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Like oil and vinegar, material science and mathematics may be incompatible, but a
variety of incompatible fields, in the presence of computer simulations and graphics as
surfactants, can self-assemble into a rich variety of mesO-fields.

Microphase separation is driven by chemical incompatibilities between the different
blocks that make up block copolymer molecules. In the diblock copolymer melt, the final
equilibrium state then tends to be periodic structures such as lamellar, column, spherical
a $\mathrm{d}$ bicontinuous cubic meso phases. Why do such morphologies occur in the mixtures? One
can guess this along the following lines: the dominant factor in the determination of the
morphology is the area-minimization of the interface region, whereas its enclosed region has
a fi ed volume. Surfaces that satisfy this mathematical condition are said to have constant
mean curvature (CMC). The familiar triply periodic cubic geometries such as the primitive
(P), diamond (D) and gyroid (G) surfaces form a representative class of CMC surfaces. It is
$\mathrm{a}10$ reasonable that the interface should be periodic at a molecular length scale $(10\sim 100$

$\mathrm{n}\mathrm{m}).[5,13]$

Why can we observe only the $\mathrm{G}$-surface family as the cubic phase in exper-
iments? Furthermore, it is splendid that they form the double-network struc-
tures of the $\mathrm{l}\mathrm{a}\overline{3}\mathrm{d}$-symmetry Space groups are usually different for double axrd $\mathrm{s}\dot{\mathrm{u}}$$116$

network systems even though they are based on the same minimal surface because the latter
has lower symmetry than the former. Note that the $\mathrm{G}$ has the $\mathrm{I}4_{1}32$-symmetry which means
the 3-screw axis tunnels. In this short note, we would like to demonstrate the mechanism
behind the appearance of the double gyroid (DG) phase on the basis of the most essential
aspects of copolymers.

Energy Minimizers of Diblock Copolymer Problem and Simulation

We d$\mathrm{e}$ 1 with the gradient system with nonlocal effects and focus on the characterization of

unit cell of the DG morphology in this study. [12] By minimizing the free-energy functional
$F_{\epsilon,\sigma}(=E_{1}+E_{2}+E_{3})$ following the Cahn-Hilliard-Oono equati0ns,[1] we are looking for the
equilibrium state of order $O(1)$ , i.e., it has a periodic structure in space with $\Omega$ being its
unit domain. Notation 0 represents the physical space.

$F_{\epsilon,\sigma}(u)$
$= \int_{1l}(\frac{\epsilon^{2}}{2}|\nabla u|^{2}+W(u)+\frac{\sigma}{2}|(-6)^{-1/2}(\mathrm{t}\mathrm{C} -\overline u)|\mathrm{i}$

$\mathrm{d}\mathrm{r}$ , (1)

where $\overline{u}=|\Omega|^{-1}\int_{\Omega}u\mathrm{d}\mathrm{r}$ and $(-5)^{-1/2}$ is a fractional power of the Laplace operator. The
phase function $u$ describes roughly the microscopic state of the polymers relevant to its
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Figure 1: The views of isosurfaces at $\overline{u}i=0.10$ from the [111]-directions;(a) Double gyroid
(DG) and (b) a pair of gyroid single network forms a chiral-network. (c) Lamellar ( $\mathrm{L}$ , the
layer interval is $2^{-3/2}$ ) and OrthO-rhombohedral (OR).

transition between phases. The function $W(u)$ is set to the form $(u^{2}-1)^{2}/4$ , reflecting the
segregation of monomers over mixtures. The functional (1) was introduced essentially by
Ohta and Kawasaki.[10] The first term minimize unfavorable interfaces and the third term
avoid over-stretching the copolymer blodcs. The period of the minimizer is a meso scale
between which results from compromising between these opposite tendencies.

Nishiura and Ohnishi reformulated the mathematical basis of the Ohta-Kawasaki model
and they formally concluded that there exists a unique scaling, the characteristic domain size
of morphology is proportional to $(\epsilon/\sigma)^{1/3}$ , and the energy of the system is scaled as $\epsilon^{2/3}.\sigma^{1/3}$

for the one-space dimension. $[7, 9]$ The parameter $\epsilon$ and $\sigma$ is proportional to the interfacial
thickness at the bonding point and to the inverse of the square root of the total chain length,
respectively. Choksi and Ren rederive the functional of (1) by using self-consistent mean
field theory, connecting those phenomenological parameters to the microscopic material
parameters. [3]

In the approach to $\epsilonarrow 0,$ the significant contributions to $F_{\epsilon,\sigma}$ tend to come equally from
all three terms of order $O(\epsilon)$ . Assuming the sharp interface interpolation for the stacked
layers, we can replace $\epsilon^{2}/\mathrm{t}\cdot \mathrm{t}|$ Vtt $|^{2}\mathrm{d}\mathrm{r}/2$ $+/\cdot \mathfrak{l}1W(u)\mathrm{d}\mathrm{r}$ by $\epsilon$ /l

$\cdot$

1
$|$ Vu $|$ dr. As a result, the $E_{1}+E_{2}$

correspond to about $\epsilon$ times the total area of the interface region of $O(1)$ . Ren and Wei
proved that the $\Gamma$ limit of a rescaled functional $F_{\epsilon,\sigma} \oint\epsilon$ for the $\nu$-mode layer solution in
$\Omega=[0$ : 1 $]$ can be written by[ll]

$\frac{F_{e,\sigma}(\nu)}{\epsilon}$ $=$ $[c \nu+\frac{(1-\overline{u}^{2})^{2}}{24\nu^{2}}(\frac{\sigma}{\epsilon})]$ , (2)

where $c=j_{-1}^{1}.\sqrt{2W(u)}\mathrm{d}u$ . By the variation of (2) with respect to $\nu$ in $\Omega=[0$ : 1 $]$ , the 2-m0de
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Figure 2: (a) The $\epsilon$-dependence of profiles of the one-dimensional minimizer. The chemical
potential $v$ satisfies $-(7xx=u-\overline u\mathrm{i}, \mathrm{v}\mathrm{x}(0)=$ va(l) $=0$ and $\int_{0}^{1}v\mathrm{d}x=0.$ The $\epsilon$ are chosen
as follows; broken: 6.0 $\mathrm{x}10^{-2}$ , dotted: 4.0 $\mathrm{x}10^{-2}$ , solid: 1.0 $\mathrm{x}10^{-2}$ , gray: 1.0 $\mathrm{x}10^{-3}$ . (b)
The minimization of $F_{\epsilon,\sigma}$ with respect to 1 when $\sigma/\epsilon=2^{13/2}(1-\overline{u}^{2})^{-2}$ . The $\epsilon$ are chosen as
follows; solid: 1.0 $\mathrm{x}$

$10^{-2}$ , dotted: 4.0 $\mathrm{x}10^{-2}$ .

type solution is characterized as the global minimizer if the ratio of $x/e$ $=2^{13/2}(1-\overline{u}^{2})^{-2}$ .
Each term of $F\mathrm{g}_{\sigma}$, therefore becomes equally balanced as $F_{\epsilon,\sigma}(2)/\epsilon=44/3+2\sqrt{2}/3$ $=2\sqrt{2}$ .
This is verified numerically by computing the $F_{\epsilon,\sigma}$ value as $(E_{1}, E_{2}, E3)=$ (9.44 $\mathrm{x}10^{-3},9.41\mathrm{x}$

$10^{-3},9.41\mathrm{x}10^{-3})$ for $(\epsilon,\overline{u})=(1.0\mathrm{x}10^{-3},0.00)$ . Figure 2 shows the graph of $F_{\epsilon,\sigma}$ value for
the 2-mode type minimizers which the layer interval is 1 $(\Omega=[0:l])$ . For small $\epsilon$ , the global
minimizer is obtained if $l=1,$ while the optimal system size $l$ becomes slightly larger than
unity for large $\epsilon$ .

Hereafter, $\Omega\subset \mathrm{R}^{3}$ is taken to be the cube (0 : $l]^{3}$ subject to the periodic boundary
condition. In order to realize the one unit of triply periodic cubic geometry, we loose apply
the ratio of $\mathrm{a}/\mathrm{t}=2^{11}(1-\overline{u}^{2})^{-2}$ , in which the $\mathrm{L}$ structure (the layer interval is $2^{-\theta/2}$ l) gives
the period of the global minimizer in $\epsilonarrow 0.$ This validation depends on whether the three-
dimensional structures organize observable phenomena, not on whether or not the theory
was used correctly from a mathematical standpoint. Nevertheless, the theoretical result
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Figure 3: The $i-\epsilon$ phase diagram of the stable morphology, including the hexagonal columns
(C), body-centered cubic spheres (B) and uniform state (U), when $\sigma/\epsilon=2^{11}(1-\overline{u}^{2})^{-2}$ . The
broken gray line shows the border between the DG-OR phases. In approaching $\overline{u}=$ 0.00,
the $F_{\epsilon,\sigma}$ value of OR becomes smaller than that of $\mathrm{D}\mathrm{G}$ .

described above leads us to reflect the DG morphology in the gradient system of (1).
By minimizing $F_{\epsilon,\sigma}$ ffom the initial uniform state $u=\overline{u}$ perturbed randomly, the equilib-

rium morphologies illustrated in Fig. 1 are dictated in the same parameter region of $(\epsilon,,\overline{u})(1)$

In the limit of $\epsilon$ \0, the contributions from each term of $F_{\epsilon,\sigma}$ are balanced in the order
of $\mathrm{O}(\mathrm{e})$ as $(E_{1}, E_{2}, E3)=(2.60\mathrm{x}10^{-2},2.79\mathrm{x}10^{-2},2.35\mathrm{x}10^{-2})$ for the $\mathrm{L}$ phase, while
$(2.39 \mathrm{x}10^{-2},2.68\mathrm{x}10^{-2},2.89\mathrm{x}10^{-2})$ for the DG phase when $(\epsilon,\overline{u})=(1.0\mathrm{x}10^{-2},0.10)$ .
The ratio between each term in $F_{\epsilon,\sigma}$ reflects the geometrical property of the minimizer.

Figure 3 illustrates the phase diagram obtained numerically from the comparison of the
$F_{\epsilon,\sigma}$ between the candidate structures. We compare here the $F_{\epsilon,\sigma}$ values with changing $l$

slightly in order to select the layer spacing makes the lowest-energy state. The $\mathrm{L}$ phase is
stable for small $\epsilon$ , whereas the DG phase is stable for intermediate range of $\epsilon$ . The small $\epsilon$

regime of the phase diagram between the $\mathrm{L}$ and $\mathrm{C}$ phases has been confirmed experimentally
with the morphology phase behaviors of ternary $(\mathrm{C}16\mathrm{E}7/\mathrm{D}2\mathrm{O}/\mathrm{C}12\mathrm{H}26)$ mixtures. [6] The local
phase behavior obtained ffom the skeleton model of (1) investigated here can be applied to
describe roughly a variety of mesO-phase behaviors observed by experiment.

Some Geometrical Properties of Gyroid Minimizers and Discussion

We investigate here $\mathrm{s}$ ome measures of the level set $\Gamma\equiv\{\mathrm{r}\in\Omega : \mathrm{u}(\mathrm{v})=\mathrm{u}\}$ obtained in the
previous section. As shown in Table $\mathrm{I}$ , a border whether the area $\Gamma$ of the OR morphology
is smaller than that of DG falls in the region around $\overline{u}=0.10$ for $\epsilon=4.0\mathrm{x}10^{-2}$ . This is
consistent with the DG-OR border line of Fig.3. The local mean curvatures for $\epsilon=4.0\mathrm{x}10^{-2}$

distribute around the zero value rather sharply than that for $\epsilon=1.0\mathrm{x}10^{-2}$ . When $i=$ 0.00,
in particular, the mean curvature of the interface $\Gamma$ of OR approaches into the zero value,
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the

0.20 5.249 5.182 5.128 5.188 11.326 7.220 10.916 8.792

while that of DG is 1.84. When $\epsilon$ is large, in addition, the interfacial energy $E_{1}+$ $E_{2}$

dominates the total energy $F_{e,\sigma}.[12]$ The interface $\Gamma$ of our system therefore can be well
approximated by DG with CMC.

It is worth noting the some geometrical measures of the OR morphology. In ref.[6]
we used the symbol “

$\mathrm{R}$
” instead of OR, however OR may be appropriate for the ortho

rhombohedral form of the Fddd symmetry.[2] We estimate that 80% of the total surface
has zero or negative Gaussian curvature $K$ for $\epsilon=4.0\mathrm{x}10^{-2}$ (67% for $\epsilon$

$=1.0\mathrm{x}10^{-2}$ ).

The interface $\Gamma$ of OR, in other words, has saddle-shaped areas everywhere. The unit cell
investigated here is depicted in Fig.1. The Euler characteristic $\chi\equiv(2\pi)^{-1}\int_{\Gamma}K\mathrm{d}S$ is-24,

while that of DG is -16 $(=-8\mathrm{x}2)$ . In this connection, each single-network of DG shown
$:-\mathrm{r}:\sim\tau$ $/\ltimes\backslash \mathrm{k}_{\mathrm{r}\mathrm{r}}$

$\wedge$ , $r-\uparrow\cdot\prime \mathrm{m}\wedge$ hn\cap \star $j_{\mathrm{A}\mathrm{T}}-\mathrm{f}$ $9_{-}9_{-}.\mathrm{R}\Psi_{\wedge}9\gamma\rho,-\Gamma$ $\mathrm{n}\mathrm{f}9$ $6?\mathrm{a}\mathfrak{n}\mathrm{f}\mathrm{l}$ $\mathrm{m}e_{\wedge}t\iota \mathrm{n}\mathrm{r}.1\backslash \mathrm{r}\mathrm{v}\mathrm{a}\mathrm{t}\mathrm{u}\mathrm{r}\mathrm{e}$ of aboutin Fig.l (b) has a volume fraction of 22.5%, area $\Gamma$ of 2.63 and mean curvature of aout
1.94, while the area $\Gamma$ of 2-period $\mathrm{G}$ is 6.24 and the mean curvature is nearly zero when
$(\mathrm{e},\mathrm{w})$ $=(4.0\mathrm{x}10^{-2},0.10$ . Our results of Table I indicates the existence of an $\overline{u}$-fmily of
OR surfaces. Those objects play a role of intermediate state and should be responsible for
the transition between $\mathrm{L}$ and DG phases. $[6, 8]$ It is rable to probe the existence of a
OR-surface with CMC.

Now we try to explain why the $\mathrm{G}$-surfaces are chosen as the global minimizer and they

fo$\mathrm{r}\mathrm{m}$ the double-network of the $\mathrm{I}\mathrm{a}\overline{3}\mathrm{d}$-symmetry. In the rest of this note, we suppose the
following CMC system that the equilibrium morphology should be detemined by the inter-
faoe area-minimization, in which the period of global minimizer has the value of $2^{-3/2}$ in a
cube. This makes sence because the covalent linkages between different blocks of a molecule
serves to limit the phase separation to a characteristic scale length. Under this condition,

we compare the area of CMC G- : P- and $\mathrm{D}$-surfaces with $2^{\mathrm{S}/2}$ of stacked layers.
The first step is to make 2-period CMC surfaces (a volume fraction of 50%) in a cube.

According to the data of CMC surfaces,[4] the area(Gl is 0.08 $($=3.09 $\mathrm{x}2)$ and the area(P)

and area(D) is 6.65 $($ \approx 2.35 $\mathrm{x}2^{3/2})$ and 7.68, respectively. The area of $\mathrm{G}$ is the smallest
among the 2-period cubic surfaces, but it is still larger than that of L. Second, we consider a
period of double-network CMC surfaces (double of a volume fraction of 25%). The area(DG)
is 5.46 $($=2.73 $\mathrm{x}2)$ , while area(DP) and area(DD) is 5.66 $($ \approx 2.00 $\mathrm{x}2^{3/2})$ and 6.72. Notations
DP and DD represent double primitive and double diamond, respectively. It is shown that
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the DG morphology only has smaller interface area smaller than stacked layers, i.e., the
inequality between areas is expressed by area(DG) $<$ area(L)$)<$ area(G). Accordingly, we
argue that, in the presence of the characteristic layer spacing, the interface area
per unit cube can be made smaller than that of the lamellar morphology when
a pair of gyroid surfaces forms a double-network.

Our argument may be no more than a revival of the conventional physics based on
the balance of the interfacial energy and configurational entropy. Nevertheless, it provides
us with a useful intuitive basis for understanding the mechanism behind the appearance
of DG phase in terms of “large and small” among some geometrical measures. Overall,
we demonstrate that the gradient system with nonlocal effects is succassful in reflecting
the double gyroid phase observed in experiment and focus on the characterization of this
intricate interconnected triply periodic self-assembled network morphology.
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