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1 Theorems
We can find several proofs, for example, in [6-13], of the following classical theorem of Robe-

nius:

Theorem 1.1 (Frobenius). Let $n$ be an integer and $G$ a finite group. Then

$|$ $\{g\in G|g^{n}=1\}$ $|\equiv 0$ (mod $\mathrm{g}\mathrm{c}\mathrm{d}$ ($n$ , $|G|$ )),

where $|$ A $|$ denotes the cardinality of a set $X$ .

This theorem is equivalent to the fact that

$|$ Horn $(C, G)|\equiv 0$ (mod $\mathrm{g}\mathrm{c}\mathrm{d}$ ( $|C|$ , $|47|$ ))

where $|X|$ denotes the cardinality of a set $X$ .

This theore $\mathrm{m}$ is equivalent to the fact that

$|\mathrm{H}\mathrm{o}\mathrm{m}(C, G)|\equiv 0$ (mod $\mathrm{g}\mathrm{c}\mathrm{d}$ ( $|C|$ , $|C_{\mathrm{I}}|$ ))

for any finite cyclic group $C$ , where Horn denotes the set of group homomorphis $\mathrm{m}\mathrm{s}$ . Yoshida has
generalized the theorem as follows:

Theorem 1.2 (Yoshida [12]). Let $A$ be a finite abelian group and $G$ a finite group. Then

$|$ Horn$(4, G)|\equiv 0$ (mod gc.d( $|A|$ , $|G|$ )).

Another way of generalization is due to P. Hall:Another way of generalization is due to P. Hall:

Theorem 1.3 (P. Hall [10]). Let $G$ be a finite group and 0 ate automorphism of G. If the
order of 0 divides a positive integer $n$ , then

$|$ $\{g\in G|g\cdot\theta(g)\cdot\theta^{2}(g)\cdots\theta^{n-1}(g)=1\}$ $|\equiv 0$ (mod $\mathrm{g}\mathrm{c}\mathrm{d}$ ($n$ , $|G|$ )).

The theorem of Frobenius corresponds to the case $\theta=1.$ We reform this Hall’s generalization
in terms of ‘ $Z^{1}(A, G)$ ’ as well as Theorem 1.1 in terms of $\mathrm{H}\mathrm{o}\mathrm{m}(A, G)$ , as follows.

Let a group $A$ act on a group $G$ by a group homomorphism $\varphi:Aarrow$ Aut(G), where Aut(G)
is the automorphism group of $G$ . For $a\in A$ and $g\in G,$ we indicate $\varphi(a)(g)$ by $ag$ . A rrtap
$\lambda:Aarrow G$ is called a crossed homomorphism or a derivation (with respect to $\varphi$) provided

$\lambda(ab)=\lambda(a)\cdot a\lambda(b)$ for all $a$ , $b\in A.$
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We denote by $Z^{1}(A, Gi)$ the set of crossed homom orphisms from $A$ to $G$ . For $\mathrm{e}\mathrm{x}\mathrm{a}$ mple, the
zero lnap 0: $Aarrow G$ sending all the elements of $A$ onto $1\in$ C7 is a crossed homomorphis $\mathrm{l}\mathrm{n}$ . If
the action ? is triviaj then $Z^{1}(A, G)=$ H2(A, $G$). On the other hand, if $C_{7}$ is abelian, then
$Z^{1}(A, G)$ coincides with the first cocycle group of tlle $\mathbb{Z}A$-rnodule $C_{\tau}$ with respect to the standard
resolution of $A$ . However, unless $C_{7}$ is abelian, $Z^{1}$ $(A, G)$ lnay be only a set; it may not have a
group structure in general.

Now, Hall’s theorem is equivalent to tlle fact that

$|Z^{1}(C, C_{7})|\equiv 0$ (mod $\mathrm{g}\mathrm{c}\mathrm{d}$( $|C|$ , $|G|$ ))

for any finite cyclic group $C$ and for any action of $C$ on $C_{\mathrm{J}}$ . Yoshida and the first author of this
report have conjectured the following:

Conjecture 1.4 ([5]). If a finite group $A$ acts on a finite group $G$ , then

$|Z^{1}$ $(A, G)|\equiv 0$ (mod $\mathrm{g}\mathrm{c}\mathrm{d}$ ( $|AfA’|$ , $|G|$ )),

where $A’$ denotes the commutator subgroup of $A$ .where $A’$ denotes the commutator subgroup of $A$ .

This conjecture is a generalization of all the theorems above, arxd is still open. Recent progress
for this conjecture is found in [1-4]. In particular, in order to prove the conjecture $\mathrm{c}$ ompletely,
it suffices to prove the conjecture in the case where $A$ is an abelian $p$-group and $G$ is a p-group
for a prime $\prime p$ $([1])$ . This reduction mainly owes to the functorial properties of $Z^{1}(A, G)$ on the
variables $A$ and $G$ , where the latter is first observed by Brauer [6] in a certain case (see Q3.3 for
generalization). In addition, Brauer has based his alternative proof of the theorem of Frobenius
on the following $\mathrm{l}\mathrm{e}\mathrm{m}$ ma:

Lemma 1.5 (Brauer [6]). Let $G$ be a finite rt.orrrnal subgroup of a group E. Then, for any
$g\in G$ and $x\in E_{f}(gx)^{1}G|$ and $x^{|G|}$ is conjugate by an element of $G$ .

In $\mathrm{t}\mathrm{l}\dot{\mathrm{u}}\mathrm{s}$ report, we shall generalize this Brauer’s lemma as the $\mathrm{f}\mathrm{o}$ rmula

$\mathrm{r}\mathrm{e}\mathrm{s}_{A,A|G|}(Z^{1}(A, G))=B^{1}(A^{|G|}, G)$

for abeliaax $A$ (Theorem 4.1), where $B^{1}$ denotes tlie set of coboundaries, which will be introduced
in the next section. Throughout the report, our main tools are the functorial properties of
$Z^{1}(A, G)$ , and our principle is to compare $Z^{1}(A, G)$ with $B^{1}(A, G)$ . As a corollary of our
arguments together with the Feit-Thompson theorem, we shall also prove Theorem 4.2 which is
equivalent to the second state ment of the following classical theorem:

Theorem 1.6 (Schur-Zassenhaus). Let $G$ be a finite normal subgroup of a finite group $E$

such that $\mathrm{g}\mathrm{c}\mathrm{d}(|E : G|, |G|)$ $=1.$ Then

(1) There exists a subgroup $A$ of $E$ such that $E=G\mathrm{x}A$ .
(2) If $E=G\aleph$ $A=G\mathrm{x}B$ , then $A$ and $Bar*e$ conjugate by an element of $G$ .
Note that if $G$ is abelian, then it is well known that the first statement of the Schur-Zassenhaus

theore$\mathrm{m}$ is equivalent to $H^{2}(A, G)=0,$ aztd the second is so to $H^{1}(A, G)=0.$ In fact, we shall
prove $Z^{1}(A, G)=B^{1}(A, G)$ for any finite group $A$ and $G$ whose orders are relatively prime.
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Notation. For the remainder of the report, we fix the following notation: let $A$ and $C_{\mathrm{T}}$ be groups,
which need not be finite, and let $A$ act $011C\tau$ by a group homomorphism $\varphi$ : $Aarrow$ Aut (G). With
respect to this action ?, we denote by $Z^{1}$ $(A, G)$ the set of crossed homomorphis ms from $A$ to
$G$ , and by $G\aleph$ $A$ the semidirect product of $G$ and $A$ . For $x\in G\aleph A$ , we denote by Inn(o;) the
inner automorphis$\mathrm{m}$ associated with $x$ , so that Inn(x)(y) $=y=xyx^{-1}x$ for all $y\in G\aleph A$ .

2 Coboundaries
For a given rnap $\lambda:Aarrow G,$ consider the map $\lambda:4arrow G\aleph$ $A$ which is defined by

$\lambda(a)=\lambda(a)a$ for all $a\in A.$$\lambda(a)=\lambda(a)a$ for all $a\in A.$

It is easy to show that A $\in Z^{1}(A, G)$ if and only if $\overline{\lambda}\in \mathrm{H}\mathrm{o}\mathrm{m}(A, G\aleph \mathrm{A})$ , and in this case, $\overline{\lambda}$

becomes a splitting monomorphism of the canonical epimorpliism $\pi:G$ * $Aarrow A.$ On the other
hand, any splitting monomorphism 0 of yr defines a complement $\mathrm{O}(\mathrm{A})\leq Gn$ $A$ of $G$ , and vice
versa. Fr om these observations, we obtain the following well-known result:

Theorem 2.1. There are two bijections

$Z^{1}(A, G\mathit{5})arrow\Phi$ { $\theta\in$ Hont(4, $G\aleph$ $4)$ $|\pi$ $\circ\theta=\mathrm{i}\mathrm{d}_{A}$ }
$arrow\Psi\{B\leq Vn A|GB=Gn A, G\cap zB=1\}$ :

where $\Phi(\mathrm{X})$ $=$ A and $\Psi(\theta)=$ A(a)

As in homological algebra, we introduce the concept of ‘coboundary’ as well as cocycle. For
arbitrary $g\in C_{7}$ and $a\in A,$ regarding them as ele ments in $G\aleph A$ , we consider their commutator
$[g, a]$ , where

$[g, a]=gag$$-1-a_{1}1=g$ . $(ag- 1)$ \in G.

Then this induces a rnap $[g,$ $-]$ : $A$ - $G$ sending $a\in A$ to $[g, a]\in G.$ We call this map $[g, -]$ a
coboundary or an wner derivation induced from $g$ (with respect to $\varphi$ ), and set

$B^{1}(A, G)=\{[g, -]|g\in G\}($

Easy calculation shows that $B^{1}(A, G)\subseteq Z^{1}(A, G)$ . In fact, if $G$ is abelian, then $B^{1}(A, G)$

coincides with the first coboundary group of the $\mathbb{Z}A$-module $G$ with respect to the standard
resolution of $A$ . However, in general cases, $B^{1}(A, G)$ may not have a group structure. Our
principle of this report is to co mpare $B^{1}(A, G)$ with $Z^{1}(A, G)$ . First we emphasize the following
le mma on the relation between the coboundary $[g, -]$ and conjugation by $g$ . Since $[g, a]a=ga$
in $G$ )$\mathrm{c}A$ , we have

Lemma 2.2. Given $g\in G,$ set $\gamma=[g$ , - $]$ . Then $\mathrm{A}(\mathrm{a})=ga$ for. all $a\in A.$

In other words, $\Phi([g$ , -] $)$ $=\mathrm{I}\mathrm{n}\mathrm{n}(g)$ on $A$ . Note that $gA\neq A$ in general.

3 Parameters
Both $Z^{1}(A, G)$ and $B^{1}(A, G)$ have three para meters: groups $A$ , $G$ alld action ?. We shall

consider functorial properties on these parameters.
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3.1 Change of actions

We fix $\lambda\in Z^{1}(A, G)$ . For given $a,$ $\in A,$ the $\mathrm{i}$ nner automorphism Inn(A(A), on $Gn$ $A$ leaves
the no rmal subgroup $C_{l}$ invariant. This induces a new action Inn $\lambda$ : $Aarrow$ Aut(G), namely,

(Inn $\tilde{\lambda}$ ) $(a)(g)$ $=\overline{\lambda}(a)g=\lambda(a)(^{a}g)$ for $a\in A$ and $g\in C_{\mathrm{I}}$ .
We denote simply by $Z_{\lambda}^{1}(A, G)$ the set of crossed llomomorphisms with respect to Inn A.

Since $C_{7}\mathrm{x}$ $A=Gn\tilde{\lambda}(A)$ , Theorem 2.1 states that both $Z^{1}(A, G)$ and $Z_{\lambda}^{1}(A, G)$ correspond to
the same set – the set of complements of $G$ in $G\nu A$ . This is a group-theoretic meaning of the
following theorem.

We denote simply by $Z_{\lambda}^{1}(A, G)$ the set of crossed homomorphisms with respect to Inn $\lambda$ .
Since $G\mathrm{x}$ $A=Gn\tilde{\lambda}(A)$ , Theorem 2.1 states that both $Z^{1}(A, G)$ and $Z_{\lambda}^{1}(A, G)\mathrm{c}\mathrm{o}\mathrm{r}\mathrm{r}\mathrm{e}\mathrm{s}\mathrm{p}_{011}\mathrm{d}$ to

the same set –the set of colnplelnents of $G$ in $G\nu$ $A$ . This is agroup-theoretic meaning of the
following theorem.

Theorem 3.1 (Change of actions). Let A $\in Z^{1}(A, G)$ . Then right multiplication by A in-
duces a bijection $\lambda_{r}$ : $Z_{\lambda}^{1}(A, G|)$ $arrow Z^{1}(A, G)$ , which is defined by

$\lambda_{r}(’|7)(a)=$ rf(a)X(a) for all $l|$ $\in Z\mathrm{L}(A, G)$ and $a\in A.$

We often write $\lambda_{f}(l|)=$ .t}. A.

Let us determine the image of the coboundaries by this bijection Ar. Set

$B_{\lambda}^{1}(A, G)=\{[g, -]_{\lambda}|g\in G\}$ ,

where $[g, -])$ : $Aarrow G$ denotes the coboundary induced from $g$ with respect to the action Inn $\lambda$ ,

i.e.,
$[g, a]_{\lambda}=g\cdot\overline{\lambda}(a)$ $(g^{-1})$ $\in G\leq G)$q 4 for all $a\in A.$

We indicate $\lambda_{r}$.( $[g,$ $-$ ]x) $=[g, -]\lambda$ . A $\in Z^{1}(A, G)$ by $g\lambda$ , so that

$(^{g}\lambda)(a)=JI,$ $a]_{\lambda}\cdot\lambda(a)=\mathit{9}(\overline{\lambda}(a))\cdot a^{-1}$ .

On the other hand, $G$ acts on $\mathrm{H}\mathrm{o}\mathrm{m}(A, Gn 4)$ by

$\mathit{9}\theta=$ Inn(7) $\circ\theta$ for $g\in G$ and $\theta\in \mathrm{H}\mathrm{o}\mathrm{m}(A, G\aleph 4)$ .
Lemma 3.2. Let A $\in Z^{1}(A, G)$ . Then we have

(1) $\underline{\lambda_{r}}(B_{\lambda}^{1}(\mathit{4}4, G))=\{^{g}\lambda|g\in G\}$ .
(2) $g\lambda=\mathit{9}\overline{\lambda}$ for. any $g\in C_{\mathrm{V}}$ . (In otter words, $g\lambda$ is the $‘ G$ -part’ of $g\tilde{\lambda}$.)

As the easiest case, we consider the zero map.

Lemma 3.3. Let $0\in Z^{1}(A, G)$ be the zero map. Then we have

On the other hand, $G$ acts on $\mathrm{H}\mathrm{o}\mathrm{m}(A, Gn A)$ by

$\mathit{9}\theta=\mathrm{I}\mathrm{n}\mathrm{n}(g)\circ\theta$ for $g\in G$ and $\theta\in \mathrm{H}\mathrm{o}\mathrm{m}(A, G\aleph A)$ .
Lemma 3.2. Let $\lambda\in Z^{1}(A, G)$ . Then we have

(1) $\underline{\lambda_{r}}(B_{\lambda}^{1}(\mathit{4}4, G))=\{^{g}\lambda|g\in G\}$ .
(2) $g\lambda=\mathit{9}\overline{\lambda}$ for any $g\in C_{\tau}$ . (In otter words, $g\lambda$ is the $‘ G$ -part’of $g\tilde{\lambda}$.)

As the easiest case, we consider the zero map.

Lemma 3.3. Let $0\in Z^{1}(A, G)$ be the zero map. Then we have

(1) 0: $4arrow C\aleph$ $A$ is $tte$ inclusion map (the canonical rnonomorphism)
(2) $\mathit{9}0=[g, -]$ art.d $g\overline{0}=$ Inn(g) on $A$ for any $g\in G.$

This implies the following at once:
Corollary 3.4. All the complements of $G$ in $Gn$ $A$ are conjugate if and only if $B^{1}(A, G)=$

$Z^{1}(A, G)$ .
Note that any two conjugate co mplements of $G$ in $G\aleph$ $A$ are conjugate by an element of $G$ .

We can also show the following by easy calculation:

Lemma 3.5. For any $g$ , $h\in G,$ we have

$g[h, -]$ $=[g, -][h,-]$ . $[h, -]$ $=[gh, -]$ .
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3.2 Contravariant parameter $A$

Suppose that there is a short exact sequence of groups $1arrow Barrow Aarrow\overline{A}arrow 1.$ We consider a
problem whether there exists an exact sequence such as

$1arrow Z^{1}(\overline{A}, G_{?})arrow Z^{1}(A, G)----arrow Z^{1}(B, G)\mathrm{i}\mathrm{n}\mathrm{c}1\mathrm{r}\mathrm{e}\mathrm{s}_{A,B}$ ,

where $G_{?}$ is some subgroup of $G$ on which $B$ acts trivially, incl is the inclusion map, and $\mathrm{r}\mathrm{e}\mathrm{s}_{A,B}$

is the restriction map (although exactness of a sequence is not defined in the category of sets).
Whereas we can not find such a common subgroup $G_{?}$ , we can locally do as follows:

Theorem 3.6. Suppose that $\mu_{1}\in Z^{1}(B, G)$ lies in $\mathrm{r}\mathrm{e}\mathrm{s}_{A,B}(Z^{1}(A, G))$ , namely, $\mu=\mathrm{r}\mathrm{e}\mathrm{s}_{A,B}(\lambda)$ for
some A $\in Z^{1}(A, G)$ . Then $\lambda_{r}$ : $Z_{\lambda}^{1}(A, G)arrow Z^{1}(A, G)$ induces a bijection

$\lambda_{r}$ : $Z_{\lambda}^{1}(\overline{A}, C_{G}(\tilde{\mu}(B)))arrow Z^{1}(A, G;B,\mu)$ ,

where we regard $Z_{\lambda}^{1}(\overline{A}, C_{G}(\tilde{\mu}(B)))\subseteq Z_{\lambda}^{1}(A, G)$ in a natural way, and where we set

$Z^{1}(A, G;B,\mu,)=\mathrm{r}\mathrm{e}\mathrm{s}_{4\ell,B}^{-1}(\mu,)=\{\tau\in Z^{1}(A, G)|\mathrm{r}\mathrm{e}\mathrm{s}_{A,B}(\tau)=\mu\}$

By Lemm a 3.2, we have

Corollary 3.7. Under the notation in Theorem $\mathit{3}.\theta$, we have

$\lambda_{r}.(B_{\lambda}^{1}(\overline{A}, C_{G}(\tilde{\mu}(B))))=\{^{h}\lambda|h\in C_{G}(\tilde{\mu}(B))\}$
$[$

By Lemma 3.2, we have

Corollary 3.7. Under the notation in Theorem $\mathit{3}.\theta$, we have

$\lambda_{r}.(B_{\lambda}^{1}(\overline{A}, o_{G}(\tilde{\mu}(B))))=\{^{h}\lambda|h\in C_{G}(\tilde{\mu}(B))\}$

3.3 Covariant parameter $G$ – Brauer’s argument

Suppose that there is a short exact sequence of groups $1arrow Karrow Garrow K\backslash Garrow 1.$ We consider
a similar problem whether there exists an exact sequence such as

$1arrow Z^{1}(A, K_{?})arrow Z^{1}(A, G)\mathrm{i}\mathrm{n}\mathrm{c}\mathrm{l}arrow \mathrm{m}\mathrm{o}\mathrm{d} K$ Map$(4, K\backslash G)$ ,

where $K_{?}$ is some subgroup of $G$ , and Map denotes the set of maps, which may be replaced
by $Z^{1}$ if If is $A$-invariant. For this problem, Brauer [6] gave an answer in the case where $A$ is
cyclic with trivial action $011G$ , i.e., $Z^{1}(A, G)=$ Horn$(4, G)$ . Moreover, it is remarkable that he
ass umed $K$ is neither no rmal nor $A$-invariant. We can generalize his answer as follows.

For $K\leq G$ and A $\in Z^{1}(A, G)$ , let $K_{\lambda}$ be the maxi mal (A)-invariant subgroup of $K$ , namely,

$K_{\lambda}=\cap a\in A\lambda(a)K$
.

Theorem 3.8. Let $IC$ be a subgroup of $G$ , and A $\in Z^{1}(A, G)$ . Then $\lambda_{r}$ : $Z_{\lambda}^{1}(A, G)arrow Z^{1}(A, G)$

induces a bijection

$\lambda_{r}$. : $Z_{\lambda}^{1}(A, K_{\lambda})arrow$ { $\eta\in Z^{1}(A, G)|\mathrm{K}\mathrm{X}${ $\mathrm{a})=K$A $(a,)$ for all $a\in 4$ }
By Lemma 3.2, we have

Corollary 3.9. Under the notation in Theorem 3. 8, we have

$\lambda_{r}(B_{\lambda}^{1}(A, IC_{\lambda}))=\{^{k}\lambda|k\in K_{\lambda}\}$

Corollary $.9. Under the notation in Theorem $\mathit{3}.\mathit{8}_{f}$ we have

$\lambda_{r}(B_{\lambda}^{1}(A, IC_{\lambda}))=\{^{k}\lambda|k\in K_{\lambda}\}$
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4 Applications

For given $B\leq A$ and $g\in G,$ we indicate the coboundary $[g$ , - $]$ : $Barrow G$ by $[g, -]B$ to avoid
ambiguities, so that $\mathrm{r}\mathrm{e}\mathrm{s}_{A,B}([g, -]_{A})=[g, -]$ b- Note that it always holds that

$\mathrm{r}\mathrm{e}\mathrm{s}_{A,B}(B^{1}(A, \mathrm{G}))=B^{1}(B, G)$ . $(*)$

If rz is an integer and $A$ is abelian, then $A^{n}=\{a^{n}|a\in A\}$ is a subgroup of $A$ . The following
is a generalization of Brauer’s lemma (Lemma 1.3)

Theorem 4.1. Let A he a finitely generated ahelian group and let $G$ he a finite group. Then

$\mathrm{r}\mathrm{e}\mathrm{s}A,A^{\mathrm{j}G}|(Z^{1}(A, G))=B^{1}(A^{|G|}, G)$.

Proof. We use induction on the rank of $A$ .

(1) Suppose that $A$ is cyclic. We reduce this case to Hall’s theorem (Theorem 1.3) as follows.
Taking an epimorphism $F\simeq \mathbb{Z}arrow A,$ we have a commutative diagram

$Z^{1}(A, G)$ \rightarrow rae $Z^{1}(A^{|G|}, G)$

$Z^{1}(F, G) \inf\downarrow$

\rightarrow res
$Z^{1}(F^{|G|}., G)\mathrm{i}\mathrm{n}\mathrm{t}\downarrow$

.

This allows us to ass ume that $A=F.$ Since $F\simeq \mathbb{Z}$ , we have $|$ $7$ : $F^{|G|}|=|G|=|$Za(A, $G$ ) $|$ . On
the other hand, we have $B^{1}(F^{|G|}, G)= \{[g, -]_{F^{1}}G||g\in[G\oint C_{G}(F^{|G|)]\}}$ , where $[G \oint H]$ denotes a
set of representatives for left cosets in $C_{7}$ modulo a subgroup $H$ . Thus, by definition,

$\mathrm{r}\mathrm{e}\mathrm{s}_{F,F^{|G|}}^{-1}(B^{1}(F^{|G|}, G))=$ $\cup+$ $Z^{1}(F, G;F^{|G|}, [g, -]_{F^{|G\}}})$ .
$g \in[G\int C_{G}(F^{|G|})]$

However, Theorem 3.6 and usual argument for conjugation yield that

$Z^{1}(F, G;F^{|G|}, [g, -]_{F^{|G|}})\simeq Z_{[g,-]}^{1}$ $(F \oint F^{|G|}, C_{G}(^{g}(F^{|G|})))\simeq Z^{1}(F/F^{|G|}, C_{G}(F^{|G|}))$ .

Therefore Hall’s theorem implies that

$|\mathrm{r}\mathrm{e}\mathrm{s}_{F,F^{|G|}}^{-1}(B^{1}(F^{|G|}, G.))|=|G$ : $C_{G}(F^{|G|})|$ $|Z^{1}(F\prime F^{|G|}, C_{G}(F^{|G|}))|\equiv 0$ (mod $|G|$ ),

which forces $|\mathrm{r}\mathrm{e}\mathrm{s}F,F^{|G|}-1(B^{1}(F^{|G|}, G))|=|G|=|Z^{1}(F, C_{\mathrm{v}})|$ , as desired.
(2) Suppose that $A=B\cross C$ for nontrivial subgroups $B$ alld $C$ , and A $\in Z^{1}(A, G)$ . By the
equation $(*)$ and the inductive assumption, we have

$B^{1}(B^{|G|}, G)=\mathrm{r}\mathrm{e}\mathrm{s}_{A,B^{|G|}}(B^{1}(A, G))$

$\subseteq \mathrm{r}\mathrm{e}\mathrm{s}_{A,B^{|G|}}(Z^{1}(A, G))\subseteq \mathrm{r}\mathrm{e}\mathrm{s}_{B,B^{|G|}}(Z^{1}(B, G))=B^{1}(B^{|G|}, G)$, $(**)$

so that $\mathrm{r}\mathrm{e}\mathrm{s}_{A,B^{|G\mathrm{I}}}(Z^{1}(A, G))=B^{1}(B^{|G|}, C_{\tau})$ . Hence $\lambda$ $\in Z^{1}(A, G;B^{|G|}, [h, -]B1G| )$ for some $h\in G.$

However, we have also $[h, -]4\in Z^{1}(A, G;B^{|G|}, [h, -]B1G| )$ . Theorem 3.6 yields that

Proof. We use induction on the rallk. of $A$ .

(1) Suppose that $A$ is cyclic. We reduce this case to Hall’s theorem (Theorem 1.3) as follows.
Taking an epimorphism $F\simeq \mathbb{Z}arrow A,$ we have a $\mathrm{c}\mathrm{o}\mathrm{m}$ mutative diagram

$Z^{1}(A, G)$ \rightarrow rae $Z^{1}(A^{|G|}, G)$

$Z^{1}(F, G) \inf\downarrow$

\rightarrow res
$Z^{1}(F^{|G|}., G)\mathrm{i}\mathrm{n}\mathrm{t}\downarrow$

.

This allows us to assume that $A=F.$ $\mathrm{S}\mathrm{i}_{1}\mathrm{u}\mathrm{c}\mathrm{e}F\simeq \mathbb{Z}$ , we have $|F:F^{|G|}|=|G|=|Z^{1}(F, G)|$ . On
the other hand, we have $B^{1}(F^{|G|}, G)= \{[g, -]_{F}|G||g\in[G\oint C_{G}(F^{|G|)]\}}$ , where $[G \oint H]$ denotes a
set of $\mathrm{r}\mathrm{e}\mathrm{p}_{1}\cdot \mathrm{e}\mathrm{s}\mathrm{e}\mathrm{n}\mathrm{t}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{v}\mathrm{e}\mathrm{s}$ for left cosets in $G$ modulo a subgroup $H$ . Thus, by definition,

$\mathrm{r}\mathrm{e}\mathrm{s}_{F,F^{|G|}}^{-1}(B^{1}(F^{|G|}, G))=$ $\cup+$ $Z^{1}(F, G;F^{|G|}, [g, -]_{F|G\}})$ .
$g \in[G\int C_{G}(F^{|G|})]$

However, Theorem 3.6 and usual argument for conjugation yield that

$Z^{1}(F, G;F^{|G|}, [g, -]_{F^{|G|}}) \simeq Z_{[g,-]}^{1}(F\oint F^{|G|}, C_{G}(^{g}(F^{|G|})))\simeq Z^{1}(F/F^{|G|}, C_{G}(F^{|G|}))$.

Therefore Hall’s theorem implies that

$|\mathrm{r}\mathrm{e}\mathrm{s}_{F,F^{|G|}}^{-1}(B^{1}(F^{|G|}, G.))|=|G$ : $C_{G}(F^{|G|})|$ $|Z^{1}(F \oint F^{|G|}, Cc(F^{|G|}))|\equiv 0$ (mod $|G|$ ),

which forces $|\mathrm{r}\mathrm{e}\mathrm{s}_{F,F^{|G|}}^{-1}(B^{1}(F^{|G|}, G))|=|G|=|Z^{1}(F, C_{\mathrm{v}})|$ , as desired.
(2) Suppose that $A=B\cross C$ for nontrivial subgroups $B$ alld $C$ , and $\lambda\in Z^{1}(A, G)$ . By the
equation $(*)$ and the inductive assumption, we have

$B^{1}(B^{|G|}, G)=\mathrm{r}\mathrm{e}\mathrm{s}_{A,B|G|}(B^{1}(A, G))$

$\subseteq \mathrm{r}\mathrm{e}\mathrm{s}_{A,B}$|G| $(Z^{1}(A, G))\subseteq \mathrm{r}\mathrm{e}\mathrm{s}_{B,B}$ |G| $(Z^{1}(B, G))=B^{1}(B^{|G|}, G)$ , $(**)$

so that $\mathrm{r}\mathrm{e}\mathrm{s}_{A,B}$|G| $(Z^{1}(A, G))=B^{1}(B^{|G|}, C_{\tau})$ . Hence $\lambda\in Z^{1}(A, G;B^{|G|}, [h, -]_{B^{|G|}})$ for some $h\in G.$

However, we have also $[h, -]_{A}\in Z^{1}(A, G;B^{|G|}, [h, -]_{B}|G|)$ . $\mathrm{T}\mathrm{h}\infty \mathrm{r}\mathrm{e}\ln$ $3.6$ yields that

$[h, -]_{r}$. : $Z_{[h,-]}^{1}(A/B^{|G|}, C_{G}(^{h}(B^{|G|})))arrow Z^{1}(A,G;B^{|G\mathrm{j}}, [h, -]_{B^{|G|}})$
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is bijective. Thus $\lambda=\eta 1$ $[h,$ $-]$ a for some $tt$ $\in Z_{[h,-]}^{1}(A\int B^{|G|}, C_{/c}(^{h}(B^{|G|})))$ . Again applying
induction to $C_{J}^{|G|}\leq 4/B^{1}G|\simeq(B\mathit{1}^{B^{|G|}})\mathrm{x}C$ as in $(**)$ , we have

$\mathrm{r}\mathrm{e}\mathrm{s}_{A/B|G|C^{|G|}},(Z_{[h,-]}^{1}(A/B^{|G|}, C_{G}(^{h}(B^{|G|}))))=B_{[h,-]}^{1}(C^{|G|}, C_{G}(^{h}(B^{|G|})))$ .

Hence there exists $g\in C_{G}(^{h}(B^{|G|}))$ such that $\mathrm{r}\mathrm{e}\mathrm{s}_{A/B|G|C^{|G|}},(\eta)=[g, -](h,-]$ , the commutator of
$g$ with respect to the action Inn[ft, -]”. This means that
Hence there exists $g\in C_{G}(^{h}(B^{|G|}))$ sucll that $\mathrm{r}\mathrm{e}\mathrm{s}_{A/B|G|C|G|},(\eta)=[g, -][h,-]$ , the colnmutator of
$g$ with respect to the action $\mathrm{I}\mathrm{n}\mathrm{n}[h, -]^{\sim}$ . This means that

$A(6c)$ $=$ n(c) $\cdot[h, bc]=[g, c]_{[h,-]}\cdot[h, b\mathrm{c}]=[g, bc]_{[h,-]}\cdot[h, 6c]$ for all $b\in B^{|G|}$ , $c\in C^{|G|}$ .

Consequently, $\mathrm{r}\mathrm{e}\mathrm{s}_{A,A^{|G|}}(\lambda)=[g, -]_{[h,-]}\cdot[h, -]=$ [gh, -] on $A^{|G|}$ by Lecnrna 3.5, as desired. $\square$

As observed in Corollary 3.4, the second statement of the Schur-Zassenhaus theorem (Theorem
1.6) is equivalent to the following theorem, which can be reduced to the case where either $A$ or
$G$ is abelian by the Feit-Thompson theorem and by our arguments.

Theorem 4.2. If $A$ and $C_{\mathrm{v}}$ are finite groups with $\mathrm{g}\mathrm{c}\mathrm{d}(|A| , |G|)$ $=1,$ then $Z^{1}(A, G)$ $=B^{1}(A,$ $G|$ .
Proof. We use induction on $|A|$ and $|G|$ . By the Feit-Thompson theorem, we may assume that
either $A’<_{p}$ $A$ or $G’<$. $G$ .

(1) Suppose that $A’\leq A,$ and consider the short exact sequence $1arrow A’arrow Aarrow AfA’arrow 1.$ By
induction, we have $Z^{1}(A’, G)=B^{1}(A’, G)$ , so that

$Z^{1}(A, G)=$ $\mathrm{u}+$ $Z^{1}(A, G;A’, [h, -]_{A’})$ .
$h\in[G/C_{G}(A’)]$

By applying Theore$\mathrm{m}3.6$ to $[h, -]_{A}\in Z^{1}$ ( $A,$ $G;A’,$ $[h,$ -]A/),

$[h, -]_{r}$ : $Z_{[h,-]}^{1}(A/A’, C_{G}(^{h}A’))arrow Z^{1}(A, G;A’, [h, -]_{A’})$

is bijective. However, $A \oint A’$ is abelian and $(A \oint A’)^{|H|}=AfA’$ for all $H\leq G$ by hypothesis. Hence
Theorem 4.1 implies that

$Z_{[h,-]}^{[perp]}(AfA’, C_{G}(^{h}A’))=B_{[h,-]}^{1}(A/A’, C_{G}(^{h}A’))$ .

Consequently, it follows from Lemma 3.5 that every element of $Z^{1}(A, G)$ is of the form $[g, -][h,-]$ .
$[h, -]$ $=[gh, -]$ for some $g$ , $h\in G.$

(2) Suppose that $G’<Garrow$
’ and consider the short exact sequence $1arrow G’arrow Garrow G/G’arrow 1.$ We

have a natural ntap $Z^{1}(A, G)arrow Z^{1}(A, G/G’)$ . However, $G/G’$ is an $A$-module of order relatively
prime to $|A|$ . Hence it is well known in cohomology theory that $Z^{1}$ ( $A$ , $G$A $C_{7}’$ ) $=B^{1}(A, G \int G’)$ .
Therefore, for each A $\in Z^{1}(A, G)$ , there exists some $h\in G$ such that $G’\lambda(a)=G’[h, a_{1}]$ for all
$a\in A.$ By Theorem 3.8,

$[h, -]_{r}$ : $Z_{[h,-]}^{1}(A, G’)arrow$p { $\eta\in Z^{1}(A,$ $G)|G’\eta(a)=G’[h$ , $a]$ for all $a\in A$ }
is a bijection. However, $Z_{[h,-]}^{1}(A, G’)=B_{[h,-]}^{1}$ ( $A,$ $C_{\tau}’\rangle$ by induction. Consequently, it follows
fiiom Lemma 3.5 that $\lambda$ $=[g, -][h,-)$ . $[h, -]=fjh$ , -] for some $g\in G’$ . $\square$

As stated in the proof, this theorem is a generalization of a well known theorem in coh omology
theory for $A$-modules $G$. Although we have used the Feit-Thompson theorem, the arguments of
(1) and (2) in the proof are very parallel.
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