) by

Homz("('7 Y-) = H HomA(Xia.Yj)a dﬁom‘(X,Y)(f) = dX 0 f - (_1)71.)( 0 dY

j—i=n
for f € Hom,(X",Y"). And we define the complex X @4 Z in C(Ab) by

X 0,7 = ]_[ X'@aZ', dygy =dx @1+ (~1)"1®dy

i+j=n
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Proposition 2.21 Let A be a ring. Then we have a right derived functor
RHom; : D(Mod A)°” x D(Mod 4) — D(2b)

and a left derived functor
©% : D(Mod A) x D(Mod 4°?) — D(24b)

Proposition 2.22 Let A be a ring. For complexes X', Y, we have isomorphisms

H"(Homy(X",Y")) = Homkmod 4)(X", Y"[n])
H"(RHom(X",Y")) = Homp(modq 4)(X", ¥ [n])
Definition 2.23 (Perfect Complex) Let A be a ring. A complex X € D(Mod A)
5 called a perfect complex if X' is quasi-isomorphic to a bounded complex of finitely
generated projective A-modules.

Let X be a scheme, D(X) the derived category of sheaves of Ox-modules. We denote
by Dyo(X) the full subcategory of D(X) consisting of complexes whose cohomologies are
quasi-coherent sheaves. A complex X' € D,(X) is called a perfect complex if X is
locally quasi-isomorphic to a bounded complex of vector bundles (See [TT]).

We denote by D,s(A) the full triangulated subcategory of D(A) consisting of perfect
complezes.

Proposition 2.24 ([Rd1], [Ne]) For a ring A, the following hold.

1. A complex X' € D(Mod A) is perfect if and only if it is a compact object in
D(Mod A).

2. D(Mod A) is compactly generated.

Theorem 2.25 ([BV]) Let X be a quasi-compact quasi-separated scheme, then the
following hold.

1. A complex X' € Dyo(X) is perfect if and only if it is a compact object in Dy(X).
2. Dyo(X) is compactly generated.
Theorem 2.26 ([BN]) Let X be a quasi-compact separated scheme, then the canon-

ical functor D(Qcoh X) — D .(X) is a triangulated equivalence, where Qcoh X is the
category of quasi-coherent sheaves of Ox-modules.

Corollary 2.27 ([BV]) Let X be smooth over a field, then we have

Db(coh X) 2 D. (X
(coh X) 2 D, (X).

where coh X is the category of coherent sheaves of Ox-modules.
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For a ring A, we denote by proj A the category of finitely generated projective
A-modules.

Theorem 2.28 ([Rd1], [Rd2]) Let A, B be algebras over a field k. The following
are equivalent. '

A
1. D(Mod 4) &= D(Mod B).

bi oAy & by
2. K®(proj A) = K*(proj B).

3. There is a perfect complex T" € D(Mod A) such that
(a) B EndD(quA)(T.); v
(b) HOlllD(ModA)(T', T[l]) =0 fO‘I“i # 0,
(c) {T"[i]li € Z} is a generating set in D(Mod A).

4. There is a complez V' of B-A-bimodules such that
RHom (V',—) : D(Mod 4) — D(Mod B)
13 an equivalence.

In this case, T" is called a tilting complex for A, V' is called a two-sided tilting
complez, and RHom{(V", =) is called a standard equivalence.

Theorem 2.29 ([BO]) Let X be a smooth irreducible projective variety with am-
ple canonical or anticanonical sheaf. If X' is a smooth algebraic variety such that

A .
D®(coh X) = Db(coh X'), then X' is isomorphic to X.
Theorem 2.30 ([Be]) Let P = P7? be the n-dimensional projective space over a field

k, and let T, = @], O02), T, = @, 2(—1), and B, = Endp(7;1), B; = Endp(T3).
Then B; is a finite dimensional k-algebra of finite global dimension, and

by 2 b
D”(coh P) = D®(mod B;)
where mod B; is the category of finitely generated B;-modules (i = 1,2).

Definition 2.31 Let A be an algebra over a field k. The derived Picard group of A
(relative to k) is

_ {two-sided tilting complezes T € D*(Mod A°)}

isomorphism

DPicy(A) :
with identity element A, product (Ty, Tz) — Ty@5 Ty and inverse T — TV := R Hom4(T', A).
Given any k-linear triangulated category C we let

Out.f(C) — {k-linear triangulated self-equivalences of C} ‘

isomorphism
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Theorem 2.32 ([MY]) Let k be an algebraically closed field. and A a finite dimen-
sional hereditary k-algebra. Then we have

DPicy(A) = Outs (DP(Mod A)) = Outf (D(mod A))

M. Kontsevich and A. Rosenberg introduced the notion of non-commutative pro-
jective spaces NP™ [KR], and showed that

b n é b A
D®(Qcoh NP™) = D®(Mod kQ,,)
A
D(coh NP™) = D*(mod kQ,)

where @, is the quiver

Corollary 2.33 ([MY]) For non-commutative projective spaces NP", we have

Out4 (D?(Qcoh NP™)) 2 Out(DP(coh NP™))
= Z % (Z x PGLp41(k))
Theorem 2.34 ([BO]) Let X be a smooth irreducible projective variety with ample
canonical or anticanonical sheaf. Then Outf(Db(coh X)) is generated by the auto-

morphisms of variety, the twists by invertible sheaves and the translations, and hence
Out2 (DP(coh X)) = (Auty X x PicX) x Z.
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