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Abstract

Huygens principle and propagation of singularity of Cauchy problems for linear invariant differ-
ential operators on symmetric or Hermitian matrix spaces are discussed in this paper. Let P(9) be
an invariant linear differential operator on a prehomogeneous vector space of commutative parabalic
type. We consider a Cauchy problem of P(9) with the initial plane that P(8) is hyperbolic with
respect to. We construct an explicit fundamental solution of P(9) by using a Laurent expansion
coefficient of the Laurent expansion of the complex power of the determinant function. As a conse-
quence we obtain the exact support of the fundamental solution and hence we can give a necessary
and sufficient condition that Huygens principle for P(8) holds. Next we construct the fundamental
solution for the Cauchy problem and give the singularity spectrum of it explicitly. Then we can ob-
tain an accurate result on the propagation of singularity of the hyperfunction solution to the Cauchy
problem.

Introduction.

The purpose of this paper is to construct explicit fundamental solutions to invariant differential operators
and determine their support and singularity spectrum of them on a kind of vector space with group action.
These differential operators are hyperbolic with respect to some initial planes. We prove that Huygens
priuciple holds for these differential operators by the precise investigation of the fundamental solutions.
In addition we can clarify how the singularity of the solutions to Cauchy problems with respect to the
initial plane propagates by determining the singularity spectrum of the fundamental solutions.

Let us begin with an explanation of a typical examaple of hyperbolic differential operator. I'he
most primitive hyperbolic differential operator may be the wave operator, O = 8%/t + 9%/} +
8%/0x3 + - + 8?8z, which is called “d’Alembertian”. A distinguished phenomenon we observe in
d’Alembertian is the Huygens principle. Namely when the dimension of the space-time is even and > 4,
the support of the fundamental solution of d’Alembertian concentrates on the boundary of the convex
cone in the tume-positive direction. We prove in this paper that similar phenomena are obscrved for the
differential operators we are concerned. Another important problem is the description of propagation of
singularity in the solutions of Cauchy problems. Since d’Alembertian is a strongly hyperbolic differential
operator, the singularity of the solutions of Cauchy problems propagates along bicharacteristic strips of
d’Alembertian (see Kashiwara, Kawai and Kimura [9, Chapter 6, §6], Duistermaat [2, §5.1]). However,
the differential operators in this paper is not strongly hyperbolic and the singularity propagates along
not only bicharacteristic strips but also other varieties. In order to see the propagation of singularity, we
have to determine the singularity spectrum of the fundamental solution. Though Hormander’s theorem[6,
Theorem 12.6.2 in Page 125] gives an upper estimate of the singularity spectrum, it does not give the
exact singularity spectrum. We give in this paper the exact singularity spectrum of the fundamental
solutions of Cauchy problems for the hyperbolic differential operators.

D’Alembertian is an invariant differential operator under the action of Lorentz group. It is natural to
ask whether the same properties are valid for similar invariant differential operators. Indeed, Garding|3]
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constructed solutions for the Cauchy problem of matrix-type differential operator on the symmetric ma-
trix space Sym,, (R) and the complex Hermitian matrix space Her, (C) by using the approach of Riesz[18].
Gindikin[5] enlarged their calculus to more general type of cones on which Lie groups operate homoge-
neously and proved the Huygens principle for invariant differential operators on them systematically. On
the other hand, they never mentioned about the propagation of singuarity of the Cauchy problem.

In this paper, we present more precise results on these problems by utilizing the author’s results in
the preceding papers in [13], [14]. The results of this paper are the followings.

1. To construct the explicit fundamental solutions of invariant differential operator P(8) on the real
symmetric matrix space Sym,, (R), the complex Hermitian matrix space Her,, (C) and the quaternion
Hermitian matrix space Her, () in terms of Laurent expansion coeffcients of the complex powers
of the determinant functions (Theorem 7.1).

2. To determine the exact support and the singularity spectrum of the fundamental solutions of P(J)
(Thecrem 7.1 and Theorem 8.1).

3. To give a necessary and sufficient condition in order that the Huygens principle holds (Corollary 7.2).

4. To give a law of the propagation of the singularity for the Cauchy problems with an initial plane
which P(8) is hyperbolic with respect to (Theorem 9.2).

The results on the exact support of the fundamental solutions of P(8) have been partly obtained in
some preceding papers. For example, Gindikin[5, p. 112, Example 2] and Atiyah, Bott, and Garding][l,
p. 181, Example 8.8] mentioned about the exact support of the fundamental solutions of invariant dif-
ferential operators on Her,(C). However the complete computations of the exact support seems to be
carried out for the first time, especially on Sym, (R) and on Her,(H), in this paper. Our method is
based on the author’s results on invariant hyperfunctions ([13], [14]). We give the complete answer to
the Huygens principle of the differential operators. The results on the exact singularity spectrum of
the fundamental solutions of P(9) and the propagation of singularity are derived for the first time in
this paper. It is well known that the singularity spectrum propagates along the bicharacteristic strip
for a strongly hyperbolic differential operators. However, since these operators are hyperbolic but not
strongly hyperbolic, the singularity specrum of the hyperfunction solutions propagates not only along
the bicharacteristic strips. In fact, we can observe that the singularity spectrum propagates along the
varieties which does not consists of bicharacteristic strips. On the other hand, we can give examples
of hyperbolic but not-stlongly hyperbolic differential operator whose singularity of solutions propagates
along the bicharacteristic strip{Corollary 9.3).

1 Fundamental solutions of hyperbolic equations.

Let V := R™ be an m-dimensional real vector space with a linear coordinate z = (z1,...,Tm). We
denote by &; the partial derivative 667, with respect to the variable z;. We define a monomial of ;s
by 9% 1= 97 ... 9% with a = (ai,... ,am) € Z%;. We define the degrees of multi-index by |af :=
aj + -+ o, A differential operator of constant c_oefﬁcients on V is a polynomial of d;’s, i.e., a linear
combination of monomials of d;’s. We say that P(8) is homogeneous if all the monomials in P(8) have
the same degree. The degree is called the homogeneous degree of P(9). We denote § = (&1, .. ,ém) the
dual coordinate of the dual vector space V* and P(£) is a polynomial on V*. For a differential operator
P(8), we say that a distribution E(2) is a fundamental solution of P(0) if it satisfies P(8)E(z) = d(z).
Here §(a) denotes the Dirac’s delta function on V' with respect to the coordinate (z1,... L )-

Definition 1.1 (homogeneous hyperbolic differential operator). Let P(d) be a homogeneous dif-
ferential operator with constant coefficients. Let Ny 1= {& € V' | (z,9) = 0} for ¥ € V™. We say that
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P(0) is hyperbolic with respect to Ny if P(d) # 0 and the algebraic equation P(§ + 7) = 0 in 7 has
only real roots for all & € V*. In particular, we say that P(8) is strongly hyperbolic if all the roots of
P(§ + 79) = 0 are distinct for any & € V* satisfying & # ¢ with a constant c.

For a homogeneous hyperbolic differential operator P(d), we denote by I'(P,9) the connected com-
ponent of {{ € V* | P(€) # 0} containing ¢. This becomes a convex cone in V* (see Hérmander[6, Page
120]). We define the dual cone of ['(P,¥) by {x € V | (z,8) > 0 for all @ € T(P,9)} and denote it by
I'*(P, ). The dual cone I'°(P, ¥) is a closed convex cone in V.

When a hyperfunction E(z) satisfies the differential equation P(8)E(z) = §(z) for a given differential
operator P(9), we call £(z) a fundamental solution of P(8). The following proposition about the support
of the fundamental solution of hyperbolic differential operators is well known. See Hérmander[6, Theorem
12.5.1 in Page 120].

Proposition 1.1 (Unique fundamental solutions of hyperbolic equation). Let P(d) be a homo-
geneous hyperbolic differential operator with respect to Ny. Then there exists one and only one funda-
mental solution E(x) of P(0) with support in the half space Hy := {& € V' | {z,9) > 0}. The support of
this fundamental solution is contained in the dual cone T°(P,¥).

However, the support of E(z) does not always coincide with 1'°(P, ). We often observe that the
support of F () is contained in the boundary set of ['°(P,9) and the dimension of the support is sometimes
very small. In such cases we say that P(9) satisfles the Huygens principle. In particular, if the dimension
of Supp(E(z)) is strictly less than m — 1, we say that P(J) satisfies the strong Huygens principle.

If P(0) is hyperbolic with respect to the initial plane Ny, then it is also hyperbolic with respect
to N_y = Ny. Therefore there also exists one and only one fundamental solution E’(2) of P(8) with
support in the half space H_y := {# € V | (2,~9) > 0}. In particular, let P(J) be a homogeneous
hyperbolic operator of degree n on R™ and let E(z) be the unique fundamental solution supported in
Hy. Then the unique fundamental solution E’(z) supported in H_y is given by E'(z) = (=1)"T" E(~=z)
since P(8)(=1)"+"E(~z) = (1) P(=0)E(—z) = (=1)™6(~z) = é().

2 Singularity spectrum of the fundamental solution.

Let By be the sheaf of hyperfunctions on V' and let Cy, be the sheaf of microfunctions on the cotangent
bundle 7*V of V. We have a natural isomorphism sp:

sp: By - m(Cv) (1)
and an exact sequence
0 e \A-V — ’BV — W*(evlz'-v_vx{o}) — 0 (2)

Here, 7 is the projection map from the cotangent bundle 7*V to V and Ay is the sheafl of real analytic
functions on V. By the isomorphism (1), we can regard a hyperfunction f(z) on V as a microfunction
sp(f(x)) on T*V. In this article, we often identify the hyperfunction f(z) on V with the microfunction
sp(f(z)) on T*V through the isomorphism (1). In particular, we call the set Supp(sp(f(x))) -V x {0}
the singularity spectrum of the hyperfunction f(z) and denote it by S.5.(f(z)).

Hoérmander[6, Theorem 12.6.2 in Page 125] gave an estimate of the singularity spectrum (analytic wave
front set) of the fundamental solution of a hyperbolic differential operator. Let P(8) be a homogeneous
hyperbolic differential operator with respect to Ny. For a fixed £ # 0 in V™, we denote by P, the lowest
order homogeneous part in the Taylor expansion  — P(€ + 7). Then F% is also hyperbolic with respect
to Ny (Hormander[7, Theorem 8.7.2]). Then we have the following estimate of the singularity spectrum
of the fundamental solution E(zx).
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Theorem 2.1 (Hérmander[6]). Let E(z) be a fundamental solution of a hyperbolic differential opera-
tor P(0) with support in I'°(P,9). Then we have

S.S(E(z)) C {(z,€) € T*V | € £0 and & € [°(P;, )}

3 Cauchy Problems for hyperbolic equation.

In this section we denote #; = (z,9) and by &; the partial derivative with respect to z;. We denote
by @' := (&3,... ,2,,) another coordinate and by & := (Js,...,0,,) the partial derivatives with respect
to ' = (za,... ,Tm). Let P(8) be a hyperbolic differential operator with respect to the initial plane
Ny :={z € V| (z,9) = 0}. Let [ be the order of P(8). Then we can write

P(8) = podi +p1 (87 + -+ pi_1(0) 01 + pu(9),

where pg is a non-zcro constant and py(0'),...,pi(9') are differential operators in §’. The Cauchy
problem for P(J) with respect lo Ny is the following problem: for a given initial data of hyperfunctions
with compact support vg(2’),...,v,—1(2’) on Ny, construct a hyperfunction solution to the differential

cquation
P(O)u(z) =0
u(@)lz,=0 = vo(2'), 1u(@) s, =0 = v1(2), ..., 8 u(@)]s,=0 = v (2).

(3)

For a hyperbolic differential operator P(8), there exists a unique local hyperfunction solution to the
Cauchy problem (3). To prove this, we have only to construct a fundamental solution to the Cauchy
problem of hyperbolic differential operator P(3).

We define the fundamental solution for the Cauchy problem. Let Fy(z) be a hyperfunction solution
to the Cauchy problem

P(0)Fy(z) =0
Fo@)le,=0 = 01 Fo(2) sy =0 = - = 0 Fo(2)]s,=0 = 0, (4)
& Iy (2) |5, =0 = 6(2).

Then Fp(z) is uniquely determined by virtue of the Holmgren’s uniqueness theorem if it exists. We put
Fi(2) = pio(poaf +pu(8)0F T+ -+ () Fo(x) (5)
fork=0,1,...,1—-1.
Definition 3.1 (fundamental solution to the Cauchy problem). The I-tuple of hyperfunctions
(Fo(z), Fi(a),. .., Fioa(2)) € B(V)' (6)
is called the fundamental solution to the Cauchy problem (3). In fact,

-1 N
u(z) = Z/\, Fiogoa(en, e - ) (y)dy’ (1)

k=09
satisfies (3).
The fundamental solution to the Cauchy problem can be constructed by using the fundamental so-

lutions supported in the convex cones in the following way. Let 6(z1) be the Heaviside function in z;.
Then it i1s proved that ;%H(ml)Fo(a:) is a fundamental solution of P(d) supported in Hy, which is uniquely
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determined, and hence we have I—J%G(rl)Fo(x) = E(z). On the other hand, we can prove that the solution
Fy(z) is given by

Fo(e) = po(E(z) — E'(z)) (8)

where E(z) and E’(z) are fundamental solutions of P(d) whose supports are contained in Ify and H_y,
respectively. Since Supp(/Z(z)) C T°(P,¥) and Supp(E'(z)) C I°(P, ), we have

Supp(Fi(z)) C [°(P,8) UT*(P, —v)
for k =,1,...,I—1. This means that the support of the fundamental solution {Fo(z), Fi(z),... ,Fi_i(2)}

to the Cauchy problem for P(9) with respect to the initial plane Ny is contained in (P, 9)UTe (P, —).

4 Prehomogeneous vector spaces of commutative parabolic type
and their properties.

The prehomogeneous vector spaces we are considering here are the following ones.

1. real symmetric matrix space Let V := Sym,(R) be the space of n x n symmetric matrices over
the real field R and let G := GL,(R) be the general lincar group over R of degree n. Then the
group GL,(R) acts on the vector space V' by the representation

plg) ixr—rg- -y, (9)
with z € V and g € GL,(R). Then the subgroup
G' = {g€ GL,(R) | det(g-%g) =1} (10)

acts on V' naturally. Here *g means the transposed matrix of g. In the case of symmetric matrix
space, we define the coordinate z of Sym,, (R) by z = (%ij)n>ij>1 € V = Sym, (R) with z;; = zj;.
The derivation with respect to the coordinate is defined by

' 0
0= (Gij)npij>1 = (8arj> 21521
/S n>i5>

and

d . 1 i=]
)

The dual coordinate is given by £ = (&;)n>ij>1 € V™ = Sym, (R) and we denote - = (&) =
(€ij€i;). The canonical bilinear formon (z,£) € VxV* is given by (z, €) 1= tr(z¢*) = Lasivivt Tiikij-

2. complex Hermitian matrix space Let V := Her,(C) be the space of n x n Hermitian matrices
over the complex field C and let G := GL,(C) be the special linear group over R of degree n. Then
the group GL,, (C) acts on the vector space V' by the representation

plg) iz—rg x-'7, (12)
with £ € V and g € GL,(C). Then the subgroup
G' = {g € GL,(C) | det(g-'7) =1} (13)

acts on V naturally. Here ‘g means the transposed matrix of the complex conjugate of g. We define
the coordinate z of Hern(C) by & = (2ij)npij>1 € V = Hern(C) with 25 = 2); ++/—1z]; and
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zji = Tij = ¢ — /- .'L,j In particular, % = 0 and hence z;; = z};. The derivation with respect
to the coordmate 15 defined by

0 -
g = (azg)n>z,]>1 - (d T + CL‘ )
U/ n>ig>1
with 9;i = 05 = 52 1 —-v- %’5' We denote 0% = (9};) = (6,3 FEn ) by using ¢;; defined in (11).

The dual coordumte is given bv € = (€ij)nzij>1 € V" = Hery(C) with &; = £ + V-1 and
&i = &;j. We denote € = (&) = (qi;€i;). The canonical bilinear form on (2,£) € V x V7 is given

by (.L‘,f) = sR(tr("‘n&ﬂ)) Zn>1>1 wzxé‘n + Zn>g>1>l 'rlj le + ‘1:3_7'512]

3. quaternion Hermitian matrix space Let V := Her,(H) be the space of n x n Hermitian matrices

over the quatcrnion ficld H and let G := GL,(H) be the general linear group over H of degree n.
Then the group GL, (H) acts on the vector space V' by the representation

plg) re—r g -z, (14)
with ¢ € V and g € GL, (H). Then the subgroup
G' = {g € GL,(H) | det(g-'g) =1} (15)

acts on V naturally. Here ' means the transposed matrix of the quaternion conjugate of g. We
define the coordinate z of Her,(H) by 2 = (@ij)n>ij>1 € V = Her, (H) with 2;; = .1: 4 iz? i+

;T ka, € Hand z;; =755 = 111 - iz:?j —jaf?j - kmfj. Here i,j and k are the 1 1mag1na1y unlts

of the quatelmon and satisfy the lelations i? = j2 = k¥ = -1 and ijk = ~1. In particular,

z% = a3 = 2} = 0 and hence a;; = ¢};. The derivation with respect to the coordinate is defined by

%, 0 a ¢}
J = (01])11>2]>1"° (C) T +la 2 +Ja 3 +k()1’ )
n>1,5>1

and 8;; = 9;; = a_;jT; ——i%— Jm k. We denote 0" = (0;;) = (fu 3o ) by using ¢;; defined
in (11). The dual coordinate is given byé = (&ij)npij>1 € V7 = Her, (H) with &5 = SU 1{1] +Jg”+
kfl- and §;; = &;;. We denote £* = (£ )= (€ij€i;). The canonical bilinear form on (z,§) € V x '
is given by (z,&) = R(tr(z€")) = Zn)z)l i€l + 2 onsizin Tl +alEl + el + T

We can define the determinant of a symmetric matrix or a complex Hermitian matrix but the
determinant of a quaternion Hermitian matrix is not well defined since I is not commutative. It is

defined in the following way. Note that we can write
=a+ib+jet+kd=(a+1b)+j(c+id) =a +jB

with & = ¢ +1ib and 8 = ¢+ id. Then we can regard H as the algebra €& jC. Consider the algebra

homomorphism ¢ from H to M,(C) by

a, B

""/3) a

Let X = (2;;) € Her,,(H) be an n x n quaternion Hermitian matrix. By the homomorphism ¢ in

(16), X is mapped in My, (C) by

/,:z:a+j,3l—)[ (16)

X o (X §) = (elzij -]) (17)
Since —*(¢(X -j)) = ¢(X -j), we see that ¢(X -j) is an alternating matrix. Then by putting
det(X) = Pf(«(X -})) (18)

we can define the determinant for the quaternion Hermitian matrix X. Here Pf(A) means the

Pfaffian of an alternating matrix A.
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We denote P(z) := det(z) and we put S := {z € V|det(z) = 0}. We call the set S the singular set
of V. The subsct V' — § decomposes into n + 1 connected components,

{z € Sym, (R) | sgn(z) = ({,n —3)} if V = Sym, (R),
Vi:=<{z € Her,(C) | sgn(z) = (2i,2(n — 1))} iV = Her, (C), (19)

{z € Hern(H) | sgn(z) = (44,4(n — 1))} if V = Her, (H),

with ¢ =0,1,...,n. The vector space V decomposes into a finite number of G-orbits;
vi= || § (20)

0<i<n
0<G<n—1i
where
{z € Sym, (R) | sgn(z) = (j,n — i~ j)} if V= Sym, (R)

(2,2(n —i—3))} if V = Her,(C) (21)

e {z € Her, (C) | sgn(z) =
) Isgn(z) = (45,4(n—1i—3))} if V =1ler,(H)

{z € Her,(H

with integers 0 < i < n and 0 < j < n — 4. Here, sgn(z) for @ € Sym, () is the signature of the
quadratic form ¢;(7) := 02 -7 on ¥ € R" and sgn(z) for 2 € Her,(C) (resp. z € Her,(I)) is the
signature of the quadratic form ¢, (%) := ¢z - % on 7 € C” (resp. 7 € H"). 1t is clear that V; = S,
from the definition. All orbits in S are G'-orbits. A G'-orbit in S is called a singular orbit. The subset
S;={zeV| rank(a:) = n —1} is the set of elements of rank n —i. It is easily seen that § ;= Li<icn Si
and §; = UOSJ’SHT%’ S7. o

The strata {S{}QS;’S,LOSJ‘S”_,‘ have the following closure inclusion relation

1o siziusiy, (22)
where Ef— is the closure of the stratum Sf In particular, we have
“V—o:“g SOusiu-..ust 23)
V,=8;=Spus7tu---us’
and
SV =5%0usd U us® 24)

ST =8rTtusSyT - u sy

We denote by V* the dual vector space of V.. We define the inner product (z,y) on (z,y) € V x V by
(z,y) = R(tr(zy)) where R and tr denote the real part and the trace, respectively. Then we can identify
V and V*. The group G operates on V* by the contragredient action and the G-orbits in V* are the
same as the ones in V. The cotangent bundle 7*V of V can be identified with V' x V*.

5 Invariant differential operators on prehomogeneous vector spaces.

Proposition 5.1 (hyperbolic operator). Let V' be one of the vector spaces Sym,, (R), Her,(C) and
Her, (C). Then

1. Every non-trivial homogeneous G -invariant differential operator P(8) with constant coefficients is

written as a constant multiple of det(8*)* with some positive integer k.

2. The differential operator P(9) is hyperbolic with respect to the initial plane Ny .= {z € V | (2,7) =
0} if and only if 9 € V" is a positive definite matriz or a negative definite matriz.
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3. In the case above, P(0) ts strongly hyperbolic if and only if n = 2 and k = 1. This is the wave

operator of space dimension 2.

Let P(8) = det(8*)* and let ¥, (resp. #_) be a positive (resp. negative) definite matrix. Then
the connected component I'(P,9,) C V™ (resp. I'(P,¥_) C V™) is the set of positive (resp. negative)
definite matrices in V™. On the other hand, the dual cone I'°(P,d,) (resp. T°(P,9_)) is the set of

semi-positive (resp. semi-negative) definite matrices in V. Therefore we have
T(Py) =V, = || s
0<i<n
[°(P,9_)=Vo= U s?
0<ikn

(25)

By Proposition 1.1 and Proposition 5.1, there exist unique fundamental solutions supported in V,, and
V.

6 Complex powers of relative invariants.

We construct the fundamental solutions of the differential operator P(8) which arc supported in V,, or
Vi by using the complex powers of P(z). We define the complex powers |P(z)| (i =0,1,... ,n) of P(z)
by

| )18 if z i o
Pl ={ P ey (26)

for a complex number s € C. Let $(V') be the space of rapidly decreasing smooth functions on V. For

f(z) € 8(V), the integral
= [ 1P (@), o)
v

is convergent if the real part R(s) of s is suﬂiclently large and is meromorphically extended to the whole

complex plane. Thus we can regard |P(2)|] as a tempered distribution — and hence a hyperfunction —

L
with a meromorphic parameter s € C. We call each |P(2)! the complex power of P(z). We consider a

linear combination of the hyperfunctions |P(z)]|}

n
PE(z) = 3 4+ |P(a); (28)
1=0
with s € C and @ := (ag,a1,...,a,) € C*1. Then P@¢l(z) is a hyperfunction with a meromorphic

parameter s € C, and depends on @ € C**! linearly.
Since P[ﬁxs](x) is meromorphic with respect to s € C, we can expand PlEsl(z) to a Laurent serics.
Let

as] ZP S—--.S(])‘7

JEZ

(@

be the Laurent expansion of Pl&¢l(z) at s = sy. Then each Laurent expansion coefficient P; ’”"](:c) is a

linear function on @ € C"+1.
In particular, let ¢, = (0,... ,0,1) € C**! and let € := (1,0,...,0) € C**!. Then we have
Plewsi(z) = [P(2)|8 and Pl%*l(x) = |P(z)|$ and hence

n
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Therefore, every Laurent expansion coefficient has the same property:

Supp(PI***)(z)) € T°(P, d)

Supp(Pj[a“’s"](x)) cre(pd-)

for each j € Z and s, € C.
We can construct the fundamental solutions satisfying the property in Proposition 1.1 as a constant
multiple of the Laurent expansion coefficients P}e"’s"](m) and P(EB"”"](Q). The exact supports of them are

given in the following proposition.
Proposition 6.1. The hyperfunctions P[e‘""‘](z) and P[e'"”](:c) have the following properties.

1. They have poles of order

~|so] at so:—l,—%,... ,—-%i when V' = Sym,, (R),
—sp at sp=—1,—-2,...,~n when V' = Her,(C), (29)
—|80/2) at so=—1,-2,...,-2n+1 whenV = Her,, (H).

2. (a) When V = Sym,(R), we have

[S'cu—(k+1)/2](z)) — &0

Supp(P k

~L(k+1)/2]

and

o —(k+1)/2 n—
Supp(PL 7 s) ) = 87 F

fork =12 . n.
(b) When V = Her, (C), we have

Supp(P ~H(z)) = 57

and

Supp(PL ™ (z)) = 577
fork=12... n.
(c) When V = Her, (H), we have
o, ~k P
Supp(PEL"(Hl)/ZJ () = S(L)(k+1)/2_|
and

en,—k n—|(k+1)/2
Supp(PEL(k+E)/2J (z)) = S[(k&u(l)/zj/ J

fork=1,2,... 2n—1.

7 Construction of fundamental solutions.

Theorem 7.1 (fundamental solution). Fundamental solutions for the differential operator P(3) =
(det(8)*)* (k = 1,2,...) is given as a Laurent expansion coefficient of P18s](z). Let k be a positive

integer.
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Ct ok

When V = Sym,, (R), we put

N pleh = (nt1-2k)/2]
P+;k(‘7“) Px[nm{O,—L(ﬂ-rl 2}")/2”(1)

€o,—(n+1-2k)/2]
Pok(z) = Pr[l'nn{f)—l_(n+1)2k)/2j}(x)
Then we have
det(9%)* Py () = cq xd(2),
det(8")*P_ 1 (z) = c_ xd(z),

with certain non-zero constants cy g and c_ . Therefore Fy p(x) = c;lkP+,k(k) and F_ j(z) ==
L P_ x(k) are unique fundamental solutions whose supports are contained in the half spaces Hy
and H_y, respectively. The exact supports of Fi x(x) and F_ i (z) are given by

S . fhk=1,2...,[(n-1)/2]
ST=V, fk=|(n+1)/2],|(n+1)/2]+1
Sp_ox k=12, [(n-1)/2

Su F_p(z)) =< —" "
pp(F- k(2)) {58:‘/0 fk=[(n+1)/2],[(n+1)/2] + 1

Supp(Fy x(2)) = {

When V = Her,, (C), we put

en,— (n—k ;
Py (z) = Pr{mn{o(—(n)]k)}(m)’

P_i(z) = P L (a),

Then we have

det (9" )* 4 k(2) = et 10(x),

det(8*)F P_ 1 (z) = c_ 10(x),
with certain non-zero constanlts ¢y . and c_ ;. Therefore Fy () = c;}kP_'_,k(k) and F_ ((x) =
C;IkP_ﬁk(k) are unique fundamental solutions whose supports are contained in the half spaces Hy
and H_y, respectively. The exact supports of Fy x{x) and F_ x(x) are given by

Sk ifk=1,2,... n-1
Su Fy w(z)) = noh o /
PP(Fy k() { TV, ifk=nn+l,...
Snk lf]\,Zl,27,Tl”‘1

Supp(F_ k(x)) =
pPP(F_ k() {5‘8~Vo fk=nn+1,...

When V = Her, (H), we put

len,—2n+k+1
Pyale) = PR (@),

€o,—2n+k
P_i(2) = r[mn{O _: TI]A/QJ}(:L)

Then we have
det(0*)* Py (z) = c4 46(),
det(9%)* P_ x(z) = c_ x6(z),

with certain non-zero constants cy . and c_ 5. Thercfore Fi p(z) := cjﬁlkP+)k(k) and F_ k() =
cjrlkijk(k') are unique fundamental solutions whose supports are contained in the half spaces Hy
and H_y, respectively. The exact supports of I'y x(x) and I_ x(x) are given by

SR k=12, 2(n—1)

Supp(Fy k() =  “ntl-k/2
(Fe (=) {gzvn fk=2n—-1)+12n-1)+2,...

Supp(F. x(z)) = iglﬂ—k/ﬂ k=12...,2(n-1)
™ 0=V, ifk=2n—1)+12mn-1)+2,. ..



n

Corollary 7.2 (Huygens principle). The hyperbolic operator det(d*)* satisfies the Huygens principle
if and only if

k=1,2,...,[(n—-1)/2] when V = Sym,(R),
E=1,2,...,(n—1) when V = Her,(C), (30)
k=1,2,...,2(n—1) when V = Her, (H).

In particular, it satisfies the strong Huygens principle except for the case that k = [{n—=1)/2] and n is
odd in V = Sym, (R), the case that k = (n—1) in V = Her,(C) or the case that k = 2(n—1),2(n—1)— 1
in V = Her,, (H).

Remark 7.1. The exact supports of the fundamental solutions have been partly determined in some
preceding papers. For example, see Gindikin[5, p. 112, Example 2] and Atiyah, Bott, and Garding[1,
p. 181, Example 8.8]. However, in both of the papers, they mentioned only that the support of the
fundamental solution of det(§*)* coincides with the set of positive semi-definite matrices of rank < & in
the case when V' = Her,, (C) while we have determined in this paper the exact support of the fundamental
solutions in the case of V' = Sym, (IR) and V' = Her, (). Instead of the precise calculation of the support
of fundamental solutions in the specific examples, they gavc a theory to handle a wide range of examples.
For example, Gindikin’s theory can also be applied to a certain kind of parabolic differential operators.

8 Singularity spectrum of fundamental solutions.

Definition 8.1 (conormal bundle of a subvariety). Let A4 be a non-singular subvaricty in V. We
define the conormal bundle T{V of Atobe TAV = Upea(T3V)e where (T3V), = {(z,8) €TV | € €
(I"V). that satisfies ((,£) = 0 for all { € (T'4),}. Here (I*V), and (TV), are tangent or cotangent
vector spaces of V' at x € V| respectively, and (T'4), is the tangent vector space of A at 2 € A.

Theorem 8.1 (singularity spectrum). Let Fy (x) and F_ i (z) be the fundamental solutions of (det 9*)*
defined in Theorem 7.1. The singularity spectrum of them are given in the following formulas.

1. When V = Sym, (R), we have

n
S.8.(Fyx(z)) = U T5..V

i=max{n-2k,1}

S.S(F_ x(z)) = U T3V

i=max{n—2k, 1}

2. When V = Her,(C), we have

n

5.5.(Fy k() = U P
izmax{n—k,1} '

(32)

n

S.S(F_ k(z)) = U T5V

»

izmax{n-k,1}

3. When V' = Her,(H), we have

S.S(Fpa(z)) = U Tgn-iV

t=max{n+|—k/2],1} (3,3)

S.5.(F_ 4(z)) = U TeV
i=max{n+|—k/2],1}
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Remark 8.1. We have S.S.(F, x(z)) C Ui IT;,,~ V and S.S.(F-«(z)) C U, 1T“ V in all cases by

applying Hormander’s Theorem 2.1.

9 The Cauchy problem and the propagation of singularity.

Let V' be one of Sym,, (R), Her,, (C) and Her, (H) and let P(8) = (det(8*))* be the differential operator
on V. For an non-zero element ¥ € V* we put Ny := {z € V | (2,9) = 0}. Let z; := (z,9) and let
(z1,2") = (z1,22,... ,2m) be a coordinate of V. We denote by (81,8') = (81,02,...,0) the partial
derivatives with respect to the coordinate (z1,2') = (z1,22,... ,2m). Here m is the dimension of V.
We denote by I = kn the order of the differential operator P(d) = (det(8*))*. Then P(8d) can be

written as
P(8) = podt + p1(8)07 4+ -+ pi—1(0") 01 + p(8') (34)

We consider the Cauchy problem

P(Q)u(z) =0
(0)u(z) . (35)
dju(z)|e,=0 = v;(z') (7=0,1,...,0-1).
for a given initial data v := (vo(2’),... ,ui-1(2")) € B(Nyg)' consisting of compact supported hyperfunc-
tions on Ny. The unique solution to the Cauchy problem (35) is given by
Z/ (e = ) () dy
by using the fundamental solution
FSy = (Fo,... ,Fi-1) € B(V) (36)
where
Fo(z) = po(Fy e — F_ k)
1 - .
Fj(z) = o —(pod 4+ p1(0)0T + -+ p (8) Fo(z) (forj=1,...,0-1)
The support and the singularity spectrum of the initial data are defined by
-1
Supp(v(z)) = | Supp(v;(e)) C Ny,
Jj=0
. (37)
$.8.(v(z)) = |J 5:8.(v;(")) C T"N
7=0
and those of the fundamental solution F Sy are defined by
Supp(FSy) U upp(Fi(z)) C V,
- (38)

—

5.5 (F50)~USS H(z)) C TV,

7=0

The support and the singularity spectrum of the fundamental solution F Sy can be computed explicitly

in the following theorem.
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Theorem 9.1 (support and singular spectrum). The eract support and the exact singularity spec-
trum of the fundamental solutions F'Sy to the Cauchy problems (35) are given by (39) and (40), respce-

twely.

n

L] (S st if V = Sym,, (R)
i=max{n—2k,0}
Supp(FSy) = L] (stusth if V = Her,(C) (39)
i=max{n—k,0}
|| (89U STy if V = Her, (H)
i=max{n+|—-%/2],0}

( n-1
U  T&VUTL V) #V=sym,(R)
i=max{n-—2k,1}
n-—1
$.8.(FSg) = U @vuriv) if V = Her, (C) (10)
i=max{n—k,1} ' '
n—1
(T_;.? Vvu T;:H, V) if V = Her, (H)
\i=max{n+|~k/2] 1}

Theorem 9.2 (propagation of singularity). Let u(z) be the unique hyperfunction solution to the
Cauchy problem (35). Then we have:

1. If zy € Supp(u(z)), then

zy € {20 = yo + 20 | Yo € Supp(v(z)) and z; € Supp(FSy)}. (41)

2. If (z0,6p) € S.S.(u(x)) and zo & Ny, then there exists yo € Ny satisfying the following conditions:

(a) zo — yo € Supp(FSy).
(b) Let 8T (p =0 orp = n—1i) be a G'-orbit in Supp(FSy) that xo — yo belongs to. Then
(2o — yo,&0) € Tng,

(c) (yo,&0) € S.S.(v(x)). Here & means the projection of £y € V* onto N;.
Corollary 9.3. Let P(9) = det(8")*. The singularity spectrum of the hyperfunction solution of the
Cauchy problem for P(0) propagates along Tgo V and Tg, V if and only if k = 1 and n = 2

n—1 n—-1
V =Sym, (R) ork =1 in V = Her,(C) or in V = Her, (H).
In particular, Tge V and Tg, V are subvarieties consisting of bicharacteristic strips of P(d) =
n—1 n-—-1

det(0*). The differential operator det{*) is not strongly hyperbolic except for the case of n = 2.
Therefore, for n > 3 in Her,(C) or in Her, (H), det(8*) is an example of a non-strongly hyperbolic
differential operator whose singularity spectrum of solution propagates only along bicharacteristic strips.
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