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Abstract
The problem of discovering nontrivial association rules from large

databases has recently become critical, especially 01 data mining area
where there exists a substantial need to develop efficient mining al-
gorithms for complex data. In this paper, we consider the situation
where items are constrained, i.e., some taxonomies (or hierarchies) on
the items are known. We first show how taxonomies can be generalized
using lattices, which are ordered structures, to represent constraints
on items. Then, we propose a new approach to find association rules,
based on the notion of biclosures introduced by the first author.
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1 Introduction
Data Mining is essentially done using statistical and computational tech-
nics (e.g. principal component analysis, factor analysis, $\rangle$ . ), to reveal hid-
den factors that underlie sets of variables, measurements or signals. In a
more algebraic approach, Galois connections first provide the mathematical
formalization of the classical $\mathrm{e}\mathrm{x}\mathrm{t}\mathrm{e}\mathrm{n}\mathrm{t}/\mathrm{i}\mathrm{n}\mathrm{t}\mathrm{e}\mathrm{n}\mathrm{t}$ scheme of objects described by
properties (see, e.g., [4, 12, 17]). Given a relation between a set of objects
and a set of properties, dually isomorphic orders on classes of objects and
sets of shared properties are provided by a natural Galois connection. This
basic fact was then frequently rediscovered in the literature. Combined with
other considerations, it was successfully developed in Formal Concept Ana-
lysls ([16, 17, 30]). It is also the starting point of many studies in Learning
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Theory, Conceptual Classification, Relational or Object Databases (see, e.g.,
[7, 18, 23, 29] $)$ .

They have been recognized as a fundamental mathematical concept in
the middle of the century ([5, 15, 26]), and constitute a useful tool in se-
veral domains related with data analysis like modelization and aggregation
of similarities and preferences ([19, 21, 22]) or mathematical morphology
([20]). They are strongly associated to many fundamental notions: among
others, closure operators, full implicational systems [2], and, more recently,
overhanging relations [10].

In the applications domains mentioned above, there is a need for efficient
ways of handling and transforming Galois connections. In that purpose, af-
ter recalling some basic definitions in Section 2, we will present here, in a
latticial oriented approach, different Data Mining tools, such as implications
and their generalization, the association rules (Section 3). Finally, in Sec-
tion 4, we will introduce what we mean by conceptual classification with
constraints.

2 Definitions

First let’s recall some basic definitions, together with some well known pr0-

perties about closure mappings, lattices and Galois connections.

2.1 Closure Mappings and Lattices

Let $S$ be a finite set. A closure space is a pair $(S, \varphi)$ , where /’ is a closure
operator on P$( \mathrm{S})$ , that is a mapping onto $P(\mathrm{S})$ satisfying the following three
properties:

(C1) $\varphi$ is isotone: for all $A$ , $B\subseteq S$, $A\subseteq B$ implies $\varphi(A)\subseteq\varphi(B)$ ;

(C2) ip is extensive: for all $A\subseteq S$, $A\subseteq\varphi(A)$ ;

(C3) $\varphi$ is idempotent: for all $A\subseteq S$, $\varphi(\varphi(A))=\varphi(A)$ .
The image $\mathcal{F}_{\varphi}=\varphi(7(S))$ of $P(S)$ by ? is exactly the set of all the fixed

points of $\varphi$ , which are called the elements of $P(\mathrm{S})$ closed by /2.

A lattice is a tuple $(L, \vee, \wedge)$ , where $L$ is a set, $x\vee y$ is the lowest upper
bound of $x$ and $y$ and $x\wedge y$ is the greatest lower bound of $x$ and $y$ . These two
operators are also called respectively join and meet of $x$ and $y$ (for further
information on lattices, see $[5, 11])$ . With the inclusion order, $(\mathcal{F}_{\varphi}, \vee, \cap)$ is
also a lattice with $\vee X=\varphi(\cup X)$ for $X\subseteq \mathcal{F}_{\varphi}$ . By the extensivity property,
$\varphi$ (AS) $=S\in F\varphi.$
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Example 2.1 A web site selling products can be modelled in the following
lattice (Figure 1), the minimum element being the home page, and the ma-
ximum the page where the products are sold.

Figure 1: Lattice of a web site.

Example 2.1 Let $\prime H$ be an hierarchy on $S$ , that is a set of subsets of $S$

(clusters) satisfying the conditions: (HI) $S\in lt,$ (H2) for $H$, $H’\in H,$ $H\cap$

$H’\in\{\emptyset, H, H’\}$ , and (H3) for all $s\in S$ , $\{s\}\in$ ?t. The set $H$ $\cup\{\emptyset\}$ is a
closure system on $S$ . Hierarchies constitutes a basic model of classification
trees.

Conversely, a closure $\varphi_{F}$ on $P(S)$ , given by $\varphi_{F}(F)=\cap\{F’\in$ $t$ : $F\subseteq$

$F’\}$ , corresponds, in this way, to any family 7 of subsets of $S$ satisfying (i)
$S\in \mathcal{F}$, and (ii) $2”\subseteq$ I implies $\cap \mathcal{F}’\in$ $\mathrm{r}$. With these properties, $\mathrm{F}$ is said to
be a Moore family (or a closure system) on $S$ , and we denote by $\mathcal{M}$ the set
of all Moore families on $S$ . It is well-known that Moore families and closure
operators are in one-t0-0ne correspondence and constitute in fact equivalent
notions. The set $\mathcal{M}$ , ordered by inclusion, is itself a lattice, whose main
properties are described in the recent work of [6].

An element $j$ of the lattice $(L, , \wedge)$ is join irreducible if $X\subseteq L$ and
$j=\vee X$ imply $j\in X;$ the set of all join irreducibles of $L$ is denoted as $J_{L}$

or $J$ if no confusion is possible. The join irreducible elements of $L$ are those
which cannot be obtained by others and using the join operator. Dually, an
element $m$ of $L$ is meet irreducible if $X\subseteq L$ and $m=\Lambda X$ imply $m\in X.$

The set of all the meet irreducibles of $\mathcal{F}$ is denoted as $M_{L}$ or $M$ . For an
element $x\in L,$ the subsets ($x]=\{y\in L$ : $y\leq x\}$ and $[x$) $=\{y\in L : x\leq y\}$
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are respectively called the principal ideal and the principal filter of $L$ with
basis $x$ .

2.2 Galois Mappings

Let $L$ and $L’$ be two complete lattices, and a mapping $f$ : $Larrow L’$ . A
mapping satisfying the following condition is said to be a Galois mapping
([26]) :

(GM) the mapping $f$ is antitone and there eists an antitone mapping $g$ from
$L’$ to $L$ such that the composition mappings $\varphi$ $=gf$ and $\psi$ $=fg$ are
extensive.

The pair $(f,g)$ is a Galois connection between $L$ and $L’$ ; the maps $fyg$

in a Galois connection determine each other uniquely. Both composition
mappings / and $\psi$ are closures, respectively on $L$ and $L’$ . The ordered sets

$\mathrm{X}$

$=\varphi(L)$ and $\mathrm{I}=\psi(L’)$ are dually isomorphic by the restrictions of $f$ and
$g$ .

The following type of Galois connection is fundamental in data mining.
Consider two sets $S$, $A$ and a relation $R\subseteq S\mathrm{x}A$ . For example, $S$ can be a
set of objects, $A$ a set of attributes and $R$ is the relation $sRa$ defined by ” the
object $s$ has the attribute $a$

” For $s\in S$, $a\in A,$ the equivalent notation $sRa$

or $(s, a)\in$ ff will be used according to the context. Define $f_{R}$ : $\mathcal{P}(S)arrow P$ (A)
and $g_{R}$ : $P(A)arrow$ $P(\mathrm{S})$ by $f_{R}(C)=$ {$a\in A:(s,a)\in R$ for all $s\in C$} and
$g_{R}(D)=$ {$s\in S$ : $(s,$ $a)\in$ R for all $a\in D$ }, for all $C\subseteq S$ , $D\subseteq A.$

The mapping $f$ associates to a set of objects $C$ all the attributes shared
by all the objects in $C$ , the intension of $C$, and $g$ associates to a set of
attributes $D$ all objects having all the attributes in $D$ , the extension of
$D$ . It is straightforward that the pair $(f_{R}, g_{R})$ satisfies Condition (GM) and
constitutes a Galois connection between $P(S)$ and $P(A)$ , both endowed with
the inclusion order. The lattice of closed subsets of $S$ is the Galois lattice of
$R$ , sometimes also called (formal) concept lattice.

Example 2.3 Set $P=P$(S), where $S$ is the finite set of objects under
study, and consider a (complete) lattice $Q$ of descriptions, together with a
description $d(s)\in Q$ of each element $s\in S.$ The order of $Q$ corresponds with
a generalization order, where $q\leq q’$ means that description $q$ is more general
than description $q’$ (an example of such a lattice is the one of Example 2.1).
Then, it is said that $s\in 5$ satisfies description $q$ if $q\leq d(s)$ . For any class
(subset) $C\subseteq S,$ and description $q\mathrm{E}$ $Q$ , the mappings $f(C)=\wedge \mathrm{d}(\mathrm{s})$ : $s\in$
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$C\}$ and $g(q)=\{s\in S : q\leq d(s)\}$ constitutes a Galois connection between
$P(S)$ and $Q$ .

Remark 2.1 Example 2.3 can appear to be a generalization of the previous
type of Galois connection; in fact, as shown in [17], the Formal Concept
Lattice scheme is the more general case (see [9] for a presentation of a
common frame).

The well-known Galois connection associated with the table of finite
lattice $T$ belongs to the previous type. The table of $T$ is the relation $R\tau$ $\subseteq$

$J\mathrm{x}M$ defined by $(j, m)\in R_{T}$ if $j\leq m,$ for any $j\in J$, $m\in M\mathrm{r}$ Every finite
lattice is isomorphic to the Galois lattice associated with its table ([4]). The
generalization of this fact to any complete lattice was given by [30].

2.3 Galois Connections in Data Mining

One basic purpose of any Data Mining is to obtain classes of objects sharing
similar characters, a description by attributes being associated to each class.
As described above, Galois connections, by providing a correspondence be-
tween extents and intents, satisfy this purpose.

Another important aim in Data Mining is to organize data to make it
more readable or to recover some unknown structure. For instance, hier-
archical clustering methods provide a classification tree, sometimes (e.g. in
phylogenetic reconstruction or cognitive psychology) an estimation of an un-
known tree. The Galois lattice does not correspond to such an objective since
it preserves the whole information of the data. So, as ffequently observed
in the literature, it has a great sensitivity to noise and deviation from the
model. Also, the number of concepts potentially grows exponentially with
the data size, leading to problems of computational complexity.

Between many different approach, one can pick methods to prune the
concept lattice, for instance by limiting its construction to a convenient
filter [24]. Another approach, more practically oriented, is to consider wea-
kened conditions for the closure systems associated, or for the (equivalent)
full implicational systems. We will present in the following Section such an
approach.
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3 Lattices and Conceptual Classification

3.1 Implications

Full implicational systems constitute a notion equivalent with both closure
operators and Moore families. An implicational system on $S$ is a binary
relation $S\subseteq$ $\mathrm{V}(\mathrm{S})$ $\mathrm{x}P(5)$ on $P(\mathrm{S})$ . In the sequel, $(A, B)\in$ S is denoted
$Aarrow \mathit{5}$ $B$ (or $Aarrow B$ if no confusion is possible). We then say that $A$ implies
$B$ or that $Aarrow B$ is an implication (of $S$).

A full implicational system (ffequently abbreviated as CIS) is an impli-
cational system satisfying the following conditions:

(51) $B\subseteq A$ implies $Aarrow B;$

(52) for any $A$ , $B$ , $C\in S$, $Aarrow B$ and $Barrow C$ imply $Aarrow C$ (transitivity);

(S3) for any $A$ , $B$ , $C$, $D\in S$, $Aarrow B$ and $Carrow D$ imply $A\cup Carrow B\cup D.$

[2] has established a one-t0-0ne correspondence between closure spaces
(or closure systems) and full implicational systems. First, given a closure
operator $\mathrm{t}$ on $S$ , the implicational system $S_{\varphi}=$ $\{Aarrow B : B\subseteq \varphi(A)\}$

is full. Conversely, if $S$ is a full implicational system on $S$ , then the set
$\mathrm{F}5$ $=$ { $F\subseteq S$ : $X\subseteq F$ and $Xarrow \mathrm{Y}$ imply $\mathrm{Y}\subseteq F$ } is a closure system on $S$ .
Its associated closure operator is denoted as $\varphi_{\mathrm{S}}$ . When $\mathcal{F}_{\mathrm{S}}$ is a classification
scheme, the meaning of $Aarrow B$ is that any class containing the elements of
$A$ contains also those of $B$ . Some examples of studies using implicational
systems were made, beyond many others, by Duquenne ([13, 14]) and Diday
([7]).

3.2 Association Rules

Full implicational systems satisfies strong requirements that, at a first glance,
could be expected to be rarely satisfied, or practically useless. So a possi-
ble extension of the notion of implication can be found in Agrawal and al
([1, 27]), with the definition of association rules. An association rule con-
sists of two itemsets (called the antecedent and the consequent), denoted by
$Aarrow B,$ with $A\cap B=\emptyset$ . The support of an association rule is the number
of items satisfying $A\cup B,$ and the confidence is the probability with which
the items in $A$ appear together with the items in $B$ in the given dataset.
More, we have:

cm$f(A ” B)= \frac{\sup(A\cup B)}{\sup(A)}$
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For example, an association rule $Aarrow B$ have a confidence 0.9 if 90% of the
items supporting $A$ also support $B$ .

Remark 3.1 An implication is an association rule with a confidence of 1,
justifying our use of it as a generalization of implications.

4 Constrained Conceptual Classification

In this section, we will present a particular type of binary relations, called
biclosed relations, first introduced in [8]. This type of relation is particularly
interesting to study because it is in a one-t0-0ne correspondence with Galois
connection. So, instead of dealing with mappings, we may work on biclosed
relations. Moreover, it can be use to modelize constraints on items or on
properties.

4.1 Biclosed relations on a product of closure spaces

In this paragraph, we introduce a type of binary relations on $S\cross S’$ , called
biclosed relations. This type of binary relation is in a one-t0-0ne corre-
spondence with Galois connections, and so, instead of having a couple of
mappings (constituting the Galois connection), it’s often more easy to use
binary relations. All the missing prooffi can be found in [8].

Let $(S, \varphi)$ and $(S’, \varphi)’$ be two closure spaces, with the corresponding
Moore families $\Phi$ and $\Phi’$ , respectively on $S$ and $S’-$ A relation $R\subseteq S\cross S’$

is said biclosed if it satisfies the following conditions:

(B1) for any $a\in S$, $aR$ $=\{a’\in S’ : (a, a’)\in R\}$ $\in\Phi’$ ;

(B2) for any $a’\in S’$ , $Ra’=\{a\in S:(a, a’)\in R\}\in\Phi$ ;

Condition (B1) corresponds to the closure on rows, while (B2) corresponds
in the same way to the closure on columns.

The set of all the biclosed relations is denoted as $\mathcal{R}_{\varphi\varphi’}$ . The closure
on $P(S\mathrm{x}S’)$ associated with the Moore family $\mathcal{R}_{\varphi\varphi’}$ is denoted as $\Gamma 0$ So
$\Gamma(R)$ is the intersection of all the biclosed relations containing $R$ . Consider
the following two mappings $\Gamma_{1}$ , $\Gamma_{2}$ : $P(S\mathrm{x}S’)arrow P(S\mathrm{x}S’)$ defined, for
$R\subseteq S\mathrm{x}S’$ , by:

$\Gamma_{1}(R)=\{(a,a’)\in S\mathrm{x}S’ : a’\in\varphi’(aR)\}$ and

$\Gamma_{2}(R)=$ $\{(a,a’)\in S\mathrm{x}S’ : a\in\varphi(7?a’)\}$
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These two mappings correspond to the two previous conditions (B1) and
(B2), i.e. $\Gamma_{1}$ is associated with (B1), for the rows closure, and $\Gamma_{2}$ is ass0-

ciated with (B2) and the columns closure. There is a relationship between
these two mappings and $\Gamma$ , the closure associated with the Moore family
$\mathcal{R}_{\varphi\varphi’}$ , given by:

Proposition 4.1 There exists an integer $k\leq|S\mathrm{x}S’|$ such that $(\Gamma_{1}\Gamma_{2})^{k}(R)$

$=\Gamma(R)$ .

Denoting by $\Phi\otimes\Phi’$ the set of all Galois mappings ffom $\Phi$ to $\Phi’$ , we have:

Theorem 4.1 The sets $\mathcal{R}_{\varphi\varphi}$/ and $\Phi\otimes\Phi$
’ are order isomorphic.

The previous results are in fact valid for $S$ and $S’$ finite or not. When $S$

and $S’$ are finite, we are in a much more simple case. Considering the sets of
join irreducibles $J=Js$ and $J’=J_{\mathrm{S}’}$ , they are minimal $\sup$-generating sets
of $S$ and $S’$ respectively. We have, by Theorem 4.1, an isomorphism between
the Galois mappings from $S$ to $S’$ and the biclosed relations between $J$ and
$J’$ , Moreover, the biclosed relation $R$ associated to a Galois mapping $f$ is
given by

$jRj’\Leftrightarrow j’\leq f(j)$

for all $j\in J,j’\in J’$ . Conversely, the Galois mapping $f$ associated to a
biclosed relation $R$ is the classical one $f_{R}$ , as defined in Section 2.2.

Finally, it will be equivalent in many cases to consider biclosed relations
and Galois connections. This isomorphism is particularly interesting to con-
sider, because instead of dealing with mappings (Galois connections), we
can now work on binary relations.

4.2 Using Lattices as Constraints

In practice, some knowledge is often present before extracting any implica-
tions or association rules. Or users are interested in a subset of implications,
or of association rules. For example, they may only want rules that contain
a specific item or rules that contain children of a specific item in a lattice.
This a priori knowledge can easily be expressed in terms of subsets of a
lattice or of a full implicational system.

The first type of constraints is consisted of a given lattice, different from
the boolean lattice $P(S)$ (the lattice of all subsets of $S$ , which is the lattice
without any constraint). One can see the web site lattice in Example 2.1.
The most frequent case is to have a taxonomy on the items; however, as
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seen in Example 2.2, taxonomies (is-a hierarchies) are just particular cases
of closure systems. In that case, to obtain rules containing a specific item
$x$ , we just have to consider the principal ideal ($x]$ from the lattice, and
use it as constraint (it’s itself a lattice). Obtaining rules containing a set
$O=\{x_{1}$ , . , . , $x_{n}\}$ of objects is equivalent, in the same way, as the conjunction
of the principal ideals $(x_{i}]$ .

The other type of constraints, more frequently founded, is an a priori
set $C$ of implications given by an expert. In fact, as seen in Section 3.1,
full implicational systems and lattices are in a one-t0-0ne correspondence,
and so this type of constraints is just a particular case of the previous type.
Prom this set $C$ of implications, we will prune the boolean lattice to obtain
a particular lattice satisfying all the implications in C.

So, as soon as constraints may be described by a closure (or a lattice,
or a set of implications), as well on the set of items $\mathrm{a}\mathrm{n}\mathrm{d}/\mathrm{o}\mathrm{r}$ on the set of
properties, we can use an algorithm to “biclose” the data relatively to these
constraints, for example using the algorithm described in [8], and only after
extract implications or association rules, using already known algorithms
$[1, 27]$ .

5 Conclusion
The understanding of both association rules and biclosed relation can lead
us to develop an new algorithm extracting such rules in a data table having
constraints. Such a work had been done by $[3, 28]$ , but only using taxonomies
as constraints, and only on the set of items. The theory developed in [8]
allows us to extent these results to any type of lattice, and, more, to put
constraints on both items and properties.
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