ブロックイデアルのコホモロジー環

愛媛大学理学部 (Ehime University) 佐々木 洋城 (Sasaki, Hiroki)

1 はじめに

G を有限群とする. k を代数的閉体とし、その標数 p は |G| の素因数であるとする.

定義 1.1 b を kG のプロックイデアルとし, D を b の defect 群とする. (D,e_D) を Sylow b-subpair b-subpair

$$S(P)$$
 $\operatorname{res}_P \zeta = (\operatorname{res}_P \zeta)^x \quad \forall x \in N_G(P, e_P)$

を考える、コホモロジー環 $H^*(D,k)$ の部分環としてプロック b のコホモロジー環を

$$H^*(G,b) =$$

 $\{\zeta \in H^*(D,k) \mid \zeta$ はどの $(P,e_P) \leq (D,e_D)$ に対しても条件 S(P) を満たす $\}$ によって定義する.

Linckelmann [4] における定義とは見掛け上ちょっと違うが、同じと思ってよい.

河合氏は2003年1月の大阪大学におけるワークショップで、defect 群が二面体群などのときのプロックのコホモロジー環の計算を紹介してくれた。ここでは、まず、defect 群がwreathed 2- 群であるプロックのコホモロジー環を計算してみたので紹介する。次に、だれでもが疑問に思うであろうように、defect 群が正規部分である場合に、プロックのコホモロジー環について分かることを述べる。

2 defect 群が wreathed 2- 群であるブロックイデアルのコホモロジー環

2.1 wreathed 2- 群 W

wreathed 2- 群 W を

$$W = \langle a, b, t \mid a^{2^n} = b^{2^n} = t^2 = 1, \ ab = ba, \ tat = b \rangle, \ n \ge 2$$

と定義する. c = ab, $d = a^{-1}b$ とおくと, $Z(W) = \langle z \rangle$, $D(W) = \langle d \rangle$ である. さらに,

$$x = a^{2^{n-1}}, y = b^{2^{n-1}}, z = c^{2^{n-1}} = xy,$$

 $e = xt, f = d^{2^{n-2}} (= (a^{-1}b)^{2^{n-2}}),$
 $U = \langle a, b \rangle, Q = \langle e, f \rangle, V = \langle e, f, c \rangle$

とおく. Q = (e, f) は位数 8 の四元数群である. また, V = (x, t, c) でもある.

2.2 ブロックのコホモロジー環

bを群環 kG のブロックイデアルとし、W は b の defect 群であると仮定する.

S を G の部分群とする. 元 $g \in N_G(S)$ がひきおこす S の自己同型を ι_g と表す:

$$\iota_g: S \longrightarrow S; s \longmapsto s^g.$$

剰余類 $gSC_G(S) \in N_G(S)/SC_G(S)$ は S の外部自己同型 $\iota_g \operatorname{Inn} S$ をひきおこす.以下では、 $N_G(S)/SC_G(S)$ を S の外部自己同型群の部分群と同一視する.

 (W, e_W) を Sylow b-subpair とする. W の部分群の自己同型群の構造を調べることにより (Alperin-Brauer-Gorenstein [1]), W の部分群 P で, 条件 S(P) を調べなければならないものは W, U, V のみであることがわかる. すなわち

補題 2.1 $\zeta \in H^*(W,k)$ が $H^*(G,b)$ に属するためには

- (N) $\zeta^g = \zeta \ \forall \ g \in N_G(W, e_W)$
- (U) $(\operatorname{res}_U \zeta)^g = \operatorname{res}_U \zeta \ \forall \ g \in N_G(U, e_U)$
- (V) $(\operatorname{res}_V \zeta)^g = \operatorname{res}_V \zeta \ \forall \ g \in N_G(V, e_V)$

が成り立つことが必要十分である.

Sylow b-subpair (W, e_W) については、剰余群 $N_G(W, e_W)/WC_G(W)$ は 2'- 群である. 一方、wreathed 2- 群 W の自己同型群 Aut W は 2- 群であるから、

$$N_G(W, e_W) = WC_G(W).$$

特に,任意の $\zeta \in H^*(W,k)$ は上記補題 2.1 の条件 (N) を満たす.

Külshammer [3] に従って, $N_G(U, e_U)/C_G(U)$ と $N_G(V, e_V)/VC_G(V)$ の構造によって, ブロックを分類するが, Brauer-Wong [2], Alperin-Brauer-Gorenstein [1] の議論のまねをして, 分類の議論をする.

2.3 $N_G(U, e_U)/C_G(U)$

U の自己同型 τ , ω を次のように定義する:

$$\tau: \begin{cases} a \longmapsto b \\ b \longmapsto a \end{cases}, \quad \omega: \begin{cases} a \longmapsto b \\ b \longmapsto a^{-1}b^{-1} \end{cases}$$

 $\langle \tau, \omega \rangle \simeq \operatorname{GL}(2,2)$ ($\simeq S_3$) である. $\Phi(U) = \langle a^2, b^2 \rangle$ である. U の自己同型 σ は $U/\langle a^2, b^2 \rangle$ (四元群) の自己同型 $\overline{\sigma}$: $u(a^2, b^2) \longmapsto u^{\sigma}(a^2, b^2)$ をひきおこす. 写像

$$\pi: \operatorname{Aut} U \longrightarrow \operatorname{Aut}(U/\langle a^2, b^2 \rangle); \sigma \longmapsto \overline{\sigma}$$

は split epi である. このとき

補羅 2.2

Aut
$$U = \operatorname{Ker} \pi \rtimes \langle \tau, \omega \rangle$$
.

Brauer-Wong [2] の議論を注意深く, まねして

補題 2.3

$$N_G(U, e_U)/C_G(U) = \begin{cases} \langle \tau \rangle, \\ \langle \tau, \omega \rangle^{\chi} & \exists \ \chi \in \operatorname{Ker} \pi \cap C(\tau). \end{cases}$$

がわかる. さて.

補題 2.4 $\operatorname{Ker} \pi = \{ \sigma \in \operatorname{Aut} U \mid u^{\sigma} \equiv u \mod \langle a^2, b^2 \rangle \}$ に属する自己同型はコホモロジー 環 $H^*(U,k)$ に自明に作用する.

により

- 命題 2.5 (i) $N_G(U,e_U)/C_G(U)\simeq {\bf Z}/(2)$ ならば、任意の $\zeta\in H^*(W,k)$ は補題 2.1 の条件 (U) を満たす.
- (ii) $N_G(U,e_U)/C_G(U)\simeq \mathrm{GL}(2,2)$ ならば元 $\zeta\in H^*(W,k)$ が補題 2.1 の条件 (U) を満たすためには

$$(\operatorname{res}_U \zeta)^{\omega} = \operatorname{res}_U \zeta$$

であることが必要十分である.

2.4 $N_G(V, e_V)/VC_G(V)$

四元**数群** Q = (e, f) の自己同型 τ, ω を

$$\tau: \begin{cases} e \longmapsto f \\ f \longmapsto e \end{cases}, \quad \omega: \begin{cases} e \longmapsto f \\ f \longmapsto e^{-1}f \end{cases}$$

と定義すると

補題 2.6

Aut
$$Q = \operatorname{Inn} Q \rtimes \langle \tau, \omega \rangle$$
, $\langle \tau, \omega \rangle \simeq \operatorname{GL}(2, 2)$.

V において Q と $\{c\}$ はともに特性部分群である. Q の自己同型 σ に対して, 写像

$$\widehat{\sigma}: V \longrightarrow V; x \longmapsto \begin{cases} x^{\sigma} & x \in Q, \\ x & x \in \langle c \rangle \end{cases}$$

は、自己同型 σ は $Q \cap \langle c \rangle = Z(Q)$ に自明に作用するから、well-defined であり、かつ自己同型である、明らかに、写像

$$i: \operatorname{Aut} Q \longrightarrow \operatorname{Aut} V; \sigma \longmapsto \widehat{\sigma}$$

は群の単射準同型である。また、中心 (c) の自己同型 γ に対して

$$\widehat{\gamma}:V\longrightarrow V;x\longmapsto \begin{cases} x & x\in Q,\\ x^{\gamma} & x\in \langle c\rangle \end{cases}$$

は, 自己同型 γ は $Q \cap \langle c \rangle = Z(Q)$ に自明に作用するから, well-defined であり, かつ自己 同型である. 明らかに, 写像

$$j: \operatorname{Aut}\langle c \rangle \longrightarrow \operatorname{Aut} V; \gamma \longmapsto \widehat{\gamma}$$

は群の単射準同型である.

補題 2.7 次が成り立つ:

Aut
$$V = j(\operatorname{Aut}\langle c \rangle) \times i(\operatorname{Aut} Q)$$
,
Aut $\langle c \rangle \simeq j(\operatorname{Aut}\langle c \rangle)$, Aut $Q \simeq i(\operatorname{Aut} Q)$,
 $|\operatorname{Aut} V| = 2^{n-1} \cdot 4 \cdot 6 = 2^{n+2} \cdot 3$,
Inn $V = i(\operatorname{Inn} Q)$, Aut $V = \operatorname{Inn} V \rtimes (j(\operatorname{Aut}\langle c \rangle) \times \langle \widehat{\tau}, \widehat{\omega} \rangle)$.

Alperin-Brauer-Gorenstein [1] の議論を注意深くまねして

補題 2.8

$$N_G(V, e_V)/VC_G(V) = \begin{cases} \langle \widehat{\tau}\widehat{\omega} \rangle, \\ \langle \widehat{\tau}, \widehat{\omega} \rangle \end{cases}$$

であることがわかり、

- 命題 2.9 (i) $N_G(V,e_V)/C_G(V)\simeq {\bf Z}/(2)$ ならば、任意の $\zeta\in H^*(W,k)$ は補題 2.1 の条件 (V) を満たす.
- (ii) $N_G(V,e_V)/VC_G(V)\simeq \mathrm{GL}(2,2)$ ならば元 $\zeta\in H^*(W,k)$ が補題 2.1 の条件 (V) を満たすためには

$$(\operatorname{res}_V \zeta)^{\omega} = \operatorname{res}_V \zeta$$

であることが必要十分である.

2.5 結論

以上により、 $H^*(G,b)$ は $N_G(U,e_U)/C_G(U)$ と $N_G(V,e_V)/VC_G(V)$ により完全に分類されることがわかった。

主プロックで考えると、

$$E = \langle x, y \rangle, \quad F = \langle z, t \rangle$$

とおくと

$$N_G(U)/C_G(U) \simeq GL(2,2) \iff N_G(E)/N_G(E) \simeq GL(2,2),$$

 $N_G(V)/VC_G(V) \simeq GL(2,2) \iff E \sim_G F$

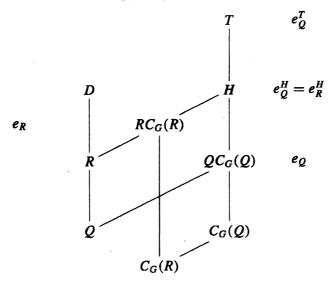
であるから、Okuyama-Sasaki [6] の分類により、 $H^*(G,b)$ も記述できる.

3 defect 群が正規であるブロックのコホモロジー理

3.1 defect 群が正規であるブロックのコホモロジー環

kG のブロックイデアル b の defect 群 D が G で正規であると仮定する. (D,e_D) を Sylow b-subpair とする. (Q,e_Q) を (Q,e_Q) $\leq (D,e_D)$ である任意の b-subpair とし, T=

 $N_G(Q, e_Q)$ とおく. $R = N_D(Q)$ は e_Q^T の defect 群である. $R \triangleleft T$ であり, R は e_Q^T のただ ひとつの defect 群である. $H = N_D(Q)C_G(Q)$ とおく.



 $(Q, e_Q) \triangleleft (R, e_R)$ である. 以上のもとで、Frattini 輪法により

補題 3.1

$$T = H \cdot N_T(R, e_R) = C_G(Q) \cdot N_T(R, e_R)$$

が成り立つ. 特に, $Q \triangleleft D$ のとき, $N_G(Q, e_0) = C_G(Q)N_G(D, e_D)$ である.

この事実を用いて、次が得られる.

命題 3.2 b を G のブロックイデアルとする. D を b の defect 群とし, (D, e_D) を Sylow b-subpair とする. D が G で正規ならば

$$H^*(G,b) = H^*(D,k)^{N_G(D,e_D)}$$

である. 特に, $H=N_G(D,e_D)$ とおき, $c=e_D^H$ とおくと, $H^*(G,b)=H^*(H,c)$ が成り立つ

3.2 Puig の定理

ここでは、有限群 G の部分群 H のプロック c のプロックべき等元 f が条件

任意の
$$x \in G \setminus H$$
 に対して $f \cdot f^x = 0$

を満たしていると仮定する.

命題 3.2 の記号の下で、b のプロックべき等元を e とし、c のプロックべき等元を f とおくと、f は上の条件を満たし、さらに $e=\sum_{x\in F\setminus G}f^x$ である.

Puig [7] は仮定 (O) の下で

$$e = \sum_{Hx \in H \setminus G} f^x$$

とおくと,

命題 3.3 (i) e は kG のプロックべき等元である. b = kGe とおく.

- (ii) プロック b と c は共通の defect 群 D をもち.
- (iii) プロック b と c は (b,c)- 加群 M=ekGf により, Morita 同値である: $M\otimes_c M^*\simeq b$, $M^*\otimes_b M\simeq c$.

定理 3.4 c-subpair (P, f_P) に対して, b-subpair $(P, \widehat{f_P})$ がただひとつ定まり,

- (i) $(Q, f_Q) \neq (P, f_P) \Rightarrow (Q, \widehat{f_Q}) \neq (P, \widehat{f_P}),$
- (ii) $N_G(P, \widehat{f}_P) = C_G(P)N_H(P, \widehat{f}_P),$
- (iii) $(Q, f_Q) \leq (P, f_P) \Leftrightarrow (Q, \widehat{f_Q}) \leq (P, \widehat{f_P}),$
- (iv) $(Q, f_Q) \sim_H (P, f_P) \Leftrightarrow (Q, \widehat{f_Q}) \sim_G (P, \widehat{f_P}),$
- (v) 任意の b-subpair (P, e_P) に対して、ある c-subpair (P, f_P) を適当にとれば、 $(P, e_P) \sim_G (P, \widehat{f_P})$.

を示した。この命題により、コホモロジー環 $H^*(G,b)$ と $H^*(H,c)$ が一致することがわかる。

しかし、Linckelmann [5] によっても、この事実は説明できる. すなわち、

命題 3.5 (i) e と f は共通の source idempotent i をもつ.

(ii) M = ekGf は (G, H)- 加群 $kGi \otimes_{kD} ikH$ の直和因子である.

が成り立つ. (ii) の証明のために, (b,kD)- 加群 X=kGi を考える. 相対 X- 射影元 $\pi_X=\mathrm{Tr}_D^G(i)\in Z(b)$ は可逆であることから, $b\mid kGi\otimes_{kD}ikG$, 従って, $M=bf\mid kGi\otimes_{kD}ikGf$ であることがわかる. e の取り方および条件(O) により, M=ekGf は

$$M = \sum_{Ht \in H \setminus G} t(fkH)$$

と表される. また, 条件 (O) により, $fkGf = fM = \sum_{Hi \in H \setminus G} ft(fkH) = fkH$ である. 従って, ikGf = ifkGf = ikHf = ikH である. すなわち, $M \mid kGi \otimes_{kD} ikH$.

従って, Linckelmann [5] Theorem 3.1 により, $H^*(G,b) = H^*(H,c)$ である.

参考文献

- [1] J. L. Alperin, R. Brauer, and D. Gorenstein, Finite groups with quasi-dihedral and wreathed Sylow 2-subgroups, Trans. Amer. Math. Soc. 151 (1970), 1-261.
- [2] R. Brauer and W. J. Wong, Some properties of finite groups with wreathed Sylow 2-subgroups, J. Algebra 19 (1971), 263-273.
- [3] B. Külshammer, On 2-blocks with wreathed defect groups, J. Algebra 64 (1980), 529-555.
- [4] M. Linckelmann, Transfer in Hochschild cohomology of blocks of finite groups, Algebr. Represent. Theory 2 (1999), 107-135.
- [5] ______, On splendid derived and stable equivalences between blocks of finite groups., J. Algebra (2001), 819–843.
- [6] T. Okuyama and H. Sasaki, Relative projectivity of modules and cohomology theory of finite groups, Algebras and Representation Theory 4 (2001), no. 5, 405–444.
- [7] L. Puig, Local block theory in p-solvable groups, The Santa Cruz Conference on Finite Groups (B. Cooperstein and G. Mason, eds.), Proc. Sympos. Pure Math., vol. 37, Amer. Math. Soc., 1980, pp. 385–388.