Biharmonic Operator を

含む非線形問題のシミュレーション

On the difference expression of the biharmonic operator and numerical examples of boundary value problems

東京電機大学理工学研究科 岩渕 匠 東京電機大学 佐藤 定夫

Tokyo Denki University Takumi IWABUCHI

Tokyo Denki University Sadao SATO

1 概要

Biharmonic Operator を含む発展方程式として,

$$\frac{\partial u}{\partial t} = -\Delta^2 u \tag{1}$$

がある.

この方程式の確率論的アプローチとしては、Hochberg, 西岡よる (1) の基本解 p(t, x, y) より Markov chain を作ることによって得られる 1 次元境界値問題についての理論や、2002 年に佐藤 [2] による Random walk model を使った 1 次元境界値や上半平面の境界値 問題などが研究されている.

また、解析的には 1905 年に **Boggio** が $\Delta^m u = f$ の S^n 上での境界値問題の解の公式 や、阪大の亀高グループによる $-\Delta^2 u = f$ の S^n 上での各種境界条件の研究がされている.

今回の報告では、(1)の差分式を考えその数値シミュレーションを行う.また、Biharmonic Operator が含まれる、または類似している非線形方程式の数値シミュレーションを行う.

2 Biharmonic Operator

2.1 差分

まず Δu の中心差分は,

$$\Delta u = u(x-1) - 2u(x) + u(x+1)$$

となるので

$$\Delta^2 u = \Delta u(x-1) - 2\Delta u(x) + \Delta u(x+1)$$

= $u(x-2) - 2u(x-1) + u(x)$
 $-2u(x-1) + 4u(x) - 2u(x+1)$

155

(2)

$$+u(x) - 2u(x+1) + u(x+2)$$

= $u(x-2) - 4u(x-1) + 6u(x) - 4u(x+1) + u(x+2)$ (3)

r<0とおくと

$$r\Delta^{2}u = ru(x-2) - 4ru(x-1) + (1+6r)u(x) - 4ru(x+1) + ru(x+2) - u(x)$$

= $T^{(r)}u(x) - u(x)$ (4)

となる.ここで $T^{(r)}$ は,平均作用素であり

$$T^{(r)} \cdot 1 \equiv 1 \tag{5}$$

 $\pm c, r = -\frac{1}{6} \ge lc,$

$$S = T^{\left(-\frac{1}{6}\right)} \tag{6}$$

は、時間発展においては後述のように発散することに注意が必要である.

2.2 Random Walk Model

先の (4) 式の $T^{(r)}$ は図1のようにみると

図 1: 負の確率を許す Random Walk Model

p = 1 + 6r, q = -4r の負の確率を許す Random Walk と見ることができる [2]. 従って, p + 2q + 2r = 1 であり

$$X_n = Y_1 + \ldots + Y_n \tag{7}$$

とおく. ここで, Y_i は上記の分布をもつ i.i.d. である. また, 特性関数は

$$E(e^{itX_n}) = E(e^{itY_1})^n = \varphi(t)^n = \sum_{k=-\infty}^{\infty} e^{itk} p(n,k)$$

$$\therefore \quad p(n,k) = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{-itk} \varphi(t)^n$$

$$\varphi(t) = E(e^{itY_1})$$

= $p + q(e^{-it} + e^{it}) + r(e^{-2it} + e^{2it})$
= $1 + 6r - 4r(e^{-it} + e^{it}) + r(e^{-it} + e^{it})^2 - 2r$
= $1 + r(z - 2)^2$ ($\therefore z = e^{-it} + e^{it}$) (8)

ここで, $-1 \leq \varphi(t) \leq 1$ を考える. (この時, $p(n,k) \rightarrow 0(n \rightarrow \infty)$ となる.) 今, r < 0なので

$$\begin{array}{rcl}
-1 &\leq & 1+r(z-2)^2 \\
-2 &\leq & r(z-2)^2 & (\because & -2 \leq z \leq 2) \\
-\frac{1}{8} &\leq & r < 0
\end{array} \tag{9}$$

従って、 先の $r = -\frac{1}{6}$ において発散する事の理由がわかる. またこの条件の下で、

$$E_x[f(X_n)] \to u(t, x) \tag{10}$$

が証明できる.

2.3 n 次元の △²

$$x = (x_1, \dots, x_n), \quad e_i = (0, \dots, 1, 0, \dots)$$
 (11)

ただし, ei は i 番目に 1 が来ることを表す. この時, 差分近似として

$$\begin{split} \Delta u &= \sum_{i} (u(x-e_{i})-2u(x)+u(x+e_{i})) \\ \Delta^{2}u &= \sum_{j} (\Delta u(x-e_{j})-2\Delta u(x)+\Delta u(x+e_{j})) \\ &= \sum_{j} \{\sum_{i} (u(x-e_{j}-e_{i})-2\Delta u(x)+u(x+e_{j})) \\ &-2\sum_{i} (u(x-e_{j})-2u(x)+u(x+e_{j})) \\ &+\sum_{i} (u(x+e_{j}-e_{i})-2u(x+e_{j})+u(x+e_{j}+e_{i}))\} \\ &= \sum_{j} \sum_{i} \{u(x-e_{j}-e_{i})+2u(x+e_{j}-e_{i})+u(x+e_{j}+e_{i})\} \\ &-4n\sum_{j} \{u(x-e_{j})+u(x+e_{j})\}+4n^{2}u(x) \\ &= \sum_{j\neq i} \{u(x+e_{j}+e_{i})+u(x-e_{j}+e_{i})+u(x+e_{j}-e_{i})+(u(x-e_{j}-e_{i})\} \\ &+\sum_{j=1} \{u(x-2e_{j})+u(x+2e_{j})\}-4n\sum_{j} \{u(x-e_{j})+u(x+e_{j})\}+(4n^{2}+2n)u(x) \\ &= \sum_{j=1} \{u(x-2e_{j})+u(x+2e_{j})\} \end{split}$$

$$+2\sum_{i\leq j} \{u(x-e_i-e_j)+u(x-e_i+e_j)+u(x+e_i-e_j)+u(x+e_i+e_j)\} -4n\sum_j \{u(x-e_j)+u(x+e_j)\}+(4n^2+2n)u(x)$$
(12)

従って,

$$r\Delta^{2}u = r\sum_{j=1}^{n} \{u(x-2e_{j}) + u(x+2e_{j})\} + 2r\sum_{i< j} \{u(x+e_{i}+e_{j}) + \cdots\} -4nr\sum_{j} \{u(x-e_{j}) + u(x+e_{j})\} + (1+4n^{2}r+2nr)u(x) - u(x) = T^{(r)}u - u$$
(13)

これは、図2を意味する.

図 2:2 次元における Random Wolk Model

特性関数

$$t = (t_1, \dots, t_n)$$

$$\varphi = E(e^{itY_1})$$

$$= r \sum_{j=1}^n (e^{i2t_j} + e^{-i2t_j}) + 2r \sum_{i < j} (e^{i(t_i + t_j)} + e^{i(t_i - t_j)} + e^{i(t_j - t_i)} + e^{-i(t_i + t_j)})$$

$$-4nr \sum_j (e^{it_j} + e^{-it_j}) + 1 + 4n^2r + 2nr$$
(14)

ここで,
$$z = \sum_{j} (e^{it_j} + e^{-it_j})$$
 とおくと
 $z^2 = \sum_{i} \sum_{j} (e^{-it_i} + e^{it_i})(e^{-it_j} + e^{it_j})$

$$= \sum_{i} \sum_{j} \{e^{i(t_{i}+t_{j})} + e^{i(t_{i}-t_{j})} + e^{i(t_{j}-t_{i})} + e^{-j(t_{i}+t_{j})}\}$$

$$= \sum_{j=1}^{n} (e^{i2t_{j}} + e^{-i2t_{j}}) + 2\sum_{i < j} (e^{i(t_{i}+t_{j})} + e^{i(t_{i}-t_{j})} + e^{i(t_{j}-t_{i})} + e^{-j(t_{i}+t_{j})}) + 2n$$

$$\therefore \quad \varphi(t) = r(z^{2} - 2n) - 4nrz + 1 + 4n^{2}r + 2nr$$

$$= 1 + 4n^{2}r - 4nrz + rz^{2}$$

$$= 1 + r(z - 2n)^{2}$$

$$\therefore \quad -1 \leq 1 + r(z - 2n)^{2}$$

$$-2 \leq r(z - 2n)^{2}$$
(15)

ここで、
$$z = \sum_{j} 2\cos t_j \ge -2n$$
なので

$$0 > r \ge -\frac{1}{8n^2} \tag{16}$$

3 数値シミュレーション

3.1 (1) 式の時間発展

1次元の数値シミュレーションを行うための差分式と初期値は

$$u(x, t+1) = T \cdot u(x, t) \quad (0 < x < n)$$

$$u(\frac{n}{2}, 0) = 1, \quad other = 0$$
(17)

とした.

図3は, $r = -\frac{1}{16}$, n = 500, t = 200の結果である.

図 3: 初期値を与えた時間発展

3.2 (1) 式における境界値問題

1次元の境界値問題を行うための境界値は

$$u(0) = 0, \quad u(1) = 0, \quad u(n-1) = 0, \quad u(n) = 0$$
 (18)

とした.以下が結果である.

なお、表1のGSは Gauss-Seidel 法を表し、Jは Jacobi 法を表す.

n=100				
step	1.00	1000	10000	1000000
GS(r=-1/8)	1.56559	1.73134	1.83834	1.94581
GS(r=-1/7)	1.59562	1.74091	1.84722	1.94864
J (r=-1/7)	発散	発散	発散	発散
GS(r=-1/4)	1.72612	1.80454	1.88953	1.96367
GS(r=-1/3)	振動	振動	振動	振動
GS(r=-10/31)	1.48285	1.89909	1.93508	1.97913

表 1: n = 100 における r と step 数の関係

ここで詳細は省略してあるが、 Jacobi 法での限界は $r = -\frac{1}{8}$ となることがわかり結果 2.2(9)が確認できる. また、 図4 は GS 法における $r = -\frac{1}{8}$, n = 100, step 数 10000 回の ものである.

図 4: 境界値問題

図 5: 境界值条件

2次元における境界条件は、図5を考え、円周を $\frac{1}{4}$ に分割して、その内周、外周にそれぞれ境界条件として1または0を与えてやることで行った.

表 2,3 が結果の 1 部である. ここで 2 次元においては, $r > -\frac{1}{32}$ が Jacobi 法の限界で あることに注意する.

半径=30 右外	半分			
step	10000	100000	1000000	1000000
GS(r=-1/32)	0.161811	-1.119120	-3.591127	-3.599170
GS(r=-1/16)	0.150999	-3.129254	-3.599170	-3.599170
GS(r=-1/8)	発散	発散	発散	発散

表 2: 半径 (n = 30), 右外半分が 1 の境界条件

半径=30 対称				
step	10000	100000	1000000	10000000
GS(r=-1/32)	0.323809	-2.300117	-7.182467	-7.198340
GS(r=-1/16)	0.043508	-6.302573	-7.198340	-7.198340
GS(r=-1/8)	発散	発散	発散	発散

表 3: 半径 (n = 30), 外側対称が 1 の境界条件

図 6,7 は、表 2 とまた、図 8,9 は、表 3 と同じ境界条件での実際のシミュレーションの 結果である.

両方ともに,計算 step が多くなるほど解が安定していることがわかる.

図 8: step 数 100

図 9: step 数 10000000

4 非線形項を含んだ数値シミュレーション

4.1 Porus Medium の類似系

Porus Medium の微分方程式は、

$$\frac{\partial u}{\partial t} = \Delta(u^2) \tag{19}$$

であるがここでは、その類似系として

$$\frac{\partial u}{\partial t} = r\Delta^2(u^2) \tag{20}$$

という非線形項を含んだもののシミュレーションを行う.

なお,以下行うシミュレーションは時間発展を考えているのですべて Jacobi 法で行っている.

式 (20) にシミュレーションを行った結果この関数は 1 次元, 2 次元とも瞬間的に発散 することがわかる.

図 10, 11, 12, 13 はそれぞれの次元のものである.

図 12: step 数 200

そこで,式(20)を変形して,

$$\frac{\partial u}{\partial t} = r\Delta^2(|u|u) \tag{21}$$

という方程式を定義し, シミュレーションしたそれぞれの次元の結果が図 14,15, 16, 17で ある.

図 16: step 数 1

この結果をみると 1 次元においては式 (21) は計算 step をかなり大きくとっても発散 しないことがわかる. それに比べ 2 次元においては計算 step を 9 にした瞬間に発散する という結果が得られた.

4.2 Kuramoto-Shivashinsky

Kuramoto-Shivashinsky の微分方程式は, 1 次元においては

$$\frac{\partial u}{\partial t} + \frac{\partial^4 u}{\partial x^4} + \alpha \frac{\partial^2 u}{\partial x^2} + u \frac{\partial u}{\partial x} = 0$$
(22)

と定義される.2次元においては、本来の意味とは異なるが、式(22)に類似した式(23)で

数値実験を行っている.

$$\frac{\partial u}{\partial t} + \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right)^2 u + \alpha \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}\right) + u\left(\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y}\right) = 0$$
(23)

4.3 1 次元の周期 2 π シミュレーション

Biharmonic operator に含まれる各係数は,式(9)での値の範囲で,初期値は以下の様に とり, α を変化させている.

$$u(x,0) = \sin(x) \tag{24}$$

図 18, 19 は, α = 1.0 の時の実行結果である. また境界条件は、

$$u(x+2\pi,t) = u(x,t)$$
 (25)

とする.

図 18: $\alpha = 1.0$, step 数 5000

図 19: $\alpha = 1.0$, step 数 100000

図 20, 21 は, α = 11.0 の時の実行結果である.

表4 は α を変化させた時の結果である. 計算 step は 10⁹ 行っている.

1 次元の結果は, Heyman-Nicolaenko[6] と一致している. またシミュレーションの結果, 表4の振動 or カオスとあるところは、 α が境界に近いところでカオスが起こり、それ以外 では振動が起こっているという傾向がみられる.

4.4 2 次元の周期 2 π シミュレーション

各係数は、1次元の時と同じく式(16)の値を使用する.初期値は以下のとおりにとる.

$$u(x,y) = \sin(x)\sin(y) \tag{26}$$

図 20: $\alpha = 11.0$, step 数 2000

図 21: $\alpha = 11.0$, step 数 10000

α	最終状態
$0 \le \alpha \le 1$	0 に収束
$1 \le \alpha \le 4.4$	周期関数に収束
$4.4 \le \alpha \le 5.6$	周期的に時間発展
$5.6 \le \alpha \le 10.8$	周期関数に収束
$10.8 \le \alpha \le 13.5$	振動 or カオス
$13.5 \le \alpha \le 17$	周期関数に収束
$17 \le \alpha \le 23.5$	振動 or カオス
$23.5 \le \alpha \le 29.4$	周期関数に収束
$29.4 \le \alpha \le ?$	カオス

表 4:1 次元における α を変化させた時の結果

シミュレーションを計算 step 数を 10⁹ で行った結果, 初期値 (26) において π の値が 3.1416 と 3.141592653589 としたときでは 解の挙動が変化する α の値が変わってしまう ことがわかった. 表 5 は, π = 3.141592653589 の時のものである.

そこで,初期値を以下の用に変更し,再度同じシミュレーションを行った結果が表6で ある.

$$u(x,y) = \sin(2x)\sin(y) + \sin(x)\sin(2y)$$
(27)

なお,表5,6における I型, II型は、それぞれ図22,23である.

カオスについては、小数点以下第6位の精度でも周期性を見つけようとしたとき値が一 致せず、さらに第3位まで精度を悪くしても、値は一致することはあっても周期性が見ら れないという理由でそう結論している.また 強いカオスとしているのは、シミュレーショ ンの結果から視覚的に図形がより激しく変化して見えることによる.

α	最終状態
$0 \le \alpha \le 3.?$	I型に収束
$3.? \le \alpha \le 7.4$	II 型に収束
$7.4 \le \alpha \le 7.6$	カオス
$7.6 \le \alpha$	発散

表 5: π = 3.141592653589 時での 2 次元における α を変化させた時の結果 (1)

α	最終状態
$0 \le \alpha \le 3.?$	I型に収束
$3.? \le \alpha \le 7.3$	II 型に収束
$7.3 \le lpha < 7.8$	強いカオス
$7.8 \le \alpha$	発散

表 6:2 次元における α を変化させた時の結果(2)

この初期値 (27) の結果と 初期値 (26) で π の精度を悪くした時では, α の境界がかわ らないこともこの実験から確認された.

つまり,初期値 (27) のようなクロスした 2 倍波 を (26) の初期値にわずかに加えると, 時間発展中に (27) の初期値が支配的になってしまうことがわかる. 言い換えると,式 (23) は初期値にかなり敏感に影響することがわかる.

また、表 5, 6 においての I 型 と II 型 の 解の挙動については α が小さいほど時間発展 が遅いため、計算 step が 10⁹ 回以上行うと、 I 型 のものが II 型 の解に収束する可能性が ある。

図 22: I 型

図 23: II 型

参考文献

- [1] 西岡 國雄, 流体力学における非線形方程式と重調和擬課程, 都立大プレプリントシ リーズ, 1999
- [2] Sadao Sato, An Approach to the Biharmonic Pseudo Process by a Random Walk, Journal of Mathematics of Kyoto University, Volume 42, Number 3, 2002
- [3] Takuji Kawahara and Sayoshi Toh,Pulse interactions in an unstable dissipativedispersive nolinear system,Phys.Fluids,Vol.31,No.8,August 1998
- [4] Kazuo Amano and Tomoaki Saito, Monte Carlo and Averaging Methods for biharmonic Dirichlet Problem, Monte Carlo Methods and Appl., Vol.1, No.1, pp-71-81(1995)
- [5] Topper, J. and Kawahara, T., Approximate equations for long nonlinear waves on a viscous fluid, J.Phys.Soc.Japan.,44(1978),663-666
- [6] Heyman, J.M. and Nicolaenko, B., The Kuramoto-Sivashinski equation: A bridge between PDEs and dynamical systems, Physica D, 23(1986), 265-292
- [7] Kuramoto,Y. and Tsuzuki,T.,Persistent propagation of concentraion waves in dissipative media far from thermal equilibrium, Progress Theor.Phys.,55(1976)
- [8] Sivashinsky,G.I.,Nonlinear analysis of hydrodynamic instability in laminar flames,1,Derivation of basic equations,Acta Astronomics,4 (1977),1177-1206