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0. Introduction

The aim of this note is to give a definition of the entropy for hyperbolic balance
laws in $d$ space dimensions:

(HB) $w_{t}+ \sum_{j=1}^{d}f^{j}(w)_{x_{\mathrm{j}}}=g(w)$ ,

where $w$ is an $N$-vector. The notion of mathematical entropy was first intr0-
duced by Godunov [3] and Priedrichs and Lax [2] for hyperbolic conservation
laws:

(HC) $w_{t}+ \sum_{j=1}^{d}f^{j}(w)_{x_{j}}=0,$

and the entropy plays as a symmetrizer of the system (HC). We give a brief
reveiw of this theory in Sect. 1.

In Sect. 2, we discuss the entropy for viscous conservation laws:

(VC) $w_{t}+ \sum_{j=1}^{d}f^{j}(w)_{x_{j}}=\sum_{i,j=1}^{d}(G^{\dot{\mathrm{s}}j}(w)w_{x_{j}})_{x\mathrm{i}}$ ,

which was introduced in [8]. We also discuss the global well posedness for
(VC) under the stability condition formulated in [11].

Sect. 3 is the main part of this note and it is based on the recent joint work
[10] with Wen-An Yong of the University of Heidelberg. We give a definition of
the entropy for hyperbolic balance laws (HB). Our definition is different from
the previous one given by Chen, Levermore and Liu [1] but is closely related
to the one adopted by Yong [12]. We see that our definition of the entropy
is suitable not only for 1) global well posedness but also for 2) application of
the Chapman-Enskog theory. This definition is based on the observation of
the Boltzmann $\mathrm{H}$-function in discrete kinetic theory and gives a reasonable
generalization of the $\mathrm{H}$-function for a class of hyperbolic balance laws (HB)
which includes the discrete Boltzmann equation. We also discuss the global
well posedness for (HB) under the stability condition in [11].

Finally in Sect. 4, we apply the Chapman-Enskog theory to hyperbolic
balance laws (HB) and derive the corresponding Navier-Stokes equation which
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is written in the form of (VC). We discuss some mathematical structure of
this Navier-Stokes equation in connection with the original hyperbolic balance
laws (HB).

1. Hyperbolic conservation laws

We briefly review on the entropy for hyperbolic conservation laws (HC).

Definition 1.1. ([3], [2]) A function $\eta(w)$ is called an entropy for hyper-
bolic conservation laws (HC) if the following two conditions are satisfied:

(i) $\eta(w)$ is strictly convex for any $w$ .
(ii) $D_{w}f^{j}(w)(D_{w}^{2}\eta(w))^{-1}$ is symmetric for any $w$ and $j=1$ , $\cdot\cdot$ . , $d$ .

Let us consider a diffeomorphism $w=w(u)$ and rewrite (HC) as

$(\mathrm{H}\mathrm{C})’$ $A^{0}(u)u_{t}+ \sum_{j=1}^{d}A^{j}(u)u_{x_{\mathrm{j}}}=0,$

where
$A^{0}(u):=D_{u}w(u)$ ,

$A^{j}(u):=D_{u}f^{j}(w(u))=D_{w}f^{j}(w(u))D_{u}w(u)$ , $j=1$ , $\cdots$ , $d$ .

Definition 1.2. The system (HC)’ is called symmetric if the following
two conditions are satisfied:

(i) $A^{0}(u)$ is real symmetric and positive definite for any $w$ .
(ii) 1(u) is real symmetric for any $w$ and $j=1$ , $\cdots$ , $d$ .

Theorem 1.1. ([3], [2]) The system (HC) admits an entropy if and only
if (HC) is symmetrizable by using a diffeomorphism.

The outline of the proof of this theorem is as follo$\mathrm{w}\mathrm{s}$ . Suppose that (HC)
has an entropy $\eta(w)$ . Then the desired symmerization is given by the diffe0-
morphism defined by

$u=(D_{w}\eta(w))^{T}$ ,

where the superscript $T$ denotes the transposed. Conversely, we suppose that
(HC) is symmerizable by using a diffeomorphism $w=w(u)$ . Then there exist
functions $\tilde{\eta}(u)$ and $\tilde{q}$j(u) such that

$D_{u}\tilde{\eta}(u)=w(u)^{T}$ , $D_{u}\tilde{q}^{j}(u)=f^{j}(w(u))^{T}$ , $\dot{7}=1$ , $\cdots$ , $d$ .

The desired entropy and the corresponding flux are then given by the formulas



$\theta$

$\eta(w(u))=<w(u),$ u $>-\tilde{\eta}(u)$ ,

$q^{j}(w(u))=<f^{\mathrm{j}}(w(u))$ , u $>-\tilde{q}^{j}(u)$ , j $=1,$ \cdots , d,

where $<$ , $>$ denotes the standard inner product in $\mathrm{R}^{N}$ This completes the
proof.

As a corollary of this theorem we can prove the local well posedness for
hyperbolic conservation laws (HC) for initial data in $H^{s}(\mathrm{R}^{d})$ with $s\geq[df2]+2$ .

2. Viscous conservation laws
The notion of the entropy was generalized in [8] for a class of viscous conser-
vation laws (VC). Here we review the main results of [8].

Definition $2.1_{\mathfrak{d}}$ ([8]) A function $\eta(w)$ is called an entropy for viscous
conservation laws (VC) if the following four conditions are satisfied:

(i) and (ii) are the same as in Definition 1.1.
(iii) $\{G^{j}.\cdot(w)(D_{w}^{2}\eta(w))^{-1}\}^{T}=G^{ji}(w)(D_{w}^{2}\eta(w))^{-1}$ for any $w$ and $i$ , $7=1$ , $\cdot\cdot$ ., $d$ .
(iv) $\sum_{\dot{l}j}G^{ij}(w)(D_{w}^{2}\eta(w))^{-1}\omega_{i}\omega_{j}$ is real symmetric and nonnegative definite

for any $w$ and $\omega$ $\in S^{d-1}$ , where the sum is taken over all $i,j=1$ , $\cdots$ , $d$ .

Let $w=w(u)$ be a diffeomorphism. Then (VC) is rewritten as

$(\mathrm{V}\mathrm{C})’$ $A^{0}(u)u_{t}+ \sum_{j=1}^{d}A^{j}(u)u_{x_{\mathrm{j}}}=\sum_{i,j=1}^{d}(B^{ij}(u)u_{x_{j}})_{x:}$,

where $A^{0}(u)$ and $A^{j}(u)$ are the same as in (HC) and

$B^{ij}(u):=G^{ij}(w(u))D_{u}w(u)$ , $i,j=1$ , $\cdots$ , $d$ .

Definition 2.2. ([8]) The system (VC)’ is called symmetric if the following
four conditions are satisfied:

(i) and (ii) are the same as in Definition 1.2.
(iii) $B^{ij}(u)^{T}=B^{j:}(u)$ for any $u$ and $i$ , $7^{\cdot}=1$ , $\cdot\cdot$ .

’
$d$ .

(iv) The viscosity matrix $B(u,\omega):=\Sigma_{\dot{\iota}j}B^{ij}(u)\omega_{\dot{l}}\omega_{j}$ is real symmmetric and
nonnegative definite for any $u$ and $\omega$

$\in S^{d-1}$ , where the sum is taken over all
$i,j=1$ , $\cdots$ , $d$ .

Theorem 2.1. ([8]) The system (VC) admifc an entropy if and only if
(VC) is symmetrizable by using a diffeomorphism.

The proof of this theorem is analogous to that of Theorem 1.1. Here we
note that the entropy $\eta(w)$ for (VC) satisfies



$\eta(w)_{\mathrm{t}}+\sum_{j=1}^{d}q^{j}(w)_{x_{\mathrm{j}}}=\sum_{i\dot{p}=1}^{d}(<u,B^{ij}(u)u_{x_{j}}>)_{x}:-\sum_{i,j=1}^{d}<u_{x}B^{ij}(:’ u)u_{x_{j}}>$ ,

where $q^{j}(w)$ is the corresponding entropy flux and $u=(D_{w}\eta(w))^{T}$ .
The symmetization in Theorem 2.1 is not sufficient to show the local well

posedness for (VC). But this symmetrization together with the following con-
dition $(\#)$ formulated in [8] gives the local well posedness for initial data in
$H^{s}(\mathrm{R}^{d})$ with $s\geq[d/2]+2$ (see [6], [8]):

$(\#)$ $N(B(u,\omega))$ is independent of $u$ and $\omega\in$
$\mathrm{S}^{d-1}$ ,

where IJ$(B(u,\omega))$ denotes the null space of the viscosity matrix $B(u, \omega)$ .
Furthermore, we can prove the global well posedness for viscous conserva-

tion laws (VC) under the following stability condition $(*)$ formulated in [11].

$(*)$ Let $\lambda A^{0}(u)z+A(u,\omega)z=0$ and $B(u,\omega)z=0$ for some $z\in \mathrm{R}^{N}$ ,
$\lambda\in \mathrm{R}$ , $\omega\in S^{d-1}$ . Then $z=0.$

Here $A(u,\omega)=$ $\mathrm{g}_{j}$ $A^{j}(u)\omega_{j}$ . In fact we have:

Theorem 2.2. ([6], [7]) Suppose that the system (VC) admits an entropy
and satisfies $(\#)$ and $(*)$ . Then (VC) is globally well posed for initial data in
a small $H^{s}(\mathrm{R}^{d})-$ neighborhood of a given constant state $\overline{w}$ , where $s\geq[d/2]+2$ .

3. Hyperbolic balance laws

Let us give a definition of the entropy for hyperbolic balance laws (HB). To
this end, we introduce:

$\mathcal{M}:=$ { $\psi$ $\in \mathrm{R}^{N}$ ; $<\psi$ , $g(w)>=0$ for any w}.
$\mathcal{M}$ is a subspace of $\mathrm{R}^{N}$ . Obviously, we have $g(w)\in \mathcal{M}^{[perp]}$ for any $w$ . In discrete
kinetic theory, $\mathcal{M}$ is called the space of collision invariants.

Definition 3.1. ([10]) A function $\eta(w)$ is called an entropy for hyperbolic
balance laws (HB) if the following four conditions are satisfied:

(i) and (ii) are the same as in Definition 1.1.
(iii) $g(w)=0$ holds if and only if $(D_{w}\eta(w))^{T}\in \mathcal{M}$ .
(iv) Let $w^{*}$ be such that $g(w^{*})=0.$ Then the matrix $-D_{w}g(w)(D_{w}^{2}\eta(w))^{-1}$

evaluated at $w$ $=w^{*}$ is real symmetric and nonnegative definite. Moreover, its
null space coincides with $\mathcal{M}$ .

We note that the Boltzmann $\mathrm{H}$-function for the discrete Boltzmann equa-
tion satisfies all these conditions in Definition 3.1.
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Let $w=w(u)$ be a diffeomorphism and we rewrite (HB) as

(HB)’ $A^{0}(u)u_{t}+ \sum_{j=1}^{d}A^{j}(u)u_{x_{J}}=g(w(u))$ ,

where $A^{0}(u)$ and $A^{j}(u)$ are the same as in (HC)’.

Definition 3.2. ([10]) The system (HB)’ is called symmetric dissipative if
the following four conditions are satisfied:

(i) and (ii) are the same as in Definition 1.2.
(iii) $g(w(u))=0$ holds if and only if $u\in \mathcal{M}$ .
(iv) For any $u^{*}\in \mathcal{M}$ , the matrix $L(u):=$ -Dug(w(u)) $=$ -Dwg{w{u))Duw{u)

evaluated at $u$ $=u^{*}$ is real symmmetric and nonnegative definite. Moreover,
the null space $\mathrm{V}(L(\mathrm{t}\mathrm{z}’))$ coincides with U.

In discrete kinetic theory the matrix $L(u^{*})$ is called the linearized collision
operator.

Theorem 3.1. ([10]) The system (HB) admits an entropy if and only if
(HB) is put into a symmetric dissipative system by using a diffeomorphism.

The proof of this theorem is analogous to that of Theorem 1.1. Here we
note that the entropy $\eta(w)$ for (HB) satisfies

$\eta(w)_{t}+\sum_{j=1}^{d}q^{j}(w)_{x_{j}}=<u$ , $g(w(u))>$ ,

where $u=(D_{w}\eta(w))^{\tau_{1}}$

To develop the global existence theory for (HB), we need to examine the
term $g(w(u))$ carefully. Let $\overline{u}\in$ M. We write $g(w(u))$ in the form

$g(w(u))=-L(\overline{u})u+r(u)$ .

Claim 3.2. Suppose that (iii) and (iv) of Definition 3.2 hold true. Let
$\overline{u}\in \mathcal{M}$ . Then we have $r(u)\in$ A $\mathrm{f}$

” for any $u$ . Moreover, there are positive
constants $\delta$ and $C$ such that

$|r(u)|\leq C|u-\overline{u}||(I-P)u|$

for any $u$ with $|u-\overline{u}|\leq\delta$, where $P$ is the orthogonal projection onto M.

An important consequence of Claim 3.2 is the following qualitative estimate
for the entropy production term: There are constants $\delta$ , $c>0$ such that

$<u$ , $g(w(u))>\leq-c|(I-P)u|^{2}$



$\epsilon$

for any $u$ with $|u-\overline{u}|\leq\delta$ .
By virtue of Claim 3.2, we can prove the global well posedness for hyper-

bolic balance laws (HB) under the following stability condition $(**)$ formulated
in [11]. Let $\overline{u}\in \mathcal{M}$ .

$(**)$ Let $\lambda A^{0}(\overline{u})\varphi+A(\overline{u}, \omega)\varphi=0$ and $L(\overline{u})\varphi=0$ (i.e., $\varphi\in$
$\mathrm{A}/[$ )

for some $\varphi\in \mathrm{R}^{N}$ , A $\in \mathrm{R}$, $\omega\in S^{d-1}$ . Then $\varphi=0.$

Our global existence theorem for (HB) is a modified version of the one obtained
by Yong [12] and is regarded as a generalization of the global existence result
in [5], [11] for the discrete Boltzmann equation.

Theorem 3.3. Suppose that the system (HB) admits an entropy and
satisfies $(**)$ at a constant state $\overline{u}\in \mathcal{M}$ . Then (HB) is globally well posed for
initial data in a small $H^{\epsilon}(\mathrm{R}^{d})-$ neighborhood of $\overline{w}=w(\overline{u})$ , where $s\geq[d/2]+2$ .

We remark that a similar global existence result has been obtained by
Hanouzet and Natalini [4] in one space dimension (d $=1)$ .

4. The Chapman-Enskog expansion

The Chapman-Enskog theory was developed in [1] for hyperbolic balance laws.
Here we follow the traditional approach (see [9]) and derive the Navier-Stokes
equation corresponding to the hyperbolic balance laws

[HB] $W_{t}+ \sum_{j=1}^{d}F^{j}(W)x_{j^{=G(W)}}$ ’

where $W$ is an $N$-vector; capital letters are used to describe the hyperbolic
balance laws in this section.

Let $\mathcal{M}$ be the subspace defined by $G(W)$ :

$\mathcal{M}:=$ { $\psi$ $\in \mathrm{R}^{N}$ ; $<\psi$ , $G(W)>=0$ for any W}.

We assume that $\dim \mathcal{M}=n$ and write $\mathcal{M}=\mathrm{s}\mathrm{p}\mathrm{a}\mathrm{n}\{\psi^{(1)}, \cdots, \psi^{(n)}\}$ , where
$\{\psi^{(1)}, \cdots, \psi^{(n)}\}$ is a basis of Z. Let us introduce the moment vector $w$ in
the usual way:

w $=$ $(w_{1}$ ,..., $\mathrm{U}_{n})^{T}$ , $w_{k}=<\psi^{(k)}$ , W $>$ , k $=1,\cdots,n$ .

1f we use the Nxn matrix $\Psi:=$ $(\psi^{(1)},\cdots, \mathrm{q}(n))$ , we can write

w $=\Psi \mathrm{r}W$



We assume that the hyperbolic balance law [HB] has an entropy $H(W)$ in
the sense of Definition 3.1. Then we can apply the traditional Chapman-
Enskog expansion (see [9]) to [HB] and obtain the corresponding Navier-Stokes
equation in the form of the viscous conservation laws:

[VC] $w_{t}+ \sum_{j=1}^{d}f^{j}(w)_{x_{j}}=\sum_{i,j=1}^{d}(g^{ij}(w)w_{x_{j}})_{x\mathrm{r}}$ ,

where $w$ is the moment vector; small letters are used to describe our Navier-
Stokes equation.

The symmetric form associated with [HB] is written as

[HB]’ $A^{0}(U)U_{t}+ \sum_{j=1}^{d}A^{j}(U)U_{x_{\mathrm{j}}}=G(W(U))$ ,

where $U=(D_{W}H(W))^{T}$ , and this defines a diffeomorphism $W=W(U)$ . We
see that $G(W(U))=0$ holds if and only if $U\in \mathcal{M}$ . Such a vector $U=U^{*}$ is
characterized in term of an $n$ vector $l$) $=$ $(u, \cdots, u_{n})^{T}$ as

$U^{*}= \sum_{k=1}^{n}u_{k}\psi^{(k)}=\Psi u.$

Furthermore we see that w $arrow u$ is a diffeomorphism and our Navier-Stokes
equation [VC] can be symmetrizable by using this diffeomorphism as

$[\mathrm{V}\mathrm{C}]’$ $a^{0}(u)u_{t}+ \sum_{j=1}^{d}a^{j}(u)u_{x_{j}}=\sum_{i_{\dot{\beta}}=1}^{d}(b^{j}\dot{.}(u)u_{x_{j}})_{x:}$.

Here the coefficient matrices are given explicitly in terms of the coefficient
matrices in [HB]’. In particular,

$a^{0}(u)=\Psi^{T}A^{0}(\Psi u)\Psi$ ,

$a^{j}(u)=\Psi^{T}A^{j}(\Psi u)\Psi$ , j $=1$ ,..., d.

Also, the null space of the viscosity matrix $b(u, \omega)=\sum_{*j}.b^{j}\dot{.}(u)\omega\dot{.}\omega_{j}$ is given as

$N(b(u,\omega))=\{z\in \mathrm{R}^{n};A^{0}(\Psi u)^{-1}A(\Psi u,\omega)\Psi z\in \mathcal{M}\}$.

This null space depends, in general, upon $u$ and $\omega$ $\in S^{d-1}$ and therefore we
must impose the condition $(\#)$ in Sect. 2 in order to ensure the local well
posedness of the Navier-Stokes equation [VC].

Our Navier-Stokes equation [VC] is symmetrizable so that it has an entropy
by Theorem 2.1. This entropy $\eta(w)$ is given explicitly in terms of the entropy
$H(W)$ for [HB]. In fact we have:



Theorem 4.1. ([10]) The entropies for [HB] and [VC] are related as
$\eta(w(u))=H(W(\Psi u))$ , $q^{j}(w(u))=Q^{j}(W(\Psi u))$ , $7=1,\cdots,d$ ,

where $Q^{j}(W)$ and $q^{J}(w)$ are the corresponding entropy fluxes for [HB] and
[VC], respectively.
$whereQ^{j}(W)andq^{J}(w)$ are the corresponding entropy fiuxes for [HB] and
$[\mathrm{V}\mathrm{C}]_{l}respectively$.

This is a refinement of the similar result obtained in [1]. This relationship
between entropies is known in discrete kinetic theory (see [9]).

The stability conditions for [HB] and [VC] are formulated as

$[**]$ Let $\lambda A^{0}(U)\varphi+A(U, \omega)\varphi=0$ and $\varphi\in$
$\mathrm{M}$ for some $\lambda\in$ R,

$\omega\in S^{d-1}$ . Then $\varphi=0.$

$[*]$ Let $\lambda a^{0}(u)z+a(u,\omega)z=0$ and $b(u,\omega)z=0$ for some $z\in \mathrm{R}^{n}$ ,
$)\in \mathrm{R}$ , $\omega$ $\in S^{d-1}$ . Then $z=0.$

As in the discrete kinetic theory, these two stability conditions are equivalent
to each other (see [9]).

Theorem 4.2. ([10]) The hyperbolic balance law [HB] satisfies the stabil-
ity condition $[**]$ at $U=Qu$ if and only if the corresponding Navier-Stokes
equation [VC] satisfies the stability condition $[*]$ .
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