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Abstract

Two topics are discussed in the paper. The first one concerns information thermody-
namics, in particular the maximum entropy principle. This principle provides a constructive
criterion allowing one to find multiparameter statistical models based on incomplete exper-
imental data (on partial knowledge). As the next topic there are investigated differential-
geometric structures for a few statistical models. As the source of these structures serves
the Kullback-Leibler information and resulting from it a Riemannian metric, equivalent to
the Fisher information matrix. Scalar curvature analyzed for a few statistical models corre-
sponding to some known physical systems leads to the hypothesis that its inverse may serve
as a plausible measure of stability of these systems.

1 Introduction

Differential geometry, in particular Riemannian geometry and the theory of spaces with affine
connections, found many important applications in mathematical statistics and in information
theory. In mathematical statistics one is interested in finding a s0-called statistical model con-
sisting of a family of probability distribution (density) functions which depend not only on
random variables but usually depend also on a number of parameters. Then to every set of
numerical values of these parameters corresponds one probability density called statistical hy-
pothesis. Riemannian distance in the parameter space is used to make comparisons between
different statistical hypotheses. These geometrical methods soon found successful applications
in statistical physics, and hence in thermodynamics.

Thermodynamics is a branch of physics which deals with thermal phenomena in macroscopic
bodies. It uses two methods: phenomenological and statistical. The phenomenological approach
is based on direct macroscopic observations and assumes continuous model of matter disregarding
its microscopic structure. The statistical approach (statistical physics, statistical mechanics)
is based on microscopic (discrete) model of matter and on classical or quantum mechanics,
as well as on probability and information theory. The basic problem of statistical physics
consists in finding probability distribution (a function in the classical case and an operator in
the quantum case) which describes the collective statistical behaviour of the system and allows
one to calculate mean values and fluctuations of all plausible orders of various physical quantities.
Such a probability distribution may be postulated or guessed, ‘derived’ from the (postulated)
microcanonical distribution or derived from a variational principle. By a variational principle
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we mean the maximum uncertainty principle, or the maximum information (entropy) principle
$[1, 2]$ . Due to this we use the term information thermodynamics.

2 Information thermodynamics of classical systems

Let us consider a classical $N$-particle mechanical system with a configuration space $Q$ and the
corresponding phase space $\Gamma$ which usually is the cotangent bundle of $Q$ , i.e. $\Gamma=T^{*}Q$ . Points
of $\Gamma$ , parameterized locally by positions $q$ and momenta $p$ ,

$(q,p)=(q^{1}, . . , q^{3N};p_{1}, . . . ,p_{3N})\in\Gamma$ . (2.1)

are called microscopic states or classical pure states.
Dynamical evolution of the system is given by $6N$ Hamilton equations

$\frac{dqi}{dt}=\frac{\partial H}{\partial p_{i}}$ $\frac{dp_{i}}{dt}=-\frac{\partial H}{\partial q^{i}}$ , $i=1$ , $\ldots$ , $3N$, (2.3)

where $H=H(q,p, t)$ is the Hamiltonian of the system and $t\in$ $lil$ denotes time. Physical
quantities $F_{i}(q,p, t)$ (observables, dynamical variables) are real-valued functions on $\Gamma\cross$ R. For
large $N$ it is not possible to control all $\#$ ’s and 7’s, instead one is able to take into account only a
small number of dynamical variables $F_{i}$ , and measurements give mean values $m_{i}$ of them. Thus
one is forced to use statistical methods.

Statistical mechanics makes predictions about systems which are based on partial infor-
mation obtained from incomplete measurements. By an incomplete measurement we mean a
measurement giving only a few values of $Fll_{i}$ . The central notion of classical statistical mechanics
is the notion of probability (density) distribution $\rho(q,p, t)$ such that

$\rho(q,p, t)\geq 0,$ $f$ $\rho(q,p, t)d\Gamma=1$ , $d\Gamma=dqdp=dq1\ldots$ $dqd3Np_{1}\ldots$ $dp_{3N}$ ; (2.3)
$\Gamma$

$\rho$ is called a statistical state or probabilistic measure on F.
The time evolution of $\rho$ is given by Liouville’s equation

$\frac{\partial\rho}{\partial t}+$ $\{\rho, H\}$ $=0$ , (2.4)

where $\{\rho, H\}$ is the Poisson bracket of $\rho$ and $H$ . If $\rho=\rho(q,p)$ , $H=H(q,p)$ , then we say that
the system is in statistical equilibrium and then obviously { $\rho(q,p),$ $H$ (q, $p)$ } $=0.$

Let us consider now an equilibrium system for which we are interested in $r$ stochastic variables
represented by $r$ functions $F_{1}(q, p)$ , $\ldots$ , $F_{r}(q,p)$ . Their mean values $m_{i}$ are defined formally as

$\gamma\gamma\iota_{i}=$ ’ $F_{i}$ ) $= \int_{\Gamma}\rho(q,p)F_{i}(q,p))d\Gamma$ . $i=1,$ . . . ’
$\mathrm{r}$ . (2.5)

The problem is that $\rho(q,p)$ is usually not known. Instead, as was said above, from direct
measurements we know only mean values $\prime m_{i}$ corresponding to these stochastic variables Fj.
This partial knowledge does not allow for a unique reconstruction of $\rho$ $(q, p)$ without additional
assumptions. Therefore we can only define a set of probability distributions, the s0-called
macrostate $K_{F_{1}}$ . $.F_{r}$ (with respect to $F_{1}$ , . . . , $F_{r}$ ),

$K_{F_{1}\ldots F_{r}}=\{\rho(q,p)$ ; $\int_{\Gamma}\rho(q, p)F_{i}(q,p)d\Gamma=m_{i}$ , $i=1$ , . . $l$ , $r\}\downarrow$ (2.6)
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The macrostate $K_{F_{1}}F_{r}$ is a convex set because if $\rho_{1}$ , $\rho_{2}\in K_{F_{1}\ldots F_{r}}$ , then also their convex
combination

$\rho=\alpha_{1}\rho_{1}+\alpha_{2}\rho_{2}$ , $\alpha_{1}\geq 0,$ $\alpha_{2}\geq 0,$ $\alpha_{1}+$ $\alpha_{2}$ $=1$ . (2.7)

gives the same mean values $m_{i}$ since

$m_{i}(\alpha_{1}\rho_{1}+\alpha_{2}\rho_{2})=\alpha_{1}m_{i}(\rho_{1})+\alpha_{2}m_{i}(\rho_{2})=(\alpha_{1}+\alpha_{2})m_{i}=m_{i}$ . (2.8)

The set $F_{1}$ , . . . , $F_{r}$ has to be ther modynamically regular, i.e. $F_{i}$ must be such that [3]:

$\circ F_{1}$ , $\ldots$ , $7’ \mathrm{j}$ and $F_{0}=1$ are linearly independent,
$\circ$ there exist real numbers $\theta^{1}$ , $\ldots$ , $\theta^{r}$ such that

$\int_{\Gamma}\exp[-\sum_{\iota=1}^{r}\theta’ F\mathrm{i}(q, p)]d\Gamma<\infty$ .

The entropy of the macrostate $K_{F_{1}.F_{r}}$ is defined as

$S(K_{F_{1}}.F_{r})= \sup\{S(\rho) ; \rho\in K_{F_{1}}. F_{r}\}$ , (2.9)

where

$S(\rho)=-k$ $\int_{\Gamma}\rho(q, p)\ln\rho(q,p)d\Gamma$ , $k=1.38\cross 10^{-23}J$ . $K^{-1}$ (2.10)

The above formula for entropy is the sa me as the formula for information and differs only by
the multiplicative Boltzmann constant $k$ which establishes the physical unit of entropy.

By a representative density (statistical state) we call

$\rho^{*}\in Kp_{1}^{\urcorner}F_{r}$ . such that $S(\rho^{*})=S(K_{F_{1}}. F_{r})$ (2.11)

The representative state $\rho$

’ is unique because of convexity of the macrostate. Thus we have
come to the maximum information principle $[1,2]$ .

Maximum information (uncertainty, entropy) principle: For a macrostate $K_{F_{1}^{1}}F_{r}^{1}$ gen-
erated by a thermodynamically regular set of $r$ physical quantities $F_{1}$ , $\ldots$ , $F_{r}$ , the representative
distribution $\rho^{*}$ is the best probability measure compatible with the available (measured) data.

As a matter of fact this principle stands for a direct extension of Laplace’s principle of
insufficient reason.

To find explicit form of $\rho^{*}$ for a thermodynamically regular macrostate $K_{F_{1}}\Gamma_{r}\sqrt$ we look for
the maximum of the entropy functional (2.10) subject to the constraints

$\int_{\Gamma}\rho(q,p)d\Gamma=1,$ $\int_{\Gamma}\rho(q, p)F_{i}(q, p)d\Gamma=m_{i}$ , $i=1$ , . . , $r$ . (2.12)

To do this we look for the maxi mum of an unconstrained functional

$L(\rho)=-k$ $\int_{\Gamma}\rho\ln\rho d\Gamma-kw’\int_{\Gamma}\rho d\Gamma-k\sum_{i=1}^{r}\theta^{i}\int_{\Gamma}\rho F_{i}d\mathrm{I}\urcorner$ , (2.13)
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where $w’$ , $\theta^{1}$ , . . $\mathrm{t}$ , $\theta^{r}$ are unknown Lagrange multipliers. We obtain

$\rho^{*}(q,p)=\exp[-1-w’-\sum_{i=1}^{r}\theta^{i}F\mathrm{i}(q, p)]\equiv Z^{-1}(\theta^{1}, \ldots, \theta^{r})\exp[-\sum_{i}\theta^{i}$Fi $(q,p)]$ , (2.14)

where

$Z^{-1}=\exp[-1-w’]=\exp[-w]$ . $Z( \theta^{1}, \ldots, \theta^{\Gamma})=\int_{\Gamma}\exp[-\sum_{i}\theta^{i}F_{i}(q,p)$ ]I $d\Gamma$ . (2.15)

is the normalization factor (in physics called the partition function, or the sum of states) and
$\theta^{1}$ , $\ldots$ , $\theta^{r}$ are the s0-called statistical temperatures. They are uniquely determined by the mea-
used $m_{i}$ by the formulae

$m_{i}=- \frac{\partial\ln Z(\theta^{1},..1}{\partial\theta^{i}}$
, $\theta^{r})$

, $i=1$ , $\ldots$ , $r$ . (2.16)

The entropy of the macrostate $K_{F_{1}.F_{r}}$ is then

$r$

$S(K_{F_{1}}F_{r})=S(\rho^{*})=k\ln Z(\theta^{1}, \ldots, \theta^{r})+k5$ $\theta^{\mathrm{t}}\langle F_{i}\rangle$ . (2.17)
$\mathrm{i}=1$

From the above and from the rest of this paper we will see that of particular interest for
thermodynamics and geometry is the partition function $Z(\theta^{1}, \ldots, \theta^{r})$ . Having $Z(\theta^{1}, \ldots, \theta^{r})$

one is in principle able to calculate all the required thermodynamic and geometrical quantities
by the differentiation of $Z$ and by elementary algebraic operations on $Z$ and its derivatives.

From now on we will restrict ourselves to representative distributions only and thus we
shall drop the asterisk * The best known example of $\rho$ for $r=1$ is the canonical (Gibbs)
distribution generated by only one stochastic variable, by the Hamiltonian $F_{1}=H$ (q, $p$), which
in the standard notation $[4, 5]$ reads as

$\rho(q, p)=Z^{-1}(\beta)\exp[-\beta H(q, p)]$ , $Z( \beta)=\int_{\Gamma}\exp[-\beta H(q,p)]d\Gamma$ , (2.18)

where

$\theta^{1}=\beta=(kT)^{-1}$ , $d \Gamma=\frac{1}{N!h^{3N}}dq1$ . . . $dqd3Np_{1}$ . . . $dp3N$ , $h=6.626\cross 10^{-34}J\cdot s$ ; (2.19)

$N!$ takes account of the fact that particles are indistinguishable and $h$ is the Planck constant.
For this $\rho$ one obtains

$U= \langle H\rangle=-\frac{\partial\ln Z(\beta)}{\partial\beta}$ , $S(\rho)=k\ln Z(\beta)+k\beta U$ (2.20)

The canonical distribution will be not used in this paper because the parameter space is here
1-dimensional and thus is not interesting from the point of view of geometry.

Another example is the grand canonical distribution generated by two stochastic variables,
by the $N$-particle Hamiltonian $H_{N}$ and by the number of particles $N$ ,

$\rho(q,p)=Z^{-1}(T, \mu)\exp[\frac{-H_{N}(q,p)+\mu N}{kT}]$ $\theta^{1}=\frac{1}{kT}’$. $\theta^{2}=-\frac{\mu}{kT}$ , (2.21)



43

The grand canonical distribution is used for open systems for which the number of particles $N$

is not fixed but the chemical potential $\mu$ can be controlled. Here

$Z(T, \mu)=\sum_{N=0}^{\infty}\int_{\Gamma_{N}}\exp[\frac{-H_{N}(q,p)+\mu N}{k^{\wedge}T}]$
$d\Gamma_{N}$ , (2.22)

and

$U=\langle H_{N}\rangle$ $=- \frac{\partial\ln Z}{\partial\theta^{1}}=kT^{2}\frac{\partial\ln Z}{\partial T}$ , $\langle N\rangle=-\frac{\partial\ln Z}{\partial\theta^{2}}=\frac{\partial 1\mathrm{n}Z}{\partial(\mu/kT)}$ . (2.22)

The third example is the s0-called Boguslavski or isobaric-isothe rmal or $P-T$ distribution
generated by $H$ and the volume $V$ ,

$\rho(q,p)=Z^{-1}(T, P)\exp[\frac{-H(q,p)-PV}{kT}]$ $\theta^{1}=\frac{1}{kT}$ . $\theta^{2}=\frac{P}{kT}$ . (2.24)

This distribution is used for systems for which volume $V$ is not fixed (it can fluctuate) but the
pressure $P$ is controlled.

The mentioned before microcanonical $dist7\dot{\mathrm{v}}bution[4,5]$

$\rho(q, p)=W^{-1}\delta(H(q,p)-E)$ , (2.25)

where 6 is the Dirac $\delta$-function (distribution) is in this scheme derived from the functional

$L(\rho)=-k$
$\int_{\Gamma}\rho\ln\rho d\Gamma-kw\int_{\Gamma}\rho d\Gamma$

. (2.26)

For this distribution

$S=k\ln$ W. (2.27)

and the normalization factor $W$ denotes the number of microstates (elementary cells) in $\Gamma$ for
which $H(q,p)=E.$ We will not discuss this case.

3 Information thermodynamics of quantum systems

The state space of a quantum system is a Hilbert space $\mathrm{H}$ , in most cases infinite dimensional,
whose elements (vectors) $|\psi)$ $\in \mathcal{H}$ are called wave functions or pure states; we assume that they
are orthonormal, $\mathrm{i}.\mathrm{e}$ .

$\langle\psi_{k}|\psi_{\iota}\rangle\equiv\int\overline{\psi_{k}}(x)’ i$ $(x)dx=\delta_{ki}$ . (3.1)

($\overline{\psi_{k}}$ is complex conjugate of $\psi_{k}$). Evolution of pure states is given by the Schrodinger equation

$ih$ $\frac{\partial}{\partial t}|\psi)=H|\psi\rangle$ , $\hslash$ $=h/2\pi$ , (3.2)

where $H$ is the Hamilton operator of the considered system.
Usually quantum system is not in a pure state but rather in a mixed state (also called density

operator, density matrix or quantum statistical state) [5]

$\rho=\sum_{i}w_{i}P_{i}=\sum_{i}?\#_{i}|\mathrm{A}_{i})\langle\psi_{i}|$
, (3.3)
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where $P_{i}=|\psi i$ ) $\langle$ $\psi_{i}|$ denotes the projection operator onto the one-dimensional subspace of $\mathcal{H}$

spanned by $|\psi_{i}\rangle$ and $Ul_{i}$ means the probability that the actual state is $|\mathrm{Q}i$ ). It is required that
the set of all pure states $|\psi_{i}$ ) is complete and that they are mutually orthonormal.

Because of $rr$ $P_{i}=1,$ and hence Tr $\rho:=\sum_{i}\rho_{ii}=\sum_{i}w_{\iota}=1,$ we have

$\rho\geq 0$ , $\rho^{\uparrow}=\rho$ , $\mathrm{R}$ $\rho=1$ (3.4)

The time evolution of $\rho$ is given by the von Neumann equation

$i \hslash\frac{\partial\rho}{\partial t}+[\rho, H]=0$ , $[\rho, H]=\rho H-H\rho$ . (3.5)

Entropy of mixed states (von Neumann (1927)) is defined as

$S(\rho):=-k$ Tr $(\rho \ln\rho)$
$(=-k \sum_{i}w_{i}\ln w_{i})$ . (3.6)

Let us now go over to quantum statistical physics. To this end let us consider $r$ physical
quantities (observables) which are by assumption self-adjoint linear operators $F_{i}$ on $H$ . From
measurements we know mean values $m_{i}$ of $F_{i}$ which are related to the (in principle unknown)
density matrix $\rho$ by the formulae

$m_{i}\equiv\langle F_{i}\rangle=$ Tr $(\rho F_{i})$ , $i=1,$ $\ldots$ , $r$ . (3.7)

The quantum macrostate is defined analogously to (2.6) as

$K_{F_{1}.F_{r}^{\urcorner}}=$ { $\rho$ ; Tr $(\rho F_{i})=m_{i}$ , $i=1,$ $\ldots$ , $r\cdot$ }, (3.8)

and the representative density matrix (also unique) takes the form

$\rho=Z^{-1}$ $( \theta^{1}, \ldots, \theta^{r})\exp[-\sum_{i=1}^{r}\theta^{i}F_{i}]$ (3.9)

with the partition function

$Z(\theta^{1}, \ldots, \theta^{r})=$ Tr $\exp[-\sum_{i=1}^{r}\theta^{i}F_{i}]$ (3.10)

and

$m_{i}=- \frac{\partial\ln Z(\theta^{1}\ldots,\theta^{r}))}{\partial\theta^{i}}$ , $S( \rho)=k\ln Z+k\sum_{l=1}^{r}\theta^{i}\langle F_{l}\rangle$ ( (3.11)

The representative density matrix for arbitrary $r$ shall be called a generalized (Gibbs) density
matrix. Its special cases are the canonical, grand canonical, and the Boguslavski counterparts
of the classical distributions.

The microcanonical density matrix is also analogously given by

$\rho=\sum_{i=1}^{W}\frac{1}{W}|\psi_{i}\rangle$ $\langle$ $\psi_{i}|$ , where $H|\psi_{i}\rangle$ $=E|\psi_{\iota}\rangle$ , E-fixed.



45

4 Riemannian structure of a family of probability distributions

Let us consider a parameterized family $S^{r}=\{\rho(y, \theta)\}$ of probability distributions, where $y$

denotes now all microscopic random variables (phase space variables for classical systems) and
$\theta=$ $(\theta^{1}$ , . . . , $\theta^{r})$ denote thermodynamic parameters. Such a family is called a statistical or
probabilistic model [6],

Let $\rho(y, \theta)$ and $\sigma(y, \theta)$ be two probability distributions from $S^{r}$ and let they be mutually
absolutely continuous. The relative information [3] of $\rho$ and a is defined as

$I(\rho|\sigma)=7$ $\rho(y, \theta)(\ln\rho(y, \theta)-\ln\sigma(y, \theta))dy=7$ $\rho(y, \theta)\ln\frac{\rho(y,\theta)}{\sigma(y,\theta)}dy$ . (4.1)

The other names for $I(\rho|\sigma)$ are Kullback information, R\’enyi-Kullback information, information
gain, directed divergence or directed distance. In general it is not symmetric, i.e. $I(\rho|\sigma)\neq I(\sigma|\rho)$

but

$I(\rho|\sigma)\geq 0$ , $I(\rho|\sigma)=0$ iff $\rho(y, \theta)=$ $\mathrm{p}(y, \theta)$ . (4.2)

The symmetrized counterpart of $I(f|g)$ is defined as

$\mathrm{J}(\mathrm{p}, \sigma)=I(\rho|\sigma)+I(\sigma|\rho)=\int$ ( $\rho-$ a) $\ln$ $\frac{\rho}{\sigma}dy$ (4.3)

and is called divergence, information distance or again information gain.
Parallel to $\mathit{5}^{\Gamma}$ let us introduce an $r$-dimensional parameter space $7\mathit{2}^{r}$ , where $\mathrm{P}$” is a collection

of all points $\mathrm{P}^{r}=\{\theta\}=$ $\{(\theta^{1}, . . , \theta^{r})\}$ . By assumption 7” is an $r$-dimensional differentiable
manifold with $\theta=$ $(\theta^{1}, \ldots, \theta^{r})$ playing the role of local coordinates. Usually 7” will be a subset
of $\mathbb{R}^{r}$ In this paper, statistical model will be given by a family of probability distributions
$\rho(y, \theta)$ having the same functional form but differing by the nu merical values of the parameters
0. Therefore we will have a1-1 correspondence between points of $S^{r}$ and 7” and thus any
geometrical structure defined on $S^{r}$ can be considered as a structure on $\mathcal{P}^{r}$ . This is important
for physics because it allows to endow spaces of directly measurable parameters with geometrical
structures. For instance, $\rho$ and a will be treated as two different points of $S^{r}$ arid at the same $\mathrm{t}\mathrm{i}$ me
as two different points of 7” With every tangent space $T_{\theta}P$ will be associated a corresponding
tangent space $T_{\theta}S$ in such a way that every tangent basis vector $\partial_{i}\equiv\partial/\partial\theta^{i}$ in ij A will have a
representative $\partial_{i}l\equiv\partial_{i}\ell(y, \theta)\equiv\partial\ell(y, \theta)/\partial\theta^{\mathrm{t}}$ in $T_{\theta}$ S, where $l(y, \theta)=\ln\rho(y, \theta)$ , see $[6, 7]$ .

To define a Riemannian structure on $S^{r}$ . and thus on $\mathcal{P}^{r}$ . let us take two adjacent points
in $S^{r}$ , $\rho(y, \theta)$ and $\sigma(y, \theta \mathrm{f}\Delta\theta)\equiv\rho(y, \theta+\Delta\theta)$ . Moreover, let us assume that $\rho(y, \theta)$ satisfy the
following regularity conditions [3]:

$\circ$ the partial derivatives a $\ln\rho/\partial\theta^{i}$ , $\partial^{2}\ln\rho/\partial\theta^{i}\partial\theta^{j}$ and $\partial^{3}\ln\rho/\partial\theta^{i}\partial\theta^{j}\partial\theta^{k}$ exist in all points
of the intervals $A^{i}=$ $(\theta^{\mathrm{i}}, \theta^{i}+\Delta\theta")$ , for all $i,j$ , $k=1,2$ , . . . ’

$r$ ,
$\circ$ for arbitrary $\theta’\in A^{i}$ and for all $i,j$ , $k$ one has

$| \frac{\partial\rho}{\partial\theta^{l}}|<F(y)$ , $| \frac{\partial^{2}\rho}{\partial\theta^{i}\partial\theta^{j}}|<$ C(y), $| \frac{\partial^{3}\ln\rho}{\partial\theta^{i}\partial\theta j\partial\theta^{k}}|<H(y)$ .

where $F(y)$ and $G(y)$ are some functions integrable on the whole space of variables $y$ , and
$\int\rho(y, \theta)H(y)dy<M$ , with $M$ not depending on 0,

. $\int\frac{\partial\rho}{\partial\theta^{i}}dy=0,$ $\int\frac{\partial^{2}\rho}{\partial\theta^{i}\partial\theta^{j}}dy=0$ (from normalization of $\rho$).
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To simplify the notation let us write

$\rho(y, \theta)=\rho(\theta)$ , $\mathrm{r}(y, \theta+\Delta\theta)\equiv\rho(y, \theta+\Delta\theta)=\rho(\theta+\Delta\theta)$ (4.4)

and

$J(\rho(\theta), \mathrm{o}(/?+\Delta\theta))$ $=J(\theta, \theta+\Delta\theta)$ . (4.5)

Then using the properties of $J$ inherited from those of $I$ , and the above regularity conditions,
after expanding $J(\theta, \theta+\Delta\theta)$ into power series with respect to 0 (to the second order) we get

$J(\theta, \theta+\Delta\theta)$ $=g_{ij}(\theta)\Delta\theta$
’ $\Delta\theta$’ . (4.6)

where

$g_{ij}(\theta)=\langle\partial_{i}\mathrm{e}\partial_{j}l\rangle$ $\equiv\langle\frac{\partial\ln\rho}{\partial\theta^{i}}\frac{\partial 1\mathrm{n}\rho}{\partial\theta^{j}}\rangle=\int\rho(y,\theta)\frac{\partial\ln\rho(y,\theta)}{\partial\theta^{i}}\frac{\partial\ln\rho(y,\theta)}{\partial\theta^{j}}dy$ (4.7)

and $\langle\rangle$ again means expectation value. It can be shown that also

$I$ ( $\theta|\theta+alSO$ $= \frac{1}{2}g_{ij}\Delta\theta^{i}\Delta\theta^{j}$ (4.8)

From the construction above it is obvious that $g_{ij}(\theta)$ are components of a covariant tensor and
that the quadratic form $dl^{2}=gij(\theta)d\theta^{i}d\theta^{j}$ is symmetric and positive definite. Thus we see that
$gij(\theta)$ treated as a Riemann metric tensor on $S^{r}$ is equivalent to the Fisher information matrix
$[8, 6]$ for $S^{r}$ . Actually it was Rao [9] who first proposed to interpret $dl^{2}$ as the metric form on

$S^{r}$ . To find a distance between two points of $S^{r}$ i.e. between two statistical hypothesis, he
integrated $dl$ along a geodesies passing through these two points.

5 Riemannian geometry of a set of classical generalized Gibbs
distributions and of the associated parameter spaces

As a statistical model $S^{r}$ of a classical physical system let us consider now a family of generalized
$r$-parameter Gibbs distribution functions

$\rho(y, \theta)=Z^{-1}(\theta)e^{-\theta^{i}F_{l}(y)}$ , $i=1,$ $\ldots$ , $r$ . (5.2)

Associated to $S^{r}$ is a parameter space $\mathrm{P}^{r}$ . Again $F_{i}$ : $\Gammaarrow \mathbb{R}^{1}$ are linearly (but not statistically)
independent stochastic variables and $\theta=$ $(\theta^{1}, . . , \theta^{r})$ are macroscopic parameters (statistical
temperatures). The normalization factor $Z(\theta)$ is

$Z( \theta)=\int_{\Gamma}e^{-\theta^{i}}F\mathrm{i}(y)$ $dy$ (5.2)

and

$m_{i}=\langle F_{\iota}\rangle$ $= \int_{\Gamma}\rho(y, \theta)F\cdot(y)$ $dy=- \frac{\partial\ln Z}{\partial\theta^{i}}$ . (5.3)

According to (4.6) and (4.7) the square infinitesimal distance on 7” is

$dl^{2}=J(\theta+d\theta|\theta)=2I(\theta+d\theta|\theta)=g_{ij}(\theta)d\theta^{i}d\theta^{j}$ , (5.4)
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with

$g_{ij}(’)= \frac{\partial^{2}I}{\partial\theta^{i}\partial\theta^{j}}=\langle\frac{\partial\ln\rho}{\partial\theta^{i}}\frac{\partial 1\mathrm{n}\rho}{\partial\theta^{j}}\rangle=-\langle\frac{\partial^{2}1\mathrm{n}\rho}{\partial\theta^{i}\partial\theta^{j}}/=\frac{\partial^{2}1\mathrm{n}Z(\theta)}{\partial\theta^{i}\partial\theta^{j}}$ (5.5)

$=- \frac{\partial m_{i}}{\partial\theta^{j}}=-\frac{\partial m_{j}}{\partial\theta^{i}}=\langle(F_{l}(y)-m_{i})(F_{j}(y)-m_{j})\rangle$

From the last term we see that the components $gij$ are actually given by covariances of the
stochastic variables $F_{i}$ and $Fj$ and thus have an obvious physical interpretation in terms of the
theory of fluctuations.

The Christoffel symbols

$\Gamma_{ijk}=\frac{1}{2}(\frac{\partial gik}{\partial\theta^{j}}+\frac{\partial gij}{\partial\theta^{k}}-\frac{\partial g_{jk}}{\partial\theta^{i}})$ (5.6)

reduce for our metric to

$\Gamma_{ijk}=\frac{1}{2}\frac{\partial g_{ij}}{\partial\theta^{k}}=\frac{1}{2}\frac{\partial^{3}1\mathrm{n}Z}{\partial\theta^{i}\partial\theta j\partial\theta^{k}}=-\frac{1}{2}\langle(F_{i}-m_{i})(F_{j}-m_{g})(F_{k}-m_{k})\rangle$ (5.7)

The components of the curvature tensor

$R_{\iota jkl}= \frac{1}{2}[\frac{\partial^{2}g_{jk}}{\partial\theta^{i}\partial\theta^{l}}-\frac{\partial^{2}g_{ik}}{\partial\theta^{j}\partial\theta^{l}}+\frac{\partial^{2}gil}{\partial\theta^{j}\partial\theta^{k}}-\frac{\partial^{2}g_{jl}}{\partial\theta^{i}\partial\theta^{k}}]+g^{mn}(\Gamma_{mil}fnjk-\Gamma_{mik}\Gamma_{njl})$ (5.8)

$(g^{ij}g_{jk}=\delta_{k}^{i})$ reduce subsequently to

$R_{ijkl}=g^{mn}(\Gamma\Gamma milnjk-\Gamma\Gamma)miknjl$ . (5.9)

One sees that Rijki are functions of the second and third derivatives of In $Z$ and thus the functions
of the second and third moments of $F_{i}$ . Fortunately, due to the special for of $gij$ , they do not
depend on the fourth derivatives of In $Z$ which are not equivalent to the fourth moments of $7\mathrm{q}.$ .
Because the curvature tensor has many sy mmetries, the number of its independent components
is equal to $\frac{1}{12}r^{2}(r^{2}-1)$ . Therefore, for $r=2$ it has only one independent component, say $R_{1212}$ .

The scalar curvature $R=g^{gk}R_{jik}^{i}$ for $r=2$ can be expressed in a simple form, very
convenient for numerical calculations,

$R= \frac{2}{g}R_{1212}=\frac{-2}{g^{2}}$

$g_{11}$ $g_{12}$ $g22$

$\frac{\partial g_{11}}{\partial\theta^{1}}$ $\frac{\partial g12}{\partial\theta^{1}}$ $\frac{\partial g_{22}}{\partial\theta^{1}}$

$\frac{\partial g_{11}}{\partial\theta^{2}}$ $\frac{\partial g_{12}}{\partial\theta^{2}}$ $\frac{\partial g_{22}}{\partial\theta^{2}}$

$g=\det(g_{\iota j})$ . (5.10)

6 Examples

In this section we shall illustrate the general scheme developed above. To have a meaningful
Riemannian geometry we need at least two parameters, i.e. we need $r\geq 2.$ The simplest
example is the ideal gas composed of $N$ identical particles of mass $m$ for which Hamiltonian $H$

has the form

$H= \sum_{i=1}^{N}\frac{i2}{2m}$ , (6.1)
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and we use the Boguslavski (the $P-T,$ or pressure-temperature) distribution generated by $H$

and the volume $V$ ,

$\rho(q,p;\alpha, \beta)=Z^{-1}(\alpha, \beta)e$
$-\beta H(q,p)-\alpha V$ , $\theta^{1}=\beta=\frac{1}{kT}$ , $\theta^{2}=\alpha=\frac{P}{kT}$ . (6.2)

The partition function $Z(\alpha, \mathrm{V})$ is [10]

$Z( \alpha, \beta)=\frac{1}{N!h^{3N}}\int_{0}^{\infty}dVe^{-\alpha V}\int e^{-\beta H}dqdp=(\frac{2\pi m}{h^{2}\beta})^{3N/2}\alpha^{-(N+1)}$ , (6.2)

and for large $N$ , $\ln Z=(3N/2)\ln(2\pi m/h^{2}\beta)-N$ $\ln\alpha$ . Consequently (for $h=1$ )

$U= \langle H\rangle=-\frac{\partial\ln Z}{\partial\beta}=\underline{\frac{3}{9}}N\beta^{-1}$ , $\langle$ I $\rangle$
$=- \frac{\partial\ln Z}{\partial\alpha}=N\alpha^{-1}$ (6.2)

and

$g11$ $=$ $. \frac{\partial^{2}1\mathrm{n}Z}{\partial\beta^{2}}=\langle H^{2}\rangle-\langle II\rangle^{2}=\frac{3}{2}N\beta^{-2}$ ,

$g12$ $=$ $\frac{\partial^{2}1\mathrm{n}Z}{\partial\beta\partial\alpha}=\langle HV\rangle-\langle H\rangle\langle V\rangle=0$ , (6.5)

$g_{22}$ $=$ $\frac{\partial^{2}1\mathrm{n}Z}{\partial\alpha^{2}}=\langle V21-\langle V)’=N\alpha^{-2}$

The coordinates $\alpha$ , $\beta$ for $\mathcal{P}^{2}$ are orthogonal. The scalar curvature $R$ calculated according to
(5.10) is equal to zero. This can be also seen if the metric form

$dl^{2}= \frac{3N}{2}\beta^{-2}dj\mathit{3}2+N\alpha^{-2}d\alpha^{2}$ (6.6)

we express in the new logarithmic coordinates

$\beta’=\sqrt{3N}/2\ln\beta$ , $\alpha’=\sqrt{N}\ln\alpha$ , (6.7)

in which $\mathit{1}l^{2}=(d\beta’)^{2}+(d\alpha’)^{2}$ takes the Euclidean form. Then geodesies are straight lines;
physically they represent politropic processes. Ideal gas is the only known case for which $R=0.$
This can be related to the fact that this is the only case for which there are no phase transitions
and all states are stable.

One of the simplest classical systems of interacting particles is the s0-called van der Waals
gas for which the Hamiltonian has the form

$H= \sum_{i=1}^{N}\frac{i2}{2m}+\sum_{i_{J}},((d/r_{ij})^{12}-(d/r_{ij})^{6})$ , (6.2)

where $rij$ denotes the distance between two particles $(i\neq j)$ and $d$ is a constant. By changing
the second part of $H$ responsible for interactions between particles we can have different models
of gases. It appears that for all such systems $R$ is positive for all stable states and diverges to
infinity along the s0-called spinodal line and at the critical point $[10, 11]$ . It is not altogether
clear what is the physical meaning of the curvature $R(\theta)$ . However, these examples suggest that
$R^{-1}$ can be treated as a measure of thermodynamic stability of the syste$\mathrm{m}\mathrm{s}$ .
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Next we shall consider one of the simplest quantum systems by which we mean here a ID
(one-dimensional) Ising model (a magnetic system). For quantum systems the information gain
is defined as

$I(\rho|\sigma)=$ Tr $[\rho(\ln\rho-\ln\sigma)]$ . (6.9)

However, in the quantum case one has to be cautious because not all expressions in (5.5) are
really equal. Also, if $F_{i}$ do not commute then to calculate information distance one has to use
the Wilcox formula [12]

$\frac{de^{A(s)}}{ds}=\int_{0}^{1}e^{(1-\lambda)A}\frac{dA}{ds}e^{\lambda A}d\lambda=\int_{0}^{1}e^{\lambda A}\frac{dA}{ds}e^{(1-\lambda)A}\mathrm{d}\mathrm{X}$ (6.10)

for parameter differentiation of exponential operators. Using this formula one obtains [13]

$\frac{1}{2}\frac{\partial^{2}.J}{\partial\theta^{i}\partial\theta^{j}}$

$=$ $\int_{0}^{1}$ dXTr $[ \rho e^{\lambda\theta^{l}F_{l}}\frac{\partial 1\mathrm{n}\rho}{\partial\theta^{i}}e^{-\lambda\theta^{l}F_{l}}\frac{\partial 1\mathrm{n}\rho}{\partial\theta^{j}}]$ (6.10)

$=$ $\int_{0}^{1}$ dATr $[\rho e^{\lambda\theta^{l}F_{l}}(F_{l}-\langle F_{i}\rangle)e^{-\lambda\theta^{1}F_{l}}(F_{j}-\langle F_{j}\rangle)]$

and further

$\frac{1}{2}\frac{\partial^{2}J}{\partial\theta^{i}\partial\theta^{j}}=-\langle\frac{\partial^{2}1\mathrm{n}\rho}{\partial\theta^{i}\partial\theta^{j}}\rangle=\frac{\partial^{2}1\mathrm{n}Z}{\partial\theta^{\mathrm{i}}\partial\theta^{j}}$ , $Z(\theta)=$ ’r$\mathrm{r}e^{-\theta^{\iota}F_{i}}$ . (6.12)

In the quantum case the components of the metric tensor are, analogously to the classical case,
given by covariances of two operators, $F_{i}$ and $Fj$ , where the covariances are now equal to

cov $(F_{i}, Fj)= \int_{0}^{1}d$ \lambda h $[\rho e^{\lambda\theta^{l}F_{l}}(F_{i}-\langle F_{i}\rangle)e^{-\lambda\theta^{l}F_{l}}(Fj-\langle Fj\rangle)]$ (6.13)

It is reasonable to call these expressions covariances because for commuting $F_{i}$ they reduce to

$\mathrm{c}\mathrm{o}\mathrm{v}(F_{i}, F_{j})=\langle(\mathrm{f}^{\mathrm{f}}1 -\langle \mathrm{f}^{\mathrm{f}}2\rangle) (F_{j}-\langle Fj\rangle)\rangle$ . (6.14)

To compute the Christoffel symbols and the curvature tensor we need the third order dcriva-
tives of In $Z$ . Using once more the Wilcox formula we obtain a complicated expression

$\frac{\partial^{3}1\mathrm{n}Z}{\partial\theta^{k}\partial\theta j\partial\theta^{i}}=-\int_{0}^{1}d\lambda$’ $\{\rho(\int_{0}^{1}d\mu e^{-\mu A}(F_{k}-\langle F_{k}\rangle)e^{\mu A}\mathrm{e}-\lambda A(F_{i}-\langle F_{i}\rangle)e^{\lambda A}(F_{j}-\langle F_{j}\rangle)$

$+ \int_{0}^{\lambda}d\mu[e^{-\lambda A}(F_{i}-\langle F_{i}\rangle)e^{\lambda A}$ , $e^{-\mu A}(Fk-\langle Fk\rangle)e^{\mu A}$] $(F_{j}-\langle F_{j}\rangle))\}$ . (6.15)

where $A=-\theta^{l}F_{l}$ and $[, ]$ again denotes commutator. These are the third moments because for
commuting $F_{i}$ they reduce to

$\frac{\partial^{3}1\mathrm{n}Z}{\partial\theta^{l}\partial\theta^{j}\partial\theta^{k}}=-\langle$

$(F_{i}-\langle F\mathrm{i}))(F_{j}-\langle F_{J}\rangle)(F_{k}-\langle Fk\rangle)\rangle$ . (6.10)

Let us consider now a ID Ising model (spin lattice) $[5, 14]$ composed on $N$ spins $s_{i}$ in an
external magnetic field $h$ . Let $s_{i}=1$ or $s_{\iota}=-1$ , $i=1$ , $\ldots$ , $N$ , and as usually let the spin chain
be closed, i.e. $s_{N+i}=Sj.$ The Hamiltonian of this system is equal to

$H=-J$ $\sum_{k=1}^{N}s_{k}s_{k+1}-h\sum_{k=1}^{N}s_{k}=F_{1}+hF_{2}$ , (6.10)
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where $J$ is the coupling constant characterizing interaction of the nearest-neighbour spins. The
term $hF_{2}$ represents interaction of spins with the external magnetic field $h$ and its mean value
is equal to $-Mh$ , where $M$ denotes magnetization of the lattice. The probability distribution
for this system is

$\rho=Z^{-1}(\beta, \beta h)e^{-\beta H}=Z^{-1}(\beta, \beta h)e^{-\beta F_{1}-\beta hF_{2}}$ , $\theta^{1}=\beta=\frac{1}{kT}$ , $\theta^{2}=\beta h=\frac{h}{kT}$ . (6.18)

In the limit of large $N$ one obtains [14]

$Z(\beta, \beta h)=e^{N\beta}J$ $\{\cosh(\beta h)+[\cosh^{2}(\beta h)-2e^{-2\beta J}\sinh(2\beta J)]$ $1/2\}^{N}$ (6.19)

Using the formulae from previous sections for the scalar curvature we receive (after dividing
by $N$ ) $[13]$

$R=A^{-1}\cosh$ $y+1=\cosh y$ $(\sinh^{2}y+e^{-4x})^{-1/2}+1$ , (6.20)

where

$x=\beta J$ . $y=\beta h$ , $A$ (x, $y$ ) $=(\sinh^{2}y+e^{-4x})^{1/2}$ (6.21)

One immediately sees that $R$ is a positive function of $x$ and $\mathrm{y}$ . Moreover, it is symmetric in $y$

which means that it is independent of the orientation of $h$ . However, $R$ behaves differently for
positive $x$ ( $J>0,$ ferromagnetism) and negative $x$ ( $J<0,$ antiferromagnetism).

For physics it is interesting to analyze the behaviour of $R$ with respect to the temperature
$T$ and the external field $h$ because these parameters can be controlled easily. For instance, for
$T$ finite and $harrow\infty$ , we have $Rarrow\coth y+1arrow 2$ , whereas for $T$ finite and $harrow 0,$ one has
$Rarrow e^{2x}+1=e2J/kT+1.$ If $harrow 0$ and $Tarrow 0$ then also $R” \mathrm{p}$ $e2x+1=e2J/kT$ $+1$ . In turn, if
$\mathrm{p}^{7}arrow\infty$ , then $Rarrow 2$ for either sign of $J$ . On the other hand, if $h=0$ and $Tarrow 0,$ then $Rarrow$p $\infty$

for $J>0,$ and $Rarrow 1$ for $J<0.$ For a perfect paramagnetic substance $J=0,$ so $Rarrow 2$ for
$harrow 0.$ Therefore $R-2$ can be taken as a joint measure of fluctuations caused by interacting
spins, i.e. R-2 measures deviation of the considered system from ideal paramagnetism.

7 Concluding remarks and possible generalizations

The methods of differential geometry are well established in mathematical statistics. They are
not so well rooted in the formalism of statistical physics and in thermodynamics although it
seems that they may have more important implications in this field. Especially the curvature $R$

is a new thermodynamic function of the more standard thermodynamic parameters. The first
law of thermodynamics concerns only first-0rder derivatives of $\ln Z$ , and thus only first moments
of stochastic variables F{. The second law of thermodynamics imposes some conditions on the
second moments of these variables, or more generally on their covariances, and thus on second
derivatives of In $Z$ . The curvature tensor and the scalar curvature $R$ are functions of the second
and third moments of $F_{i}$ . Imposition of any condition on $R$ would be equivalent to introducing
a new law of thermodynamics.

Another choice is not to go beyond the standard thermodynamics but to find an interpre-
tation for $R$ as a new thermodynamic quantity. From experiments we know that in one-phase
syste$\mathrm{m}\mathrm{s}$ , far away from critical points and lines of coexisting phases, fluctuations are small and
states of systems are stable. Fluctuations become large and important in multi-phase systems,
and especially in the vicinity of critical points. As a result, in the vicinity of critical points
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systems become extremely unstable. Comparison of these facts with the computed numerical
values of $R$ leads to the conclusion that $R$ (or $R-a$ , $a-$ a constant, for magnetic systems)
could be treated as a joint measure of fluctuations occurring in the vicinity of a given state,
whereas $R^{-1}$ (or (ff $-a$)) could be treated as a measure of stability of the state $[13, 15]$ (the
bigger $R$ , the less stable system). To support this interpretation let us remind that $R=0$ for
ideal gas, $R\geq 0$ for all classical systems. For quantum systems, $R\geq 0$ for ideal boson gas and
$R\leq 0$ for ideal fermion gas (not computed here) [15]; $R\geq 0$ for ID Ising system and $R\geq 0$ for
the mean field model [13]. Because $R=0$ for ideal gas (noninteracting particles) we actually
infer that $R$ measures this part of fluctuations which comes from interactions only, and hence
measures ‘nonideality’ of the systems.

The ideal fermion gas is so far the only known physical system for which $R$ is negative. This
does not contradict the above interpretation of $R$ because this system occupies quite a unique
position among all physical systems. It is known that fluctuations in an ideal fermion gas are
actually smaller than in the classical ideal gas because of negative spatial correlations occurring
for fermionic systems. This is caused by the statistical effect of repulsion between particles (the
Pauli principle) [4].

As a possible generalizations we would like to propose to compute $R$ for:

$\circ$ parameterized families of probability distributions of different types (not necessarily expo
nential distributions ,

$\circ$ generalized parameterized distributions for which $\theta^{i}$ would also include temperatures of
higher order (such probability distributions could be obtained from the maximum infor-
mation principle based not only on the knowledge of first moments $m_{i}$ but also on the
knowledge of higher-0rder moments,. statistical models describing irreversible phenomena such as relaxation, diffusion and trans-
port processes with dissipation. Then $I(\rho|\sigma)$ would mean the production of entropy,

$\circ$ statistical models having applications in communication theory, pattern recognition, also
in biology and ecology, in theoretical linguistics, and so on.

Yet another possibility could be based not on the use of Riemannian metric but rather on a
connection (or a family of connections) $[6, 7]$ .
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