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Eigenvalues and elementary divisors of Cartan matrices

of
finite groups

FRBTIKRE - THE MHERFE (Tomoyuki Wada)
Faculty of Technology, Tokyo University of Agriculture and Technology

1 Introduction

Let G be a finite group and let F' be an algebraically closed field of characteristic
p > 0. Let B be a block of FG with defect group D of order p?. Let I(B) be the
number of irreducible Brauer characters in B and k(B) be the number of ordinary
irreducible charactersin B. Let Cg = (c;;) be the Cartan matrix of B and Dg = (d;;)
be the decomposition matrix of B. Since Cp is an indecomposable nonnegative
matrix, it has the Frobenius-Perron eigenvalue (i.e. unique largest eigenvalue) p(B).
We denote by. R = Rp the set of eigenvalues of Cg and by E = Ep the set of (Z)-
elementary divisors of Cg. We are concerned with behavior of eigenvalues of Cp,
in particular with when it is an integer. In [KW] and [KMW] we found that there
are some relations between eigenvalues and elementary divisors of Cg in some cases.
Furthermore we had also some questions there. In this article, first we show some
results in [KW] and [KMW] and next we mention a new conjecture which includes
a part of the questions and show that the conjecture is true in cyclic blocks with
I(B) < 5 and in tame blocks and furthermore we show some examples in cases that
G is a symmetric group, a simple group or a near simple group.

(1) Properties of Cp
(a) Cg= *Dg-Dg.
(b) Cp is a nonnegative, indecomposable matrix over Z.
(c) Cp is a symmetric matrix.
(d) Cg is positive definite.
(e) detCp =p" > p®=|D|.

(2) Properties of elementary divisors of Cg




Let us set E = Ep = {e1,---,eyz)}-
(a) There exists unique largest elementary divisor e; = |[D| and others ¢; < |D|
which are a power of p.

(b) ei =|Cq(z:)|, for some p-regular element in G.
i(B)

(c) H e; = detCp.

(d) Tle ~ B’ (Rickard equivalent i.e. derived equivalent, see [B, 4.B]), then
Ep = Ep:. (This comes from that if B and B’ are Rickad equivalent there exists a
perfect isometry between B and B’ and further there exists a matrix V € GL(I(B), Z)
such that Cp/ = *VCgV ([B, 4.11 Theorem])).

(3) Properties of eigenvalues of Cg

Let us set R = Rg = {p1,*--,pyB)}- An eigenvalue p € Rp need not to be an
integer, but they are positive. p(B) need not only to be larger but also smaller than
|D|.

(al) There exsts unique largest eigenvalue p; = p(B) and others p; < p;. There
exists a positive vector z € RHB) such that Cpz = p(B)z which we call a Frobenius
eigenvector.

(a2) If p € R, then there exists an algebraic integer A such that |D| = p- A (i.e.
p | |D| as algebraic integer). This comes from |D|Cz' € Mat(I(B), Z).

(b) What group structural property like (2b) does p have? What happens if

pEL?
I(B)

(©) ]I pi = detCs.
i=1
(d) If B ~ B’ (Rickard equiv.), then Rg and Rps need not to be equal. But of
course if B ~ B’ (Morita equiv.), then Rg = Rp.

Example 1. Let G = S, be the symmetric group of degree 4, p=2, and B = B;
be the principal block of G.

Then Cg = (‘21 z) p(B)=7+2‘/ﬁ<5D|=s.

Let G = S5 be the the symmetric group of degree 5, p = 2, and B = By be the
principal block of G.

11
ThenCB=(i ;) p(B)=—-i2—@>|D|=8.

In each case p(B) is not an integer. In former case p(B) < |D| , but in latter case
p(B) > |D|. It is known that B;(Ss) and B;(Ss) are Rickard equivalent. So this is
also an example that Rg # Rp' even if B and B’ are Rickard equivalent.
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2 Qestions and facts
We had the following two questions and we proved it is actually true in some cases
in [KW] and [KMW].
Q 1. If p(B) € Z, then does p(B) = |D| hold?
Q 2. If p(B) = |D|, then does Rg = Ep hold?

These questions are answered affirmatively in the following cases.

Fact 1. If D 4 G, then p(B) = |D| and Rg = Ep = {|Cp(z1)|,***,|Cp(zyB))l}
where {zy,-:-, a:l(B)} is a representative of p-regular classes of G associated with B.
In this case, f = *(fi,- - , fiB)) is a Frobenius eigenvactor of Cg, where f; = ¢;(1)
for ¢; € IBr(B). ‘

Fact 2. If D is cyclic, then Q1 and Q2 are true. In this case, if p(B) € Z, then B
and its Brauer correspondent b are Morita equivalent. Then Cp = C}, so p(B) = |D|
and Rg = Eg = {|D|,1,--+,1} by Fact 1. Furthermore, f = t(fl,'“,fz(B)) is a
Frobenius eigenvector of Cg, where f; = @;(1) for ; €IBr(b). Here b is the Brauer
correspondent of B.

Fact 3. If B is tame (i.e. p = 2 and D ~ dihedral, generalized quaternion or
semidihedral), then Q1 and Q2 are true. In this case, if p(B) € Z, then B and b are
Morita equivalent, and further p(B) = |D| and B is one of the following three cases.

(i) 1(B)=1,

211
(ii) D ~ E4 (i.e. Klein’s four group) andCp=| 1 2 1 |,
11 2

(iii) D ~ Qs (i.e. the quaternion group of order 8) and Cg = (

= N N

2
4
2

NN

In cases (ii),(iii) Rs = Ep = {|D|,1,1} and f = *(f1, fa, fa) is a Frobenius
eigenvector, where f; = @;(1), for 3; €IBr(b). Here b is the Brauer correspondent of
B.

Remark 1. If p(B) € Z, B and its Brauer correspondent b are not Morita equivalent
in general. Let G = SL(2,3) - E37 (semidirect product, the center of SL(2,3) acts



trivially), p = 3, and B be a non-principal block. Then D ~ Z3) Z3,/(B) = 1 and
k(B) = 12. But k(b) = 17. So B and b are not Morita equivalent.

Fact 4. If G be a p-solvable group, then Q2 is true, but Q1 is not yet proved to
be true. However, if /(B) = 2, then Q1 is true. We tried to compute many cases of
finite simple groups with small /(B). Then Q1 and Q2 seem to be true.

3 Conjectures

Kiyota has conjectured the following on Q1 just after [KW] was published.

Conjecture(K) (Kiyota). Let N(p) be the norm of an algebraic integer p. Then
ID| | N(p(B)).

If Conjecture (K) is true, then Q1 is true. Because, if p(B) € Z, then since
N(p(B)) = p(B) we have |D| | p(B) by Conjecture. On the other hand, by the
property (a2) of eigenvalues of Cp in §1 p(B) | |D| as integer. This means p(B) = |D|.

Verifying Conjecture (K) for symmetric groups and some simple groups, the follow-
ing more explicit relation between eigenvalues and elementary divisors of Cp seems
to exist.

Let fp(z) be the characteristic polynomial of Cg. Let fg = fi1 - fa:+- f, be a Z-
irreducible decomposition of fg(z). Let R; := {pi1,***,pin;}, 1 <1 < r be the set of

all roots of f;(z). So we denote and write as B = {p11,*,Piny ; P21, " *1P2mp } *** ;
n

Pris***yPrn,}. Then for each i, N(p;;) = H pik = |fi(0)| for any j =1,2,.--n;.
k=1

Conjecture. There is a direct decomposition E = E; U -+- U E, as set such that
the following three conditions are satisfied.
(i) |Ri|=|Eilfor 1<i<r.

n;
(ii) Let E; = {ei1," - *y€in; }, then H er = N(p,‘j).

k=1
(iii) Let p(B) € Ry. Then |D| € E;. In particular, |D| | N(p(B)).
Remark 2. Assume Conjecture is true. Then the following (1), (2) hold.

(1) If eigenvalue p € Z, then p € E by (i), (ii).
(2) If p(B) € Z, then p(B) = |D| by (iii).
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These do not hold for the Cartan matrix of a general algebra. For example, there ex-

1
ists an indecomposable cellular algebra A with the Cartan matrix C4 = ( ? )
m

for m > 2 by [X]. In this case R = {m + 1,m — 1}, E = {m? — 1,1}. This algebra A
comes from the Brauer tree algebra with two exceptional vertices. So this cannot be
a cyclic block of a finite group algebra.

Remark 3. First we conjectured that if p(B) € R;, then degf; > degf; for all
1 <1 < r. But this does not hold in general. For example, let G = SL(2,32) or
S2(32), and p = 2, B be the principal block. Then degf; = 7, but degfa =12 as is
mentioned below.

4 Cyclic blocks with /(B) < 5 and tame blocks

It is difficult to verify Conjecture in cyclic blocks in general. We have the following.

Theorem 1. Suppose B is a cyclic block with I(B) < 5. Then Conjecture is true.
Furthermore, if p(B) € R, then degf, > degf; for 1<i<r.

Remark 4. It is clear if {(B) = 1. Fact 2 implies that it is also clear in the
case /(B) = 2. We may consider the cases /(B) = 3,4 or 5. There are 32 cases of
Brauer trees considering a position of an exceptional vertex. In each case the Cartan
matrix contains one parameter (i.e. the multiplicity m ). We can determine the
characteristic polynomial fg(r) and decompose into Z-irreducible polynomials by

the Z-elementary transformation. Furthermore, we can prove each f;(z) is actually
irreducible. See [W].

Theorem 2. Suppose B is a tame block. Then Conjecture is true. Furthermore, if
p(B) € Ry, then degf, > degf; for 1<i<r.

Remark 5. Since B is tame, {(B) = 1,2 or 3. By Fact 3 we may consider the
case [(B) = 3. There are 12 cases and in each case the Cartan matrix contains
one parameter. It is easier to calculate eigenvalues and elementary divisors and
furthermore characteristic polynomials than cyclic blocks. So we can also easily
prove each component of fg(z) is actually Z-irreducible similarly to cyclic blocks.

See [W).
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5 Examples: Symmetric groups and some simple groups

We calculate these by using MAPLE. In order to see our conjecture we especially
pick up some examples in which fg(z) decomposes into various Z-irreducible com-
ponents. We denote by d(B) the defect of B i.e. the order of a defect group D of B
is p#B). In this section we always denote by Bj the principal block of FG. Let S,
be the symmetric group of degree n. Suppose p = 2. Then fp,(z) is Z-irreducible
for 7 < n < 14 and other non-principal blocks are as well. Qur conjecture is trivially
true if fg(z) is Z-irreducible. So we start with S,, for p = 3.

1 Symmetric Group

(1] p=3
(852224241 4Y)
5 842442422
2 464242210
2 248145422

() S Co=| 4 4sad54522]| [BY=10dB)=4
2 2252 48444
4424254844
121232446 2
\4 20212442 6)

/B, (z) = (z® — 48z* + 5323 — 223222 + 3780z — 37)(z® — 24z* + 1942° — 600z +
612z — 3%), N(p(B;)) =37,

Rp, = {Pu = PByy--+1P15 ; P21,~-1P25},
EBl = {34’ 32, 3,1, 1;32a 3,3,1, 1})

31201
13210
(2) Su, C’B2 = 2 2 5 2 2 y I(Bz) = 5, d(Bz) = 2,
01231
10213
fBz(z) = (.’E - 9)($ - 3)2(1: - 1)25

Rp, = Ep, = {9;3;3;1;1}

In this case D ~ Fjg is elementary abelian and p(B;) € Z. We also had a question in
[KMW] that when D is abelian, if p(B) € Z, then are B and its Brauer correspondent
b Morita equivalent? [CK] implies that B, above and its Brauer correspondent by
are indeed Morita equivalent.
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2] p=5

(1) Si0,B:
(4210012001000 0)
2 4200210000000
1 2420121000000
0 0242012100000
00023 001200000
121004210120T1°0

Co=|go121124212100] [E)=l dB)=2
0 0012002401200
1000012104211 2
00000 212124221
0000000121241 2
000001000121 42
\0 0 00O0OO0O0O00O0 2122 4)

fa,(z) = (28 = 3427 + 42728 — 255725 + 7867z — 1234723 + 90772 — 2490z + 5°)
(28 — 212° + 1552* — 51123 + 77522 — 5252 + 5%), N(p(B:1)) = 5°,

Rp, = {p11,...1,18 ; P21y...,P26}
Eg, = {5%,5,1,1,1,1,1,1; 5,5,5,1,1,1}

2 Simple Groups

(1] SL(2,32),p=2,B;

Cp, is a 31 x 31 matrix

fB,(z) = (27 — 12228 + 176125 — 6388z* + 824373 — 424222 + 811z — 32)
(1—60z + 126222 — 1185223 + 563834 — 14271225 + 19498026 — 14271227 4 56383z° —

11852z° + 12622° — 60z + z12)2,

fi(z) = 27 — 12228 4 ... + 811z — 32, p(B;) is a root of fi(z) , and degfy =
7 <degf =12, N(p(B1)) =2° = |D|

R31 = {Pll =p(B1),...,p17; P21y P2,12 5 p31,...,p3'12},
Ep, ={25’11---,1§ 1,...,151,...,1}



[2] Sz(32),p=2,B;

Cp, is a 31 x 31 matrix

fB.(z) = (1024 + 96143z — 236965422 + 7551363z — 6304380z* + 969293z° —
255822%+27)(1—2267+ 1758222 — 56264623 +7240879z% — 2793010025 +4269240425 —

271086527 + 723937528 — 7124582° + 25246210 — 286211 + z12)?,

fi(z) = —1024 + 96143z - - - — 255822% + 27, p(Bi) is a root of fi(z), and degf, =
7<degf, =12, N(pB)) =2'°=|D|

Rp, ={p11 = p(B1),...,p17; P21,-.-,P212 ; P31,---,P3,12}
Ep, ={2°1,...,1; 1,...,1; 1,...,1}

These are the examples that degf; is not larger than or equal to the degrees of
others. But in cases SL(2,2") for 2 < n < 4 and S2(8), we have degf) > degf; for
1<:i<r.

(8] Us(4),p=2,B;

[16 12 .12 12 12 4 4 8 8 8 82222\
26 14 18 18 6 &8 8 14 10 8 1 4 6 2

26 18 18 6 8 14 8 8 10 4 1 2 6

26 14 8 6 8 10 8 14 2 6 1 4

26 8 6 10 8 14 8 6 2 4 1

61 2 2 6 6 2 2 00

6 6 6 2 2 00 2 2

Cp, = 10 6 4 4 2 0 2 3
10 4 4 0 2 3 2

10 6 3 2 2 O

10 2 3 0 2

3 000

3 00

3 0

\ 3 )

l(Bl) = 15, d(Bl) = 6,
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fB, (z) = (2° — 126z* + 137923 — 368222 + 2716z — 28)
(23 — 1922 + 422 — 4) (23 — 1922 + 262 — 4)%(z — 1), N(p(B1)) =28

Rp, ={p11 = p(B1),---,P15 ; P2a1,P22,P23 ; P31, P32, P33 ; P41, P42, P43 ; 1},

Ep, ={2%,2%,1,1,1; 22,1,1; 22,1,1; 2%,1,1; 1}

[4] U3(16),P =2, Bl

Cp, =
440 160 160 160 238 238 238 238 238 238 126 126 28 28 28 40 40 40 40 40 40

( 160 80 60 60 90 90 86 86 106 106 50 50 6 17 8 22 22 12 12 14 14 \
160 €0 80 60 106 106 90 20 86 86 50 80 8 6 17 14 14 22 22 12 12
160 60 €0 80 86 8¢ 106 108 90 20 50 50 17 8 6 12 12 14 14 22 22
238 90 106 86 152 144 132 128 132 128 74 68 12 .12 22 22 22 28 30 17 20
238 90 106 8 144 152 128 132 128 132 68 74 12 12 22 22 22 30 28 20 17
238 86 80 106 132 128 152 144 132 128 74 68 22 12 12 17 20 22 22 28 30
238 86 90 106 128 132 144 152 128 132 68 74 22 12 12 20 17 22 22 30 28
238 106 86 80 132 128 132 128 152 144 74 68 12 22 12 28 30 17 20 22 22
238 106 86 90 128 132 128 132 144 152 68 74 12 22 12 30 28 20 17 22 22
126 50 50 50 74 68 74 68 74 68 44 36 8 8 8 10 13 10 13 10 13
126 50 50 50 68 74 68 74 68 74 38 44 8 8 g8 13 10 13 10 13 10
28 8 8 17 12 12 22 22 12 12 8 8 8 0 0 0 0 2 2 (] [
28 17 [ 8 12 12 12 12 22 22 8 8 [+] [ o 6 ) 0 0 2 2
28 8 17 6 22 22 12 12 12 12 8 8 [*] 0 -8 2 2 -] 6 [ 0
40 22 14 12 22 22 17 20 28 30 10 13 4] [ 2 9 6 3 2 3 2
40 22 14 12 22 22 20 17 30 28 13 10 0 6 2 6 8 2 3 2 3
40 12 22 14 28 30 22 22 17 20 10 13 2 o 8 8 2 9 [ 3 2
40 12 22 14 30 28 22 22 20 17 13 10 2 ] 6 2 3 € ] 2 3

\ 40 14 12 22 17 20 28 30 22 22 10 13 ] 2 0 3 2 3 2 9 6)
40 14 12 22 20 17 30 28 22 22 13 10 ] 2 0 2 3 2 3 ] 9

I(B1) =21, d(B:1)=)9,

fB, () = (2 — 156725 + 48357z — 312687z° + 39752822 — 139688z + 2'%)(z* — 722> +
13422 — 40z + 1)%(z3 — 2922 + 88z — 8)(z% — 6z + 1)2, N(p(B)) =22

Rp, = {Pn = P(B1),-¢-,P1e; P21y--3P245 P31, -5 P34 5 P4al; P42, P43 5 P51, P52 P611P62},

EBl ={29)2371,1a191; 111’111; 1,11111; 231171; 111’ 1,1}
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[5] Held

(1) b= 2131

( 54 87 87 23 23 106 106 96 20 33 33 )
87 183 174 40 39 225 225 200 48 66 65
87 174 183 39 40 225 225 200 48 65 66
23 40 39 13 10 50 50 44 10 17 16
23 39 40 10 13 50 50 44 10 16 17
Cp, = | 106 225 225 50 50 291 290 258 62 87 87
106 225 225 50 50 290 291 258 62 87 87
96 200 200 44 44 258 258 236 52 80 80
20 48 48 10 10 62 62 52 16 16 16
33 66 65 17 16 87 87 80 16 31 30
\ 33 65 66 16 17 87 87 80 16 30 31 )

I(B)) = 11, d(Bi) = 10,

fB,(z) = (27 — 13282° + 54487x° — 7403362* + 365820823 — 601459222 + 3499520z —
219)(23 - 1322 + 36z — 16)(z — 1), N (p(B;)) = 29,

Rp, ={p11 =p(By),...,p17; p21,P22,P23 ; 1},
EBI = {210,23,23,23,171»1 ) 22a2a2 ; 1}

(2) p=3aBZ

(211100 1\

1 211001

113 2112
Cg,=|1123112], [(B2) =17, d(Bs2)=2,

0011211

0011121

\1 12211 3)

fB,(z) = (z - 9)(z - 8)(z - 1)5, N(p(B1)) =9,
Rp, = Ep, = {9;3;1;1;1;1;1} :

In this case [KKW] has also proved that B, and its Brauer correspondent b, are
Morita equivalent.




20

3 Central Extensions and Automorphism Groups of Simple Groups

(i) Suppose G is a central extension of G by a p-subgroup Q C Z(G) i.e. G/Q~G.
Let B be a p-block of G corresponding to a p-block B of G. Then Cy = |Q|CB.
Therefore, Rz = {|Q|p | p € Rp} and also Eg = {|Qle | e € Eg}. Thus fp(z) =
fi(@) -+ f-(z) is the Z-irreducble decomposition if and only if f5(z) = fi(z) - fr(2)
is the Z-irreducible decomposition, where R; = {|Q|p | p € R;} is the set of roots of
fi(z). So we can reduce our conjecture to B in this case.

(ii) Suppose also G is a central extension of G by a p'-subgroup Z C Z(G) ie.
G/Z ~ G. Let B be a p-block of G with Z C KerB. Then B is 1-1 corresponding
to B. But if Ker B does not contain Z, then there is no p-block B of G such that
#(B) = B for the canonical epimorphism = : FG — FG.

The following is an example of this case. Here J3 is the Janko’s third simple group
and G = 3.J3 is the triple cover of J3. We consider G and p = 2. So for the principal
block By, Ker B; contains Z, but Ker Bg does not contain Z. We simply write By
and Bg here, instead of B; and Bs. Then the decomposition of each fg(z) is similar
but different.

[1] 3.J3,p=2
/84 16 16 24 32 32 26 20 20’14\
7 6 8 9 9 8 3 4 6
7 8 9 9 8 4 3 6
19 18 18 12 4 4 12
21 20 12 6 6 12
Cp, =
21 12 6 6 12
13 6 6 7
7 4 2
7 2
\ 9 )

I(B)) =10, d(By) =7,

fB,(x) = (27 — 19028 + 590525 — 48250z + 13335423 — 12966022 + 4340z — 2'1)
(22 — 42 +2)(z - 1)

Rp, = {p1 = p(B1),---,p7; ps,pe ; 1},

Ep, = {27,23,2,1,1,1,1; 2,1; 1}



/150 83 83 62 37 37 14 24 6 28\
51 48 34 22 21 8 12 5 16
51 34 21 22 B8 12 5 16
29 14 14 5 10 2 10
Cs, = 12 i; 2 2 ; : I(Bi) = 10, d(By) =T,
4 21 3
50 4
2 1
\ 7}

£Bs(z) = (2 - 31927 +605925 — 4330225 + 14453924 — 22908273+ 16146222 — 427362+
911) (22 _ 4z 4 9)

R.Bs = {pl = p(B]_), ooy P8 P9)p10}1
EBe = {27, 23: 2, 1; 1’ ]-a ]-1 1 } 2’ 1}

We also consider the automorphism group of a simple group. Suppose G > H
and |G : H| is prime to p. Furthermore, suppose that B is the unique p-block of
G covering a given block b of H. In general, /(B) and [(b) are different. But if
|G : H| = ¢ ( a prime number different from p ), then p(B) = p(b) by [KW]. So
in particular, (fB)1(z) = (f»)1(z). The following is an example of this case. Here
H = J; is the Janko’s second simple group and G = J;,.2 is an automorphism group of
Jy with |G : H| =2 and we consider p = 3. If |G : H| = p, then p(b) < p(B) < pp(b)
by [KW], but the pattern of the roots of (fg)1(z) and (f3)1(z) seems to be same.

[2] J22, p=3

(1) J27 31

(

Cg, = I(By1) =8, d(By) =3,

BN =N O OO
W = O N =
[ S . S e

2
\ 6 2 2 9)
fB,(z) = (x5 — 43x* + 429x% — 1410x? + 1206x — 3%)(2® — 722 + 10z - 3),

Rp, = {p11=p(B1),...,p15; p21,p22,p23}, N(p(B1)) = 3%,
B = {331 313’1a1 H 3, 1,1}

9
6
6
2
2
1
1
6

B ON AN e N
B O RN~ NN
N W= O - N

6
9
6
1
2
4
2
6
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(2) J2.2, p::3,
(6 6 6 2 1 3 3)
36 62133
6 6 15 3 6 6 6
Cp,=[22 36144 I(B)) =1, d(B1) =3,
11 61422
33 64263
\3 3 6423 6)
fB,(z) = (x® — 43x* + 429x® — 1410x* + 1206x — 3°)(z - 3)2, N(p(B:)) = 3°,

RB1 = {Pll = P(Bl)a“',pIS ;3 3},
EBl ={33a3a3,1a1 ;35 3}
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