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HALL SUBGROUPS OF M-GROUPS NEED NOT BE M-GROUPS

HBEKRE -#HEEHM #5 @ (HIROSHI FUKUSHIMA)

(Gunma University)

ABSTRACT. In this paper, we shall give examples of M-groups that have a Hall
subgroup that is not an M-group.

1. INTRODUCTION

A character of a finite group G is monomial if it is induced from a linear character
of a subgroup of G. A group G is an M-group if all its complex irreducible characters
(the set Irr(G)) are monomial.

In the 1960’s, Dornhoff [3] proved that a normal Hall subgroup of an M-group
must be an M-group. Based on this work, it was conjectured that normal subgroups
of M-groups are M-groups and Hall subgroups of M-groups are M-groups. In the
early 1970’s, Dade [1] and van der Waall [5] independently showed that normal
subgroups of M-groups need not be M-groups. In this paper, we shall give examples
of M-groups that have a Hall subgroup that is not an M-group.

Let N <G and 0 € Irr(N). We write C(6) to denote the stabilizer of 6 in G.
We also write Irr(G|0) = {x € Irr(G)|[xn, 8] # 0}.

2. PRELIMINARY LEMMAS

We begin with some preliminary lemmas.

Lemma 2.1 Let E be an extra-special p-group, let o be an automorphism of E of
order q where ¢ # p is a prime, and let G = E{c). If o acts irreducibly on E/Z(E),
then G is not an M-group.

Proof. We know that |E| = p?"*! for some positive integer n. This implies that
the nontrivial irreducible p-modules for & must have dimention 2n, and thus, o must
centralize Z(E). For any nonlinear character ¢ € Irr(E), we see that 1(1) = p" and
v is invariant under the action of 0. By Corollary 6.28 of [4], ¢ has an extention
x € Irr(G).
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We claim that x is not monomial. Suppose x were monomial. Then there would

bea subgroup H C G and a linear character A € Irr(H) so that AF = y. We see that

|G : H| = x(1) = p". It follows that |[H| = p"*q, and so by conjugating, we may
assume that ¢ € H . This implies that H N E/Z(F) is a o-submodule of E/Z(E),
but this is contradiction, since Z(E) C HNE C E and E/Z(E) is irreducible under
the action of 0. Therefore, we conclude that x is not monomial, and hence, G is not

an M-group. : a

.. Lemma 2.2 Let N be a normal subgroup of G, and let ¢ be a linear character of

N. Write T for the stabilizer of ¢ in G, and assume that ¢ extends to ¢ € Ir(T).
Given a character n € Ir(T/N), the character (¢n)C is monomial if and only if o
is monomial. Fuﬂhermore, every character in Irr(G|yp) s monomial if and only if
T/N is an M-group.

Proof. By Gallagher’s theorem, we know that ¢n € Irr(T|p), and by Clifford’s
theorem, x = (¢n)¢ is irreducible. Using Lemma 4.1 of [2] (or Problem 6.11 of [4]),
we see that x is monomial if and if ¢ is monomial. Suppose S is a subgroup of T
and o € Irr(S) so that o7 = 5. It is known that (¢sa)T = 7 (see Problem 5.3 of
[4]). It follows that ¢n is monomial if and only if 7 is monomial. The last conclusion

is an immediate consequence of the previous one, so this proves the lemma. d

Lemma 2.3 Let p be an odd prime so that 3 divides p+ 1. Let E be an extra-
special p-group of order p® and exponent p. Then E has an automorphism o of order
3 with centralizer Z(E), and E has a mazimal abelian subgroup A that is normal in

E and o- invariant. If G is the semi-direct product E{c), then G is an M-group.

Proof. We know that 3 divides p?—~1. We can view F as the central product of F,
and E; where E; and E; are both extra-special groups of order p® and exponent p.
Since 3 divides p? —1, it follows that F, and E, each have an automorphism of order

3 with each having centralizer Z = Z(F). Applying these to the central product, we




110

get the automorphism o of E with order 3 and centralizer Z. We let T' = (0}, and
we note that Cg(T") = Z. It suffices to find abelian T-invariant subgroup A C E of
index p?. (Note that this will prove that G is an M-group.)

Let U/Z be an irreducible T-submodule of E/Z. Then U/Z has order p? since
3 does not divide p — 1. If U is abelian, then we are done, so we assume U is
nonabelian. Let V = Cg(U). Then UNV = Z, and E/Z is the direct sum of the
irreducible modules U/Z and V/Z. Note that V must be nonabelian.

Take z to be an element of U that does not lie in Z, and write y = z°. Then z and
y generate U, so they do not commute. Let z = [z,y], and observe that Z = (z).
Then y° € 271y~ 1 Z.

Let r be an element of V' that does not lie in Z, and write s = r°.

We see
that  and s generate V, so they do not commute, and hence, [r, s] is a nonidentity
element of Z. We see that s° € r~1s~'Z. Suppose that [r,s] = z7!. We observe
that (zr)° = ys, and we compute [zr,ys] = [z,y][r,s] = zz7! = 1. Also, (ys)’ €
(z7ly V) (r~ts)Z = (zr) Y ys)'Z C (zr,ys). We conclude that (zr,ys) is a
o-invariant abelian subgroup of E of index p?, and we will be done.

The idea is to choose r properly. We pick any element v € V — Z, and let
w = v°. Note that w’ € v™lw=!'Z. We know that [v,w] = z° for some integer

a with 1 < a < p— 1. We consider elements of the form v'w’, and we see that

(v'wi)’Z = wiv w7 = viwIZ. It follows that
[v‘wj, (Uz’wi)"] = [v‘wj,v‘iw"j] = (za)i(i—j)-—j(—j) = yo(@—ij+s?)

We need to show that as ¢ and j vary over Z/pZ, the quantify 12 — 17 + 5% takes on
all values in Z/pZ.

For any value b € Z/pZ, we consider the equation 2 — ij + j2 = b. We take the
equation 12— 45+ j2 —b = 0, and we solve for ¢. By the quadratic formula, we can do
this if the discriminant is a square. The discriminant is 5% —4(;2 —b) = 4b—3;2. We
want to find k so that 4b— 7% = k%. As j and k vary through the p possible values in
Z/pZ, we see that 4b— 332 and k? each take on (p+1)/2 different values. Since there
are only p possible values in Z/pZ, there must be an overlap between these two sets.

We now fix b so that ab = —1 modulo p. The work we have just done shows that



we can find i and j so that 2 — 5 + j2 = b modulo p. We take r = v'w’, and we see
that s = r?. The work we did earlier shows that [r,s] = 22(*~+7*) = 2% = ;=1 We
now conclude that E has a normal o-invariant subgroup of index p?, so the lemma

is proved. O

3. THE CONSTRUCTION

We suppose that p and ¢ are distinct odd primes so that p divides ¢ — 1 and
3 divides p+ 1. Then ¢ = 1 + pk for some integer k. Hence (¢ —1)/(g~1) =
l+g+--+¢ ' =1+ (14pk)+---+(1+ (p—1)pk) = p+((p—1)p*k/2) (mod p?).
Thus (¢ —1)/(¢—1) = pr, where r = 1 (mod p). In particular, (p,7) = 1. Next we
claim that 3 does not divide r. It is known that the gcd of g—1 and (¢? —1)/(g—1)
must divide p, so if 3 divides ¢ — 1, then 3 will not divide (¢ — 1)/(g — 1). On the
other hand, we know that the order of ¢ modulo 3 must divide 2, so if 3 does not
divide ¢ — 1, then the order of ¢ modulo 3 is 2. Since 2 does not divide p, it cannot
be the ¢” is congruent to 1 modulo 3, so 3 does not divide (¢* — 1)/(g — 1).

We mention that there exist pairs of primes with the properties mentioned in the
previous paragraph. One such pair of primes is p = 5 and ¢ = 11. Observe that
(11°-1)/(11 —1) = 5- 3221.

Let F be the finite field of order ¢?. Take V to be the additive group of F', so V is
an elementary abelian ¢-group. Let NV be the subgroup of of order (¢ —1)/(¢—1) =
pr in the multiplicative group of F. Multiplication in F provides a natural action
of N on V via automorphisms. The orbits in these action correspond to the cosets
of the subgroup of order ¢ — 1 in the multiplicative group of F. Fix s,t € N so
that o(s) = p and o(t) = r, and note that N = (st). Let a be a generator for the
Galois group of F over the field of order q so that a has order p. The Galois action
provides a natural action for @ on V and N. Note that the fixed field for a is the
field of order g, so each orbit of N on V is stabilized by a. Since p divides g — 1, it
follows when s is viewed as an element of F that s lies in the fixed field, so a will

centralize s.

M
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Let @ be an extra-special p-group of order p° and exponent p. Let Z be the center
of @), and suppose that Z is generated by z. We can fix the generators of Q to be
Zo,Yo,Z1,Y1 so that 2 = y§ = 2] = y} = 27 = 1 and [z0,%0] = [T1,71] = 2. We
define Qo = (zo,%0) and @y = (z1,y1). Let K be an elementary abelian group of
order p? that is generated by z; and y,. It is not difficult to see that E = Q x K

has an automorphism o of oredr 3 that centralizes Z and is defined by

o o e a—1, -1 o o =1, -1 o c _ .~1,-1
o =Y Yo =Zg Yo » Ty =VY1, Y1 =Ty Y175 T3 =Y2, Y =25 Yy .

We define M to be the semi-direct pfoduct arising from o acting on F.

We set U = V(t). We define an action of Q on U whose kernel is @ by u®! = u®
and u¥ = v’ for all u € U. We define an action of K on U by u® = u*”" and
u? =y forallu € U. Weset Up = U x U’ x U°’. We define an action of M
on U, by (u”‘)z =ul2 ™) forallu € U,z € M, and i = 1,2. Our group G is
the resulting semi-direct product of M acting on U. Observe that |U| = ¢’r and
M| = p73, s0 |G| = ¢®r3p"3. Take Vo =V xV? xV°’, and let H be the semi-direct
product of M acting on V;. We see that |H| = ¢°’p’3 and |G : H| = r3, so H is
a Hall subgroup of G. (Obviously, q does not divide r, the choice of p precludes p
from dividing r, and we showed that 3 does not divide r; so (r3,¢%"p"3) = 1.) We
will show that G is an M-group and H is not an M-group. Also, we take L to
be the semi- direct product of M acting on (t) x (¢°) x (t°). Observe that L acts

coprimely on V.

Lemma 3.1 H is not an M-group

Proof. Let A = Qo(z;z3,y1y;"). It is not difficult to see that A is the kernel
of the action of E on Irr(V). Furthermore, since E/A is abelian, it must have a
regular orbit in Irr(V), so we can find a character A € Irr(V) with Cg()\) = A.
Let ¢ = X x A7 x A°. We see that Cg(p) = AN A° N A", It follows that
Qo C Cr(p). Also, A is not o-invariant, so |E : Cg(p)| > |E : A| = p*. We obtain
ICE(¢) : Qo] < p?, and we conclude that Cg(p) = Qo. Since o will stabilize p, we
have Cpr(p) = Qo{0), and Cps(yp) is not an M-group by Lemma 2.1.



Let T' be the stabilizer of ¢ in H. It follows that T' = V4Crm(¢). Since (|Vpl,|T :
Vol) = 1, we know ¢ extends to ¢ € Irr(T). Since T/Vy = Chr(p), we can find a
character n € Irr(T'/Vo) which is not monomial. We know that (¢n)¥ is irreducible

and it is not monomial by Lemma 2.2. Therefore, H is not an M-group. O

Lemma 3.2 G is an M-group

Proof. Using Lemma 2.3, it is not difficult to show that M = G/U, is an M-
group. To show G is an M-group, it suffices to show that every character in Irr(G)
whose kernel does not contain Uy is monomial.

Suppose x € Irr(G) and U is not contained in Ker(x). For now, we will assume
that Vo is contained in Ker(x). Let ¢ be an irreducible constituent of yy,, and
notice that ¢ € Irr(Up/Vp). Let T be the stabilizer of ¢ in G, and observe that
(0o : Vol,|T : Uy|) = 1, so ¢ extends to ¢ € Irr(T). By Lemma 2.2, it suffices
to prove that T/Up is an M-group. If 3 does not divide |T : Up|, then T/Up is a
p-group, and we are done. Thus, we may assume that 3 divides |T' : Up|, and by
conjugating, we may assume that ¢ € T. This implies that ¢ = v x 17 x 1°° for
some character v € Irr(U/V). Observe that T = UpCum () and Cu(p) = Cr(p){o).
Furthermore, we have Cg(p) = Cg(v) N Cg(r)’ N Ce(v)” = Cx(v) N Ce(v)°’. It
is not difficult to see that |E : Cg(v)| = p and Cg(v) N Cg(v)° is an extra-special
p-group of order p®. Thus, Cp(y) is an M- group by Lemma 2.3.

Finally, we assume that V; is not contained in the kernel of x. Let § be an
irreducible constituent of xy,. Let S be the stabilizer of § in G. Again, (|V¢),|S :
Vol) =1, s0 & extends to § € Irr(T), and we see using Lemma 2.2 that it suffices to
show that S/V; is an M-group. If 3 does not divide |S : Vp|, then S/(SNUy) is a
p-group and (S N Uy)/V; is abelian. By Theorem 6.23 of [4], this will force S/V} to
be an M-group. We suppose that 3 does not divide |S : V4|, and by conjugating, we
may assume that ¢ € S. This implies that § = A x A° x A°° for some nonprincipal
character A € Irr(V).

We know that (t) acts Frobeniusly on V, so no nonidentity element in (¢) will

stabilize A. It follows that Cyyg()) is a p-subgroup, so we can find an element

113
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h € (t) so that A = Ciy5(M*) C E. Recall that the orbits in V under the action of
(t)E have size pr. It is not difficult to see that the orbits in V have the same size,
so |(t)E : A| = pr, and hence, A has index p in E.

Let &' = Ak x (A7) x (A’ )"’2, and we observe that 6’ = §®A74") Obseve that
Cg(6') = ANA°N A" = AN A°. We note that A is not o-invariant so ANA° C A.
On the other hand, A is normal in E of index p, so AN A’ will be normal in E of
index p?, and |[ANA?| = p°. Since K is not contained in A, we have K x Qo # ANA?,
and we conclude that Cg(8') = AN A’ is an extra-special group of order p*. Now,
Cu(8') = CL(8') is a conjugate of Cr(8) that lies in M, so Cps(8') = Cg(8')(o), and
Cp(8') is an M-group by Lemma 2.3. It follows that S/V, = Cp(8) is an M- group.
This proves the theorem. |

4. ANOTHER CONSTRUCTION

We observe that Lemma 2.3 is still true if E is replaced by a central product of
two quaternion groups of order 8. We can change the construction in Section 3 by
taking p = 2 and ¢ to be an odd prime so that ¢ + 1 = 2r where r is relatively
prime to 6. (The first such prime ¢ = 13.) We take @ to be the central product
of two quaternion groups of order 8, and we make the appropriate changes in the

generators of (). The rest of the argument will go through for this construction.
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