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Unipotent representations of unitary groups in four
variables
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1 Introduction

Originally, “unipotent representation” stands for those representations of finite reductive
groups whose character is supported on the unipotent set (due to Lusztig). Later this
term is used in various fields of representation theory, including Vogan’s strategy of de-
scribing the unitary dual of real reductive groups and Arthur’s conjecture on the discrete
automorphic spectrum. Accordingly there seems to be some variant of the definition of
unipotent representations. In particular, the characters of unipotent representations of
reductive groups over local fields are not supported on the unipotent orbits.

Since we shall be mainly concerned with the reductive groups over p-adic fields, we
adopt the definition proposed by Arthur [Art89]. Let G be a connected reductive group
defined over a p-adic field F. We fix an algebraic closure F of F so that we have the
absolute Galois group Gal(F/F). Recall that the Weil group Wr of F is a variant of
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Gal(F/F) which admits a sufficiently rich complex representations (as opposed to the
Galois group). Writing G for the Langlands dual group (the C-group having the root
datum dual to that of G), we have the L-group LG = G x Wp of G. In [Art89], Arthur
proposed a conjectural parametrization of irreducible representations of G(F) in terms of

the homomorphisms
¥ : Lp x SL(2,C) — LG,

which we call A-parameters. Here L := Wr x SU(2) is the Langlands group of F, a
variant of the Weil-Deligne group. An irreducible representation of G(F) is unipotent
if it is parametrized by an A-parameter 1) whose restriction to Lg is trivial. Although
this definition is modulo the conjectural parametrization, the similarity with the Jordan
decomposition is obvious. That is, 9|z, is considered as the semisimple part of v while
Y|sr(2,c) assigns a unipotent element of G commuting with the semisimple part (by the
Jacobson-Morozov theorem).

This also resembles Lusztig’s classification of irreducible representations of reductive
group G(F,) over finite fields via the orbits in the dual group G(F,) [Lus84, Ch.13]. In
that case, the semisimple part of a parameter is really a semisimple element (or orbit) in
G (F,). But in the p-adic case, it is already a tempered Langlands parameter which is of
great importance in the arithmetic study of automorphic representations. Thus the A-
parameters of mixed type (both semisimple and unipotent parts are non-trivial) will also
be worth studying. In this note, we consider the (unique) non-quasisplit unitary group
with 4 variables associated to a quadratic extension F of F', and construct some examples
of irreducible representations parametrized by such mixed A-parameters. Although they
are not literally unipotent representations’, they are still interesting both representation
theoretically and arithmetically. I hope our misuse of the terminology does not confuse
anybody.

The plan of this note is as follows. The A-parameters are expected to classify only
those irreducible representations which appear as local components of certain automorphic
representations. This implies that the representations parametrized will be unitarizable.
In § 2, we prepare some notation on the non-quasisplit unitary group G in 4 variables over a
p-adic field F, and classify the unitary dual of G(#). In § 3, we construct representations
parametrized by an A-parameter for G(F). This relies on a detailed study of local 6-
correspondence for unitary dual pairs, especially between unitary groups in two variables.

Finally the author would like to thank the organizer Prof. Susumu Ariki for giving her
an opportunity to talk at the conference.

2 The unitary dual

Here we classify the unitary dual of the non-quasisplit unitary group G in 4 variables.
For this, we have to determine the reducible points of parabolically induced from cuspidal
modules. When the inducing representation is generic, the Langlands-Shahidi theory

1Of course, the only (elliptic) unipotent representation of unitary groups is the trivial representation.
The representations treated in this note are the analogues of the quadratic unipotent representations in
the sense of Moeglin [Moegl96].
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[Sha90] allows us to reduce the problem to the determination of certain automorphic L-
factors (see [Kon01]). But in the present non-quasisplit case, no such theory is available
and all we can do is to relate the Plancherel measure of the induced representation to the
one on the quasisplit inner form of G by Langlands’ functoriality.

2.1 Preliminary

Let E/F be a quadratic extension of non-archimedean local fields of characteristic zero,
and o be the non-trivial element in Gal(E/F). We have the norm map Ng/r : EX 3
z+ z0(z) € F*, and write wg/r for the non-trivial character of F* /Ng/p(E*) ~ Z/2Z.
As usual, O D p and | |r denote the ring of integers of F', its unique maximal ideal and
the module of F, respectively [Wei]. Fixing an algebraic closure F of F containing F,
we write ' := Gal(F/F), Wr == Wp sr for the absolute Galois and Weil groups of F,
respectively [Tat79]. Similar notation for E will be used with the subscript E.

For a connected reductive group G defined over F, let us write II{(G(F')) for the set of
isomorphism classes of irreducible admissible representations of G(F). Also Iyt (G(F)) D
Miemp(G(F)) D Haisc(G(F)) D Ho(G(F)) denote the subsets of unitarizable, tempered,
square integrable and (unitarizable) supercuspidal elements in II(G(F)), respectively. Re-
call that an admissible representation of G(F') is supercuspidal if its matrix coefficients
are compactly supported modulo center.

Recall the classification of hermitian spaces of even dimension over E. Fix v € F* \

Ng/r(E*) and set
01 - -1

V5" is hyperbolic and V5 is anisotropic hermitian plane, respectively. Then Vi=Vio
(V,5 )1 form a complete system of representatives of 2n-dimensional hermitian space
over . We write Gy, and G%, for the unitary groups of V,, and V., respectively. To be
explicit, these can be realized as the F-algebraic group, which associate to each abelian
F-algebra R the groups

In—l
. —1
Gan(R) = € GL(2n, R E) | Ad =t L,
In—l
sa(R) = {9 € GL(2n, R®r E) | Ad(Ion)g = *o(9) "'}
Here

1

1

I, =
1

Note that G3,, is the quasisplit inner form of Gap,.

Now we turn to the case G = G4. We write P = MU for the unique proper parabolic
subgroup, which can be identified with the upper triangular subgroup in the above re-
alization. Thus M ~ Rpg/rGn x Gy, Let P* = M*U* be the corresponding standard

3
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(with respect to the upper triangular- Borel subgroup in the realization (2.1)) parabolic
subgroup.
An element in IIy(M(F')) is of the form

X ® 7 : M(F) > diag(a,g,0(a)"') — x(a)T(g) € GL(V),

with x € Ly(E>) and (7,V) is a realization of 7 € Iy(Go(F)). For A € C, we write
xN®7 = x| |3 ®7. We would like to determine the reducible points of the parabolically
induced representation I$(x[\] ® 7).

2.2 Jacquet-Langlands correspondence for G,

Local correspondence Recall the local Shimizu-Jacquet-Langlands correspondence.
Let D be the unique quaternion division algebra over F'. We have the reduced norm vp,p
of D, so that we can define the characteristic polynomial of ¥° € D* as vp,p(T —7P) €
F[T]. We say v is regular semisimple if its characteristic polynomial has two distinct
roots. Also regular semisimple v € GL(2, F) and ¥° € D* correspond to each other if
their characteristic polynomials coincide.

Fact 2.1 (Jacquet-Langlands). There exists a unique bijection Iy (GL(2, F)) > 7
P € TI(D*), which is characterized by the character relation

O (7) = —GTD (7D)
for any regular semisimple v € GL(2, F), v* € D* correspond to each other.

This can be easily translated into the unitary similitude group case. Let Gy =
GU (V5 ) and G5 := GU(V,") be the unitary similitude groups for V,;~ and V,', respectively.
We have the isomorphisms [KK, 5.2.1]

G2 = (Re/rGm x DX)/AF*,  G§ =5 (Rg/sGm x GL(2, F))/AFX

where é stands for the diagonal embedding z F")~(Z,Z].2). For a character w of the
center Zp(F) ~ E* of G5(F), Go(F), we write [I(G2(F))., and II(G5(F))., for the sets

of elements in II(G2(F)) and II(G3(F)) with the central character w, respectively. We
define the Shimizu-Jacquet-Langlands correspondence

Maise (G3(F))u 3w ® 7 — w @ 72 € T(Ga(F))w (2.2)

for éz(F), where 7 +» 7 is the correspondence in Fact 2.1.

We return to the unitary groups Ga(F'), G5(F). II(G3(F')) is partitioned into a disjoint
union of the finite subsets called L-packet. By definition [Rog90, 11.1], each L-packet of
G3(F') consists of the irreducible components of 7|gs(ry for some 7 € I(G3(F)). Let us
write ®(G%) for the set of L-packets of G4(F), and ®gis.(G3) for its subset consisting of
L-packets contained in Ilgisc(G5(F)). For II* € ®gisc(G3), we write

@H* (7) = Z S

7€l
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for its stable character, a locally constant function on the regular semisimple set. We also
have a similar description for Go(F). Now the correspondence (2.2) gives a correspondence

q)disc(G;) 3II* 1l € (D(GQ)
which is characterized by the character identity

On+(v") = —©n(7)

for any regular semisimple v* € G5(F), v € Go(F) which are conjugate in GL(2, E). We
call this the Jacquet-Langlands correspondence for Go.

A special global correspondence Next we move to a global situation. One can take
a quadratic extension K/k of number fields such that K, := (K ®x ky,)/ky, is isomorphic
to E/F at two non-archimedean places v;, (i = 1,2). Write A = A for the adele ring of
k. Also we have an anisotropic unitary group G, in two variables with respect to K/k
such that [Clo91, § 2]

o G, ® ky, ~ Gy with respect to an isomorphism k,, ~ F', (i = 1,2);
e (G, ® k, is quasisplit at any place outside of vy, v,.

We write G for the quasi-split unitary group in two variables with respect to K/k. For
each family (I,), of local L-packets II, € ®(G,) such that II, contains an unramified
representation? at all but finite number of non-archimedean places, we can form the
associated global L-packet for G,(A):

I, = {@’n

v

(i) m €I, at Vo
(i) 7, is unramified at Vv

As usual, @, stands for the restricted tensor product.

Using a standard argument on Deligne-Kazhdan’s simple version trace formula, one
can deduce the following from [Rog90, Ch.13] (or rather [LL79]).

Proposition 2.2. For each 1 € Iy(Go(F)), there exists a global L-packet Tl = @, 11,
of Go(A) which have the following properties.

(i) Il,, contains T fori=1,2.

(#) Tlp is automorphic, that is, there exists an irreducible subrepresentation T4 = R, T
of L*(G5(k)\G5(A)) such that 7, € II, at all v. Notice that Ta is automatically
cuspidal since it has supercuspidal local component at v;. Moreover Ty can be chosen
in such a way that

2A reductive group G over a non-archimedean local field F is unramified if it is quasisplit and split
over a non-archimedean extension of F. Then G(F) admits a hyperspecial maximal compact subgroup K,
which is unique up to G(F)-conjugation. An irreducible admissible representation of G(F) is unramified
if it contains a non-zero K-fixed vector.
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(a) Ty, =T fori=1,2;

(b) There exists an irreducible cuspidal automorphic representation 75 = @\ 7 of
G5(A) contained in the Jacquet-Langlands correspondent I} of Il such that

i. T, ~ T, at any v other than vy, vy;
ii. There erists a non-trivial character s = @, ¥ : A/k — C* such that
TX 08 Ya-genericd.

2.3 Lifting Plancherel measures

Going back to the local situation, we put M(F)' := [, ker|x|r, where x runs over the
F-rational character group of M. Since F' has a discrete valuation,

Ay :=Hom(M(F)/M(F),C)

is a C-torus. Let us write Tgsc(M(F)/An(F)) = {AQ 7|\ € Aps, m € Mo (M (F)}.
Then y € AM acts on this by T+ A® 7. Each AM orbit P in Mas (M(F)/Am(F)) is a

homogeneous space under Ay and hence a C- -variety.
Fix such Aj-orbit B. Writing P for the parabolic subgroup of G opposite to P with
respect to M, consider the intertwining operator

Jp|p(7r) : Ig(w) — Ig(vr), m € P.

This is defined by an absolutely convergent integral on an open subset of ‘B, and defines
a rational function on 93 [Wal03, IV]. It is known that the induced representation 1§ ()
is irreducible for 7 in some Zariski dense subset of . Hence, by Schur’s lemma, there
exists a rational function 7 on P such that

Jpp(m) 0 Jpip(m) = j(m) - 1d
The Plancherel measure of 7 € ‘P is defined by [Wal03, V.2.]
WG () 1= 5(m) (G M.
Here 7(G/M) is a certain volume factor defined in [Wal03, 1.1.5).
Proposition 2.3. For x ® 7 € IIi(M(F)) and s € C, we have
YGa/M)2u (x[s] @ T) = Y(G/M™) i (x[s] ® T7)

Here 11 is the unique L-packet of Go(F) containing 7, and 7 is any element in the
Jacquet-Langlands correspondent T1* of I1. Notice that u®i(x[s] ® 7*) is independent of
the choice of 7 € IT*.

3That is, ) admits a 1,-Whittaker model at each v.

6
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Proof. (Sketch) The key point is that we have a complete functional equation for global
intertwining operators

¢ = Jpip(xals] ® 7a) o Jpp(xals] ® Ta)d,

where x4 = @, X» is an idele class character of K such that x,, = x, (¢ = 1,2) and 74 is as
in Prop. 2.2. Tt is understood that the vector ¢ is chosen to have an Euler decomposition
¢ = @, ¢,. Using the Gindikin-Karpelevich formula (as for the p-adic case, see [Lan71])
at the places where x, ® 7, and ¢, are unramified, we can write the right hand side as
LS('s? TX X XA)LS(?"S’ XA‘A;: )LS(_Sa Ta X Xgl)LS(—st X;”A:)
LS(1 — 5,74 X X3 LS (1 — 28, x5 [ax) L5(s + 1,7 x Xa)L5(2s + 1, Xalax)
® ® 7% (xols] ® 7)o

vES

S

Here S is the finite set of places where at least one of x,, 7, and ¢, is ramified. L5(s,Ta X
x5!) is the partial standard L-function of 7, twisted by x,', and L°(s, xa A:) is just the

(partial) Hecke L-function of xa. We have a similar description for IS (xals] ® 1) of
Prop. 2.2:

S

4= L3(s,7x % xa)L® (28, Xalpx) L5 (=5, 7a X Xa LS (=28, x5 ax)
- LS(1 — 5,15 X X:)Ls(l — 2s, XgllAZ)LS(s + 1, 7Y x xa)L%(2s + 1,XA.|A:)

2@ 1% (xuls] ® 7})d.-

vES

Notice, for example, L(s, 7" x xa) = L%(s,7y X xa) since 77 = 7, at any v ¢ S.
Comparing these two formulae, we obtain the equality between the v;, vo-components:

G/ M) (x[s] @ 7)2 = (G3/ M) S xls) @ 7).

This combined with the positivity of the Plancherel measure on the unitary axis yields
the assertion on the unitary axis. Then this equality of rational functions on such Zariski
dense subset must extends to the whole connected component. O

2.4 Composition series of induced representations

Here we determine the reducible points of the induced representations IS (x[\| ® 7), (x ®
7 € IIg(M(F)), A € R). To describe the result, we need a classification of 7 € IIo(G2(F))
in terms of the Jacquet-Langlands correspondence (§ 2.2) and Rogawski’s description of
(I’disc(Ga)-

Supercuspidal representations of Go(F) Write G; for the unitary group in one
variable. We conventionally write n and p for characters of E* such that n|px =1 and
plpx = wg/p. Thus another such characters are denoted by 7', y/, etc. For such 7, let
. be the character G1(F) 3 z/o(z) — n(z) € C*. We abbreviate the one-dimensional
representation 7, o det of G}, (resp. Gn) as 7gx (resp. 7je,). The elements of ®aic(G3) are
described as follows [Rog90, § 12.1].
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(i) The stable cuspidal L-packet II*(7) consists of one irreducible cuspidal represen-

tation 7* whose standard base change lift is a supercuspidal representation 7 of
GL(2,FE).

(ii) The endoscopic L-packet )\25 (1,n) with n # 1 consists of two distinct irreducible
cuspidal representations. This is the endoscopic lift of a character 1 ® n, of G1(F)?
to G3(F) with respect to the L-embedding? [Rog90, 4.8]:

zp(w) xw ifweWg,
zop(w)

G*
AT HGY) 3 (a1,2) 2w ]
1) X Wy if w=w,
22

€ “Gs.

iii) {ng:6%2}, where 6% is the Steinberg representation of G5(F).
2 2

Recall that ®(G3) consists of the Jacquet-Langlands correspondent of these L-packets,
we denote each of which as follows.

(i) II(mr), containing only one irreducible supercuspidal representation.
(ii) /\32(1, n) with 7 # 1. This consists of two distinct supercuspidal representations.

(iii) {ng,}. Note that ng, is supercuspidal.

Reducible points and Jordan-Hoélder series The reducibility of I§(x[\] ® 7), an
induced representation from supercuspidal module, is controlled by the behavior of its
Plancherel measure as a function in A:

Fact 2.4 (Harish-Chandra, Silberger). (i) I§(x[\] ® ) is reducible at A = 0 if and
only if x = o(x)™! and uC(x ® 1) #0.

(i) [Sil80, Lem. 1.2] IS(x[\] ® ) is reducible at A = s > 0 if and only if x = o(x)~" and
pC(x[\ ® 7) has a pole at X = s.

Combining Proposition 2.3 with [Sha90, Cor. 3.6], we can calculate the Plancherel
measure. The result is

G _(G/M)? .
2 (X{S_] &® T) - W(G*/_M*)ZM (X[‘S] ®T )
= v(G/M)%e(s, 7 % X, ¥p)e(2s, X|px, Yr)e(—s, 7 x X1, ¥r)e(—28, X| pr, ¥F)
L(1—s,7" x XV)L(1 — 25, x| px) L(s + 1, 7" x X)L (25 + 1, x|Fx)

L(s, 7 x x) L(2s, x| px) L(~s, 7* x x71) L(=2s, x| 7x)

Here vr is a fixed non-trivial character of F, L(s, x|rx), €(s, x|rx,%¥r) are the Hecke L
and e-factors of x|px. We know from [Kon01, Prop. 3.2] that

L(s, 7" x x) = Lg(s, 7 x X),

“4For the general definition of the functorial lifting of representations, please consult [Bor79).

8
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where © € II(GL(2, F)) is the standard base change lift of the L-packet containing 7*.
Lg(s,m x x) is the standard L-factor for GL(2, E) defined in [JL70]. Finally note that
the e-factors are all exponential functions so that they do not affect the poles or zeros of
the Plancherel measure. These calculations give the following result.

Theorem 2.5. (1) IS(x[\] ® 7) with A > 0 is irreducible unless x = o(x)™*.
(2) IS ([N ® 7) with X > 0 is irreducible except for the following cases.

(i) T belongs to either II(m) or {ng,} and A = 0.
(i) T belongs to \7_,(1,n) withn # 1 and A = 1.
(3) TS (n[A\] ® 7) with A > 0 is irreducible except for the following cases.
(i) T # NG, and A =1/2.
(1) T ~ng, and A = 3/2.

Since the length of IS (x[\|®7) with 7 € Tlo(G2(F)) is at most two [BZ77], its compo-
sition series at the reducible points are easy to describe. In fact, Langlands’ classification
and Casselman’s criterion of square integrability [Wal03, Prop.II1.1.1] yield the following
complete description of composition series at the reducible points in the previous theorem.

Corollary 2.6. Let x, T be as above. For s > 0, we write Jo*(x[s]®T) for the Langlands
quotient of IS (x[s] ® 7).
(i) If T € II(w), we have

IFper)=7%Wu")s®7%Wu,7)-.

0 — 6%(n,7) — IE([1/2] ® 1) — JE([1/2] ® T) — 0,
where 7¢(u, T)+ € Miemp(G(F)) N Haise (G(F)) and 6%(n, ) € Maisc(G(F)).
(i) If T € Ay—1 (1, ) withn # 1, we have

0— 6%, 7) — Epl]ler) — o) — 0,
0 — §%(n',7) — IE([1/2] ® T) — JE(n'[L/2] ® 7) — 0.

Here 6% (u,7),8% (', 7) € Mgisc(G(F)).
(i13) If T = ng,, we have

IS(p®ne,) = 7% (1, M6,)+ ® 76 (1, M6) -

0 — 890, na,) — I5(7'[1/2] ® ne,) — JE(1'[1/2] ® ne,) — 0,
0 — 8%(n,ng,) — IS (n[3/2] ® ng,) — J5(n[3/2] ® ng,) — 0,

where 77, 7/: n. Here TG(/"""]GZ):& € Htemp(G(F))\Hdisc(G(F)) and 60("7’177G2)7 6G(7777702) €
Huisc (G(F)).
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2.5 The unitary dual

Now the classification of the unitary dual of G(F') is an easy task. We have only to remark
that, if IS (x ®T) satisfies o(x) ! = x but is irreducible, there appears the complementary
series representations I§(x[\] ® 7) for A between 0 and the reducible point. Otherwise,
no complementary series appears. We summarize the result as a corollary.

Corollary 2.7. The irreducible unitarizable representations of G(F) are the followings.

(i) Elements of Iy(G(F)).

(i) The non-supercuspidal square integrable modules 6%(n,7), (T % ne,), 6¢(u,7), (T €
AZ?(1,m) with n # 1), 6 (0, 1a,).

(1ii) The tempered non square integrable representations 7%(u, 7)s, (the L-packet of T is
not of the form A{*(1,m)), If(p® 1), (r € A\*(A,m), n #1), IS(x ® T), (x|rx # wryr,
T E Ho(Gg(F))) ‘

(iv) The following non-tempered unitarizable representations.

Representation Conditions
JEus|®T) |T€XPA,n),n#1,1>5>0
JE (n[s] ® na,) 3/2>5>0
JE(nls] ® 7) T ¢{nc,}, 1/2>5>0

Remark 2.8. For the purpose of comparison, we recall the corresponding classification
for G*(F). For x ® T € laisc(M*(F)) and X > 0, we have [Kon01, § 4.8, § 5.9/
(1) IE. (x[A] ® T) with A > 0 is irreducible, if x % o(x)™".
(IS (u[N] ® 7) with X > 0 is irreducible, unless

(i) T € II*(m) or {ne;62}, and A = 0.

(ii) T € )\gg(l,n) withn#1, and A =1.
(3) I&. (n[\] ® 7) with X\ > 0 is irreducible, unless

(i) A=1/2.

(i) T =ney6% and A = 3/2.
In this case, Ig. (n[1/2] ® ng;6°2) is reducible [Kon01, Prop. 5.8]:

0 — 7 (n6;8%) — I8 (n[1/2]) ® 1650%%) —> JE (n[1/2] ® nez6°%) — 0.

Here 7% (16369%) € Tiemp(G*(F)) N Maise(G(F)).

3 Construction of an A-packet

For the moment, let G be a general connected reductive group defined over F'. An A-
parameter is a continuous homomorphism

Y Ly x SL(2,C) — LG,

10
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where the Langlands group L is defined in § 1. Two A-parameters are equivalent if they
are (”-comugate Let us write W(G) for the set of G- -conjugacy classes of A-parameters
for G. According to Arthur’s conjecture, there associates to each ¢ € ¥(G) a finite
subset I1y(G) C Iy (G(F)) called an A-packet. In the cases where these A-packets were
determined, namely, G = GL(n), SL(n) and Ug/r(3), these played a fundamental role
both in local harmonic analysis and in the description of discrete automorphic spectrum.
In [KK], we determined a system of candidates for the A-packets of the quasisplit unitary
group G*(F') in 4 variables, by means of the global condition imposed on them. Here we
examine a similar construction for its inner form G(F).

3.1 The A-parameter

Since G is an inner form of G*, the set ¥(G) coincides with ¥(G*) which we described in
[KK, Prop. 3.2]. (Precisely speaking, there should be also certain “relevance conditions”
on A-parameters, so that ¥(G) might be a proper subset of ¥(G*). But the parameter
which we consider below certainly occurs in ¥(G).) Here let us consider the parameter
of type (G.2.b.ii) in [loc.cit., § 3.3]:

1
Ylepxsre) = (M ® pasr@) & (0 @ pasu)) X Pwe,  P(w,) = ( i 2 ) X Wg

with ' # n. Here psgr(2) (resp. pasu(2)) is the two dimensional standard representation
of SL(2) (resp. SU(2)) and pw, denotes the projection Lg — Wg. Also we have fixed
wy € Wr ~ Wg. In the following, we shall construct a candidate of the A-packet IL,(G)
of G associated to this parameter.

Associated to this, we have a non-tempered Langlands parameter [Art89, § 4]

bplee = (M(1/2] ©1[-1/21 & (' ® pasu)) X Pwe-

and the corresponding L-packet Il (G) = {JE(n[1/2] ® 1,)}. Since IIy(G) contains
Iy, (G), we know that 1 occurs in ¥((). On the other hand, the S-group

Sy(G) 1= S4(G)/S4(G)°Z(G)F,  Sy(G) := Cent(, G)

for this ¢ is isomorphic to Z/2Z [KK, Prop. 3.7]. According to the conjecture, there
should be a pairing

We do not know if this is perfect. But if such is the case, II;(G) has another member.
Actually, we shall construct a candidate for that representation in what follows.
3.2 Local theta correspondence

Let (V,(,)) = (Vi£,(,)¥) be the 2-dimensional hermitian space over E § 2.1. Fix a
generator d of E over F such that A := 62 € F*. Then any 4-dimensional skew-hermitian
space over E is of the form (W=, (, }¥) := W;f @ H, where
0 1 _ _ _
=07 )= B (O ) W ) = (B 7 = 8200 )
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Let W be any 2 or 4-dimensional skew-hermitian space over E. We have the corre-
sponding unitary groups G(V') and G(W) for V and W, respectively. We introduce the
16-dimensional symplectic space (W, {(, )):

W=VesW, {(vowveu):= %TIE/F[(U, oo ({w,w'))],

and write Sp(W) for its symplectic group. Then (G(V),G(W)) is a dual reductive pair
in Sp(W): '

ww =ww X :GV)xGW) 3 (9,¢) — g®g' € Sp(W).

Fixing a non-trivial character ¥r of F', we have the metaplectic group of Sp(W) which is
a central extension

1 — C' — Mpy, (W) — Sp(W) — 1.

This admits a unique Weil representation wy, on which the subgroup C! acts by the
multiplication [RR93]. For a character n of E* with n|px = lpx, there corresponds a
lifting Tywy - G(V) X G(W) — Mpy, (W) of tyw:

GV) x GW) 22, Mp,, (W)

Il |

G(V) x G(W) =22, Sp(W)

The composite wy,wy = Wyy ©ty,wy is the Weil representation of G(V') x G(F) associated
to 7, a smooth representation. We write ww1, wy, for its restriction to G(V), G(W),
respectively.

We write Z(G(V),ww;) for the set of isomorphism classes of irreducible admissible
representations of G(V') which appear as quotients of wy;;. We denote Syw,, a realization
of wyw,,. Formy € Z(G(V'), ww,a), we write Sy,w,,(Tv) for the maximal quotients of Sy w,,
on which G(V') acts by some copies of 7,. Thus we have smooth representations ©,(ry, W)
of G(W) such that

SV,W,.,,(Tv) ~ Ty ® @n("l‘v, W)

Similarly, we have Z(G(W), wv,,) and ©,(rw, V) for tw € Z(G(W),wy,,). Now the local
Howe duality conjecture, proved by Waldspurger if the residual characteristic of F' is odd,
asserts the following,.

e O,(rv, W) (resp. ©,(1w,V)) is an admissible representation of finite length.

o O,(rv,W) (resp. ©,(tw,V)) admits a unique maximal submodule and hence a
unique irreducible quotient 8, (my, W) (resp. 8,(tw,V)).

o v — b,(1v, W) and 7w — 6,(Tw, V') are bijections converse to each other between
%(G(V),(.UW,]) and @(G(W),WV,H).

Moreover, when dimg W = 2 we have the following. Notice that G(V;") ~ G(W5) ~
G5(F) and G(Vy) >~ G(Wy) ~ Go(F).

12
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Theorem 3.1 (e-dichotomy [KK], Th. 5.4). We write (V) := +1.
(1) Let IT* be an L-packet of G5(F) and 7* € II*. For a 2-dimensional hermitian space V
over E, ©,(7*,V) # 0 if and only if

e(1/2,I1* x 7Y, ¥r)wme (= 1)MNE/F,p) 2 = €(V). (3.1)

Here e(s,IT* xw, ¥r) denotes the standard e-factor for IT* twisted by w € II(E*) defined by
the Langlands-Shahidi theory [Sha90], wn~ is the central character of 7 and A(E/F,yr)
is Langlands’ X-factor [Lan70].
(#) If this is the case, we have a bijection
v ife(V)=1
I s 7 —s GW(T*,V) = Ules Zfﬁ( ) ’
ncllV  otherwise,

where 11 is the Jacquet-Langlands correspondent of IT*.

3.3 A candidate for the A-packet

Now we are in position to determine the partner of Jg(n[1/2] ® ng,). First we apply
Th.3.1to1= 172;566'3, We know from [KK, § 6.1.2 (2.b.ii)] that

6(1/277},05663 x ln—-ladjl’)A(E/F’ ’IPF)_Z = L

and hence
O, (116503, V5') = (1 )o30%%, Oy (16564, V5") = {0} (3.2)

Then this determines the local 6-correspondent of (77)g, € Ho(G2(F)). In fact, the
dichotomy property of local Howe duality for supercuspidal representations of general
unitary groups over p-adic fields is established in [HKS96]. This means that exactly one
of ©,((n7)c,, W5) is non zero. If ©,((n7)c,, Ws) # {0}, it must be 77'(;35(;3 since the
Howe duality is a correspondence. This contradicts (3.2) so that we have

en((nﬁ’)Gz‘ W2+) = {O}‘ @ﬂ((nﬁl)Gza W27) = T/G'z

Let us calculate 6,((n7)c,, W™). For this, we use the induction principle for local
6-correspondence [MVW87, Ch.3 IV .4]. This tells us:

(i) Since ©,((n7')c,, Wy ) is non-zero, so is ©,((n7)a,, W™);
(ii) Its Jacquet module along P is n{—1/2] @ 7, .

Since J§(n[1/2] ® n;,) is the unique irreducible representation of G(F) with the Jacquet
module n[—1/2] ® n;, along P, we see

O((n7 )Gy, W) = JE(n[1/2] @ 1fz,).

To construct another element in IT,(G), we consider the Jacquet-Langlands correspon-
dent (177)c36<% of (nif)g,. Although ©,((n7)cs0%, Wy ) = {0} (3.2), one can show that
O, ((n77)c30°%, W) is non-trivial by a global argument. This must be the desired repre-
sentation. On the other hand, the induction principle cited above asserts the following.

13



131

(a) ©y((n7)cy6%2, W™) is an admissible representation of finite length, so that this
admits an irreducible quotient (but not necessarily unique).

(b-ii) Let Bs be the lower triangular Borel subgroup of Gj in the realization (2.1). The
Jacquet module of (177)c;6%% along Bs is 7i[—1/2]. Then any irreducible quotient
of ©,((n77)c30%%, W™) is a quotient of I§ (7'[~1/2] ® na,)-

We know from the classification Cor. 2.6 that 6¢(n/, g, ) is the unique irreducible quotient
of I§(n'[-1/2] ® ng,). We conclude

6y (1) G365, W ™) = 6% (1, micz,)
and set
Iy (G) = {Jg (n[1/2] ® 15, ), 8° (0, mes) }-
Our construction can be summarized as the following figure.

5G (77" NG, )

0y (0, W) G(W™) = G4(F)
/ﬁ(nu/m &)

+ 7Y e 5G5
G(Vy") (n )GQO 2 Witt tower

9'/ ('sWﬁ )
J-L. corr.

G(Va) (m)a, P Mo, G(Wa)=Ga(F)

Figure 1: Construction of the A-packet

Remark 3.2. By transposing (n,n'), we have another A-packet 1Ly, (G) = {JS(7'[1/2] ®
77G2); 6G(777 77&2)} fOT

1
V0ag = (0 ® pasie) © M ® pasu) ¥ (ws) = ( 1 2 ) X W

Also there is a discrete L-packet I1,(G) = {6%(n,n5,), 6% (7', ng,)} for

1
Pleg = MSN) R pasue), wlws) = ( 1 2 > X W

Let us compare these with the corresponding packets for G*. They were given in [KK,
§ 6.1.2] (2.b.15):

Iy (G*) = {Jp- (n[1/2] ® 1/ 6:6%), 7.},
My (G*) = {JB. (1'[1/2] ® ng6©%), e},
0, (G*) = {6%(n,7), 7}

14
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Here ¢ == ©,((M)g(v_y, W) is an irreducible supercuspidal representation. Notice that
6%(n,m'a,) £ 0% (', ne,) in the G-case but 6" (n,n') =~ 6% (n',n) in the G*-case. Thus a
supercuspidal representation . appears for G*(F'). It will be interesting to investigate the
character relations between these packets. We would like to return this gquestion in some
near future.
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