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2次元帯状領域におけるパターンの運動

横浜市立大学・総合理学研究科栄伸一郎 (Shin-Ichiro Ei)

Graduate School of Integrated Science, Yokohama City University

Abstract. $\mathrm{R}$ ction-diffusion systems in an infinitely long strip-like domain with finite width
i$\mathrm{n}$

$2\mathrm{D}$ are treated. We construct the solution connecting different types of stationary solutions
at infinity by considering the neighborhood of Turing instability. We also derive 4th order
equations of buckling type which shows the dynamics of the connecting solutions.

1 Introduction

In 1995, Kondo and Asai[l] showed some chemical waves are observed in the skin
of real fishes. Their simulations by using reaction-diffusion systems reappear very well
the growth of patterns on the skin. One of the typical patterns is the rearrangement of
the stripe patterns. For example, when the width of skin are different in locations, the
number of stripes are different depending on the width. Then patterns with different
numbers of stripes are connected and some defects appear. According to the growth
of skin, the location of the defects change. After their work, there have been many
simulations related to such phenomena, but no theoretical results yet. To give a theo
retical framework to it, we first consider a problem on a fixed domain and construct a
solution connecting two different stable stripe patterns as follows:

Let $\Omega=(-\infty, \infty)\mathrm{x}(0, l)\in R^{2}$ and consider a reaction-diffusion system

(1.1) $\tau\iota_{t}=D\Delta u$ $+F(u)$ , $t>0,$ $x$ $=(x, y)\in\Omega$

with the homogeneous Neumann boundary conditions, where $u$ $=(u_{1}, \cdots,u_{N})\in$

$R^{N},F$ i $\mathrm{s}$ a smooth function on $R^{N}$ and $D$ denotes a diagonal matrix with positive
elements $d_{j}$ , that is, $D=diag(d_{1}, \cdots, d_{N})$ .

Let us also consider ID problem of (1.1)

(1.2) $u_{t}=D\tau\iota_{yy}+F(u)$ , $t>0$ , $y\in$ $(0, l)$

with the boundary conditions $\frac{\partial u}{\partial y}=0$ at $y=0$ , $l$ . We assume (1.2) have two different

stationary solutions, say $U^{\pm}(y)$ with $U^{+}(y)\neq U^{-}(y)$ . Under these assumptions, we
look for the solutions $u(t$ , $ $)$ of (1.1) satisfying

(1.3) $u(t,\pm \mathrm{o}\mathrm{o}, y)$ $=U^{\pm}(y)$ .
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There have been few works related to the problem (1.1) with (1.3) (e.g. [2], [3],
[4] $)$ . Specially, traveling front solutions connecting $U^{\pm}(y)$ have been considered. If we
take a solution in the form $u(t, x, y)=U(z, y)$ for $z=x-ct,$ then $U$ satisfies

(1.4) $0=D(U_{zz}+U_{yy})+cU_{z}+F(U)$ , $U(\pm\infty, y)=U^{\pm}(y)$ .

When the problem (1.1) is a gradient system or skew gradient system, we can know
in a formal way how $c$ is determined, which will be mentioned in the following sec-
tions. It gives the movement of the connecting solution. In fact, [4] showed rigorously
the existence and its stability of connecting traveling wavefront solution for a sealer
equation.

On the other hand, if there are no gradient structure in any sense for the system,
there have been no theoretical results even in formal arguments.

In this paper, we consider the problem (1.1), (1.3) for general function $F$ without
any gradient structure, but in the neighborhood of Turing instability. By it, it is shown
that a pitchfork type bifurcation occurs in the system (1.2) on ID and we can get two
different stable stationary solutions, say $U^{\pm}(y)$ . We can construct approximate solu-
tions of (1.1) connecting $U^{\pm}(y)$ at $x$ $arrow\pm \mathrm{o}\mathrm{o}$ . We can show the dynamics is essentially
governed by the dynamics of

(1.5) $R_{T}=-y_{1}R_{(\zeta\zeta\zeta}+R(M_{2}-M_{1}R^{2})$, $T>0$ , $\zeta\in R,$

where all coefficients are positive constants.
In the following sections, we give preliminaries and results.

2 traveling solutions

In this section, we consider the problem (1.4) and show how the velocity $c$ is deter-
mined. All are by formal discussions.
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2.1 Gradient systems
Suppose that $F(u)=-\mathrm{V}W(\mathrm{t}\mathrm{t})$ holds for a function $W(u)\in R$ and that (1.4) has $\mathrm{a}$

solution $U(z,y)$ . Then according to [4] we have

$-c \int_{\Omega}(U_{z},$ $U_{z}\rangle$ dzdy

$= \int_{\Omega}$ $\langle D\Delta U, U_{z}\rangle$ $dzdy- \int_{\Omega}W(U)_{z}dzdy$

$= \int_{\Omega}$ $\langle D\Delta U, U_{z}\rangle$ $dzdy- \int_{\Omega}W(U)_{z}$

$=$ $2$ $\int_{\Omega}\frac{\partial}{\partial z}$ $\langle DU_{z}, U_{z}\rangle dzdy+\int_{-\infty}^{\infty}\{$

dzdy

[ $\langle DU_{y}, U_{z}\rangle$I $- \int_{0}^{l}$ $\langle DU_{y}, U_{zy}\rangle dy\}dz$

$-/_{0}^{1}[W(U)]_{-\infty}^{\infty}dy$

$=$ $\frac{1}{2}$ ($\int_{0}^{l}[\langle DU_{z}, U_{z}\rangle]_{-\infty}^{\infty}dy-\int_{0}^{l}\int_{-\infty}^{\infty}\frac{\partial}{\partial z}$ $\langle DU_{y},U_{y}\rangle dzdy$) $- \int_{0}^{\iota}[W(U)]_{-\infty}^{\infty}dy$

$=- \frac{1}{2}\int_{0}^{l}\{\langle DU_{y}^{+},U_{y}^{+}\rangle-\langle DU_{y}^{-}, U_{y}^{-}\rangle\}dy-\int_{0}^{1}\{W(U^{+})-W(U^{-})\}dy$

$=-2$ $\int_{0}^{l}\{\langle DU_{y}^{+}, U_{y}^{+}\rangle-\langle DU_{y}^{-}, U_{y}^{-}\rangle\}$
$dy- \int_{0}^{l}\{W(U^{+})-W(U^{-})\}dy$

$=E(U^{-})-E(U^{+})$ ,

where $E(U):= \int_{0}^{l}\{\frac{1}{2}$ $(DU_{y}, U_{y})$ $+W(U)\}dy$ . Thus

(2.1) $c \int_{\Omega}$ $\langle U_{z}, U_{z}\rangle$ $dzdy=E(U^{+})-E(U^{-})$

holds. Thi $\mathrm{s}$ means the sign of $c$ is determined the difference of energies $E(U^{\pm})$ of $U^{\pm}(y)$

on the interval $(0, l)$ .

2.2 Skew-gradient systems

Suppose that $F(u)=-$ ($7\mathrm{V}1(u)$ holds for a function $\mathrm{F}(u)$ $\in R$ and a matrix $Q$

which i $\mathrm{s}$ symmetric and invertible satisfying $DQ=QD(\mathrm{e}.\mathrm{g}. [5])$ . Assume (1.4) has $\mathrm{a}$

solution $U(z,y)$ . Then similarly to the previous subsection, we have

(2.2) $-c$ $\int_{\Omega}$ $\langle U_{z}, Q^{-1}U_{z}\rangle$ dzdy

$=$ $\int_{\Omega}$ $\langle D\Delta U, Q^{-1}U_{z}\rangle$ $dzdy- \int_{\Omega}$ $\langle Q\nabla W(U), Q^{-1}U_{l}\rangle$ dzdy

$=$ $E(U^{+})-E(U^{-})$ ,
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where
$E(U):= \int_{0}^{l}\{\frac{1}{2}$ $\langle DU_{y}, Q^{-1}U_{y}\rangle+W(U)\}dy$ .

But the coefficient of $c$ in the left hand side of (2.2) does not have fixed sign due to $Q$ .
Thus, we need more informations on the solution $U(z, y)$ in order to know the sign of
$c$ .

3 Preliminaries for Turing Instability

3.1 Bifurcation diagram in ID problems
Let 0 be a linearly stable equilibrium of $F$ , that is, $F(0)=0$ is satisfied and all
eigenvalues of the linearized matrix $B:=F’(0)$ are negative real parts. Consider the 1
dimensional problem (1.2) and $L$ be a linearized operator with respect to 0. Expanding
solutions in Fourier series $U=$ $\mathrm{E}7=0\cos$ Cnyan $(a_{n}\in R^{N})$ and substituting it to the
eigenvalue problem $LU=\lambda U,$ we have

$\{-C_{n}^{2}D+B\}a_{n}=\lambda a_{n}$ ,

where $C_{n}:= \frac{n\pi}{l}$ . Therefore, we first consider the matrix —(\mbox{\boldmath $\tau$}) $:=-\tau DJ\mathit{7}B$ parametrized
by $\tau\geq 0$ . Let $\lambda_{\mathrm{j}}(\tau)(j= 1, \cdots, N)$ be eigenvalues of $\mathrm{H}(\tau)$ . We assume there exist
positive constants 70, $\tau_{0}$ such that $R\mathrm{e}(\lambda_{j}(\tau))<-\gamma_{0}$ for $j=2$ , $\cdots$ , if and Aj (r) 6 $R$,
$\lambda_{1}(\tau)\leq 0$ for any $\tau\geq 0$ and $\lambda_{1}(\tau)=0$ if and only if $\tau=\tau_{0}(\mathrm{F}\mathrm{i}\mathrm{g}.3.1)$ . Moreover, we

Figure 3.1: Eigenvalues $\lambda_{1}(\tau)$ and others.
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assume $\lambda_{0}(\tau)$ is a simple eigenvalue of –(-\mbox{\boldmath $\tau$}) with the associated eigenvector $\alpha(\tau)\in R^{N}$ .
If we take the width $l$ of $\Omega$ such that $( \frac{\pi}{l})^{2}=$

$\tau_{0}$ and take $a_{1}=\alpha_{0}$ , then $L\phi_{1}=0$

holds, where $\phi_{n}(y)$ $:=\cos C_{n}ya_{n}$ and $\alpha_{0}=\alpha(\tau_{0})$ . Thus, in the system (1.2), only 1
mod solution close to $\phi_{1}(y)$ can be unstable.

Under the above assumptions, we consider the system

(3.1) $u_{t}=D\Delta u$ $+F(u)+qG$(u), $t>0,$ $x$ $=(x,y)\in$ $\mathrm{Q}$

for small $\eta$ and a function $G(u)$ with $G(0)=0.$ Then we can show for the ID problem
of (3.1)

(3.2) $u_{t}=u_{yy}+F$(u) $+\eta G$(u), $t>0,0<y<l$

has a pitch-fork type bifurcation diagram in super critical as follows.

Proposition 3.1 For sufficiently $\eta$ , there exist constants $M_{1;}M_{2}$ and a function $\mathrm{a}=$

$\sigma(r;\eta)(y)$ with $||$ a$||=O(|\eta|+r^{2})$ such that

$u$ (t, $y$ ) $=r(t)\varphi_{1}(y)+\sigma(r(t);\eta)(y)$

with
$\dot{r}=-M_{1}r^{3}+M_{2}r\eta+O(|\eta|^{2}+r^{4})$ .

This proposition is easily proved by a standard center manifold theory.
Hereafter, we assume both $M_{1}$ and $M_{2}$ are positive, which means a super criti-

casily pitch-fork type bifurcation diagram occurs. In fact, there exist stable stationary

solutions $U^{\pm}(y)$ corresponding to $r\pm:=\pm\sqrt{\frac{M_{2}\eta}{M_{1}}}$ for small $\eta>0.$ $U^{\pm}(y)$ are given by

$U^{\pm}(y)$ $=r_{\pm}\phi_{1}(y)+\sigma(r_{\pm};\eta)(y)=\pm\sqrt{\frac{M_{2}\eta}{M_{1}}}\cos C_{1}y\alpha_{0}+O(|\eta|)$.

3.2 Stability of planar solutions in 2D
In this subsection, we give the stability conditions of $U^{\pm}(y)$ as the solutions of (3.1) in
$2\mathrm{D}$ . Let $u^{\pm}(x,y):=U^{\pm}(y)$ and let $\alpha^{*}(\tau)$ be the eigenvectors satisfying $t$Xi(r)am(r) $=$

$\mathrm{X}_{1}(\tau)\alpha$
’

$(\tau)$ and $\langle\alpha(\tau),\alpha^{*}(\tau)\rangle=1.$ Define $\alpha_{0}^{*}:=\alpha^{*}(\tau_{\mathrm{O}})$ . Then we have

Theorem 3.1 Let $\omega_{1}$ be the constant given by

$\omega_{1}:=\frac{1}{8}$ $(F’(0) \alpha_{0}. (v_{1}-b_{2}), \alpha_{0}^{*})+\frac{1}{32}$ $\langle F’(0)\alpha_{0}^{3},\alpha_{0}^{*}\rangle$ ,

where $v_{1}$ and $b_{2}$ are unique vectors determined by

$(-4 \tau_{0}D+B)b_{2}+\frac{1}{4}F"(0)\alpha_{0}^{2}=0,$ $(-2\tau_{0}D+B)v_{1}+F’(0)\alpha_{0}^{2}=0.$

If $\omega_{1}<0(>0)$ then $u^{\pm}$ are stable (unstable) as the stationary solutions in $\mathit{2}D$ .
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Corollary 3.1 $Assum$ ’ $u$ $=(\begin{array}{l}uv\end{array})$ $\in R^{2}$ and $F(u)+\eta G(u)=($

with 7 $(0)=g(0,0)=0$ and /”(0) $=0,$ ab $ere$ $\delta$ and $\mathrm{y}$ are $pos$
$u^{\pm}(X, jj)$ are stable (or unstable ) if $f’(0)<0$ $(or>0)$ .

7 (u) / $+$ $/!/(u_{=} v)$
$)$

$\delta(u-\gamma v)$

itive constants. Th$en$

Typical $\mathrm{e}\mathrm{x}$ mples of $f$ are cubic-like functions such as $f(u)=u(1-0)$ . Then
the conditions in Corollary 3.1 are easily satisfied and we find planar solution$\mathrm{s}$

$u^{\pm}$ are
stable.

4 Solutions of (3.1) connecting $u^{\pm}$

Define $\Sigma(r)(y):=r\phi_{1}(y)+\sigma(r;\eta)(y)$ . Then $\Sigma(r)(y)$ is invariant for the dynamics
of (3.2), that is, there exists $H(r;\eta)$ such that

$H\Sigma_{r}=$ $\mathrm{C}(\mathrm{I})$ ,

where $\mathcal{L}(u):=u_{yy}+F$(u)1 $\mathrm{C}(\mathrm{u})$ . PrOpOsitiOn3.1 suggests that $H(r;\eta)=-M_{1}r^{3}+$
$M_{2}r\eta+O(|\eta|^{2}+r^{4})$ holds. Especially, $U^{\pm}(y\rangle$ are given by $\Sigma(r_{\pm};\eta)$ .

For the eigenvalue $\lambda_{1}(\tau)$ of the matrix —(\mbox{\boldmath $\tau$}) mentioned in Section 3.1, we may
assume

(4.1) $\lambda_{1}(\tau_{0}+\epsilon)=-$
$\mathrm{y}_{1}$

$\mathrm{s}^{2}+O(\epsilon^{3})$

for positive $\gamma_{1}$ and small $\epsilon$ (Fig.3.1).
Using the above, we define approximate functions by

$u^{*}(t, x, y):=\Sigma(\sqrt{\eta}R(T, \zeta))(y)$ , $T:=\eta t$ , $\zeta:=\sqrt[4]{\eta}x$

and define constants $R_{\pm}:=\pm\sqrt{\frac{M_{2}}{M_{1}}}$. Then

Theorem 4.1
$u_{t}^{*}-\{D\Delta u^{*}+F(u^{*})+\eta G(u^{*})\}=O(|\eta|^{3/2})$

holds and $R(T, \zeta)$ satisfies
(4.2) $R_{T}=-y_{1}R_{\zeta\zeta\zeta\zeta}+R(M_{2}-M_{1}R^{2})+O(\sqrt{\eta})$

unifomly for $0\leq T\leq T^{*}$ and $(x,y)\in\Omega$ , where $T^{*}$ is an arbitrarily given positive
constant.

Suppose there exists the solution, say $R_{0}(T, \zeta)$ , of (1.5), the equation (4.2) with $\etaarrow$

$0$ , satisfying $R_{0}(T, \pm \mathrm{L}\mathrm{o}\mathrm{o})$ $=R_{\pm}for$ $0\leq T\leq T^{*}$ . Let $u_{0}^{*}(t, x, y):=\Sigma(\sqrt{\eta}R_{0}(T, ;))(y)$ .
If the initial date $u(0, x, y)$ is sufficiently close to $u_{0}^{*}(0, x, y)$ , then the solution of (S. 1)
satisfies

$u(t, x,y)-u_{0}^{*}(t, x, y)=o(1)$

unifomly for $0\leq T\leq T^{*}$ and $(x, y)\in$ Q.
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Remark 4.1

$u_{0}^{*}(t, \pm\infty, y)=\Sigma(\sqrt{\eta}R_{0}(T, \mathrm{b}\mathrm{o}\mathrm{o}))(y)$ $=\Sigma(\sqrt{\eta}R_{\pm})(y)=\Sigma(r_{\pm})(y)=U^{\pm}(y)$

holds. Thus, $u_{0}^{*}(t, x, y)$ is the approximate function which connects $U^{\pm}(y)$ at $x$ $arrow\pm\infty$ .

Remark 4.2 For the symmetry of the equations (3.1) with respect to y-axis, $U^{\pm}(y)$

are $s$ ymmetric each other for $y=l/2$ . Hence $R_{0}(T, \zeta)$ may be taken as a stationary
solution of (1.5), $say\ =\ (0\cdot$

All coefficients mentioned hitherto such as $M_{j}$ are explicitly given though we don’t
touch on it here because of the restriction of total pages. By using such informations,

we can compare the approximate functions constructed here quantitatively with the
solutions of (3.1). Fig4.1 denotes the stationary solution of (3.1) connecting $U^{\pm}(y)$ (in

Figure 4.1: Solution of (3.1) connecting $U^{\pm}(y)$ .

numerical sense ), say $u_{0}(x,y)$ . Fig4.2 shows the graph of values of $u\mathrm{o}(x, y)$ at $y=0.$

, . . . $\mathrm{z}$ . . . . . . - .
$X$

Figure 4.2: Graph of the edge $uo(x, 0)$ .

It is quite coincident with the graph of $\sqrt{\eta}R_{0}(\sqrt[4]{\eta}x)$ .
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