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1 Theorems

We can find several proofs, for example, in [6-13], of the following classical theorem of Frobe-
nius:

Theorem 1.1 (Frobenius). Let n be an integer and G a finite group. Then
l{g €G|g"= 1}| =0 (mod ged(n,|G|)),
where | X| denotes the cardinality of a set X.

This theorem is equivalent to the fact that
|Hom(C,G)| =0 (mod ged(|C|,|G]))

for any finite cyclic group C, where Hom denotes the set of group homomorphisms. Yoshida has
generalized the theorem as follows:

Theorem 1.2 (Yoshida [12]). Let A be a finite abelian group and G a finite group. Then
|Hom(A,G)| =0 (mod ged(|A4],]G])).
Another way of generalization is due to P. Hall:

Theorem 1.3 (P. Hall [10]). Let G be a finite group and 6 an automorphism of G. If the
order of 6 divides a positive integer n, then

{9€G|g-0(g)-6%(g)---0"Y(g) =1}| =0 (mod ged(n,|G|)).

The theorem of Frobenius corresponds to the case # = 1. We reform this Hall’s generalization
in terms of ‘Z*(A4, G)’ as well as Theorem 1.1 in terms of Hom(4, G), as follows.

Let a group A act on a group G by a group homomorphism ¢: A — Aut(G), where Aut(G)
is the automorphism group of G. For a € A and g € G, we indicate ¢(a)(g) by ®9. A map
A: A = G is called a crossed homomorphism or a derivation (with respect to ) provided

Alab) = Aa) - *A(b) for all a,b € A.
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We denote by Z'(A, G) the set of crossed homomorphisms from A4 to G. For example, the
zero map 0: A — G sending all the elements of A onto 1 € G is a crossed homomorphism. If
the action ¢ is trivial, then Z'(4,G) = Hom(4, G). On the other hand, if G is abelian, then
Z1(A, G) coincides with the first cocycle group of the Z A-module G with respect to the standard
resolution of A. However, unless G is abelian, Z'(4, G) may be only a set; it may not have a
group structure in general.

Now, Hall’s theorem is equivalent to the fact that

|ZI(C, G)l =0 (mod ged(|C|,|G)))

for any finite cyclic group C and for any action of C on G. Yoshida and the first author of this
report have conjectured the following:

Conjecture 1.4 ([5]). If a finite group A acts on a finite group G, then
|Z'(4,G)| =0 (mod ged(|A/A'|,|G])),
where A’ denotes the commutator subgroup of A.

This conjecture is a generalization of all the theorems above, and is still open. Recent progress
for this conjecture is found in [1-4]. In particular, in order to prove the conjecture completely,
it suffices to prove the conjecture in the case where A is an abelian p-group and G is a p-group
for a prime p ([1]). This reduction mainly owes to the functorial properties of Z1(A, G) on the
variables A and G, where the latter is first observed by Brauer [6] in a certain case (see §3.3 for
generalization). In addition, Brauer has based his alternative proof of the theorem of Frobenius
on the following lemma:

Lemma 1.5 (Brauer [6]). Let G be a finite normal subgroup of a group E. Then, for any
geGandz € E, (ga;)lG| and zlG is conjugate by an element of G.

In this report, we shall generalize this Brauer’s lemma as the formula
res, 416 (Z21(4,G)) = BY{(Al @)

for abelian A (Theorem 4.1), where B! denotes the set of coboundaries, which will be introduced
in the next section. Throughout the report, our main tools are the functorial properties of
ZY(A,G), and our principle is to compare Z(4,G) with BY(A,G). As a corollary of our
arguments together with the Feit-Thompson theorem, we shall also prove Theorem 4.2 which is
equivalent to the second statement of the following classical theorem:

Theorem 1.6 (Schur-Zassenhaus). Let G be a finite normal subgroup of a finite group E
such that gcd(|E : G|,|G|) = 1. Then

(1) There exists a subgroup A of E such that E = G x A.
(2) If E=G x A= G x B, then A and B are conjugate by an element of G.

Note that if G is abelian, then it is well known that the first statement of the Schur-Zassenhaus
theorem is equivalent to H2(A,G) = 0, and the second is so to H'(A,G) = 0. In fact, we shall
prove Z'(A,G) = B*(4,G) for any finite group A and G whose orders are relatively prime.
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Notation. For the remainder of the report, we fix the following notation: let A and G be groups,
which need not be finite, and let A act on G by a group homomorphism ¢: 4 — Aut(G). With
respect to this action ¢, we denote by Z!(A, G) the set of crossed homomorphisms from A to
G, and by G x A the semidirect product of G and A. For z € G x A, we denote by Inn(z) the
inner automorphism associated with z, so that Inn(z)(y) = *y = ayz~! for all y € G x A.

2 Coboundaries
For a given map A: A = G, consider the map A: A — G x A which is defined by
Aa) = Ma)a for all a € A.

It is easy to show that A € Z!(A,G) if and only if A € Hom(4,G » A), and in this case,
becomes a splitting monomorphism of the canonical epimorphism 7: G x A — A. On the other
hand, any splitting monomorphism 6 of 7 defines a complement #(A) < G x A of G, and vice
versa. From these observations, we obtain the following well-known result:

Theorem 2.1. There are two bijections
Zt (4,G) —}{GEHom(A G x A) Iwoo 1d,4}
—){B_<_G>qA|GB=G>4A, GNB=1},
where ®(\) = X and ¥ (0) = 6(A).

As in homological algebra, we introduce the concept of ‘coboundary’ as well as cocycle. For
arbitrary g € G and a € A, regarding them as elements in G x A, we consider their commutator
(9, a], where

l9,0] = gag™'a™' =g -%(¢7") € G.
Then this induces a map [g,—]: A -+ G sending a € 4 to [g,a] € G. We call this map [g,—] a
coboundary or an inner derivation induced from g (with respect to ¢), and set
Bl(AaG) = {{gs _'] f g€ G} .

Easy calculation shows that B'(4,G) C Z!(A,G). In fact, if G is abelian, then B!(4, G)
coincides with the first coboundary group of the ZA-module G with respect to the standard
resolution of A. However, in general cases, B'(4,G) may not have a group structure. Our
principle of this report is to compare B!(4, G) with Z'(A, G). First we emphasize the following
lemma on the relation between the coboundary [g, —] and conjugation by g. Since [g,a)a = %a
in G x A, we have

Lemma 2.2. Given g € G, set v = [g,—]. Then ¥(a) =9a for alla € A.
In other words, ®([g, —]) = Inn(g) on A. Note that Y4 # A in general.

3 Parameters

Both Z(A,G) and B!(A,G) have three parameters: groups A, G and action . We shall
consider functorial properties on these parameters.
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3.1 Change of actions

We fix A € Z1(4,G). For given a € A, the inner automorphism Inn(A(a)) on G x A leaves
the normal subgroup G invariant. This induces a new action InnA: A — Aut(G), namely,

(Inn X)(a)(g) = :\(“)g =M (%) for ac 4 and g € G.

We denote simply by Z}(A, G) the set of crossed homomorphisms with respect to Inn A

Since G x A = G x A\(A4), Theorem 2.1 states that both Z'(4,G) and Z 1(A, G) correspond to
the same set — the set of complements of G in G x A. This is a group-theoretic meaning of the
following theorem.

Theorem 3.1 (Change of actions). Let A € Z'(A,G). Then right multiplication by X in-
duces a bijection i Z}(A,G) - Z (A, G), which is defined by

() (@) = n(a)A(a) for all n € Z}(A,G) and a € A.
We often write A.(n) =n- A.
Let us determine’ the image of the coboundaries by this bijection A,. Set
B;(4,G) = {ls;-Ir| 9 € G},

where [g, —]x: A = G denotes the coboundary induced from g with respect to the action Inn X,
i.e.,

[g.ax=g-*@(g)eG<GxA forall ac A
We indicate A-([g, —]x) = [g, =]» - A € Z1(4, G) by 9, so that
(*N)(a) = [g,a]x - A(a) =*(A\(a)) - 0.
On the other hand, G acts on Hom(A, G x A) by
99 =Inn(g) o @ for g € G and 6 € Hom(A,G x A).

Lemma 3.2. Let A € Z'(A,G). Then we have

(1) M (BY(A,G)) = {2 | g € G}. )

(2) 9N =9X for any g € G. (In other words, I\ is the ‘G-part’ of 9\.)

As the easiest case, we consider the zero map.

Lemma 3.3. Let 0 € Z1(A, G) be the zero map. Then we have

(1) 0: A = G x A is the inclusion map (the canonical monomorphism,).
(2) 90 = [g, —] and 90 = Inn(g) on A for any g € G.

This implies the following at once:

Corollary 3.4. All the complements of G in G x A are conjugate if and only if BY(A,G) =
ZY(4A,G).

Note that any two conjugate complements of G in G X A are conjugate by an element of G.
We can also show the following by easy calculation:

Lemma 3.5. For any g,h € G, we have
b, =] = lg, —]in,~) * [Rs =] = [gh, —].
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3.2 Contravariant parameter A

Suppose that there is a short exact sequence of groups 1 — B — A — A - 1. We consider a
problem whether there exists an ezact sequence such as

1 ZY(4,G,) 2% z1(4,G) =225 71(B,G),

where G- is some subgroup of G on which B acts trivially, incl is the inclusion map, and resy g
is the restriction map (although exactness of a sequence is not defined in the category of sets).
Whereas we can not find such a common subgroup G-, we can locally do as follows:

Theorem 3.6. Suppose that u € Z'(B,G) lies in resa g(Z*(A,G)), namely, p = resa,g()) for
some A € Z}(A,G). Then \.: Z}(A, G) — Z(A, G) induces a bijection

Ar: Z3(A,Coli(B))) — ZV(4,G; B, ),
where we regard Z} (A, Cg(i(B))) € Z1(A4,G) in a natural way, and where we set
Z'(A,G;B,p) =resy'p(u) = {r € Z'(4,G) | resp,n(r) = u} .
By Lemma 3.2, we have

Corollary 3.7. Under the notation in Theorem 3.6, we have

A (BY(A, Co(@(B))) = {"A| h € Ca(@(B))} .

3.3 Covariant parameter G — Brauer’s argument

Suppose that there is a short exact sequence of groups 1 - K - G — K\G — 1. We consider
a similar problem whether there exists an exact sequence such as

1 ZY(A, Ky) 2% 714, G) 2245 Map(4, K\G),

where K7 is some subgroup of G, and Map denotes the set of maps, which may be replaced
by Z! if K is A-invariant. For this problem, Brauer [6] gave an answer in the case where A is
cyclic with trivial action on G, i.e., Z}(4, G) = Hom(A, G). Moreover, it is remarkable that he
assumed K is neither normal nor A-invariant. We can generalize his answer as follows.

For K < G and A € Z'(4,G), let K, be the maximal A\(A)-invariant subgroup of K, namely,

K= ) *@k.

a€A

" Theorem 3.8. Let K be a subgroup of G, and \ € Zl(A G). Then Ar: Z5(A,G) = Z1(A,G)
induces a bijection

At Zy(A,Ky) = {n € ZY(A,G) | Kn(a) = KX(a) for all a € A}.
By Lemma 3.2, we have
Corollary 3.9. Under the notation in Theorem 3.8, we have

M (BAAK) = {*A | k€ Ky}



28

4 Applications

For given B < 4 and g € G, we indicate the coboundary [g,~]: B — G by [g, —]5 to avoid
ambiguities, so that res4 g([g, —]a) = [9, —]p. Note that it always holds that

resa p(B'(A,G)) = BYB,G). (%)

If n is an integer and A is abelian, then 4™ = {a™ | a € A} is a subgroup of A. The following
is a generalization of Brauer’s lemma (Lemma 1.5).

Theorem 4.1. Let A be a finitely generated abelian group and let G be a finite group. Then
res, a01(Z'(4,G)) = BY(4'9,G).
Proof. We use induction on the rank of A.

(1) Suppose that A is cyclic. We reduce this case to Hall’s theorem (Theorem 1.3) as follows.
Taking an epimorphism F' ~ Z — A, we have a commutative diagram

ZY(4,G) ZY(AIS, @)
o | |
ZYF,G) = ZY(FICl,G).

This allows us to assume that A = F. Since F ~ Z, we have |F : F'G” = |G| = ’ZI(F, G)l. On
the other hand, we have B}(FICl,G) = {[g,~]pci | g € [G/Ca(FI®)]}, where [G/H] denotes a
set of representatives for left cosets in G modulo a subgroup H. Thus, by definition,

res;hia (BAFIOLG) = ZNFGFO (g, Ipe).
9€[G/Cc(FICN))

However, Theorem 3.6 and usual argument for conjugation yield that
Z\(F,G; F19, g, ~|pa) = 2}, 1(F/FI°,Ce(*(FI9)) = Z*(F/FI%, Cg(FIO)).
Therefore Hall’s theorem implies that
sz e (BH(FI9, 0))| = |6 : Ga(r19))| - |2 (/FI, Ca(FST)| =0 (mod (G,
which forces lres;}mal (B\(FICI, G))] = |G| = |2}(F,G)|, as desired.

(2) Suppose that A = B x C for nontrivial subgroups B and C, and A € Z!(4,G). By the
equation (*) and the inductive assumption, we have

BY(BI%, G) = res, pi1(B'(4,G))
g I‘esA,BlGI (Zl (As G)) g reSB,BIG'l (Zl(Ba G)) = BI(B|GIa G)s (**)

5o that res4 o1 (Z21(A4, G)) = BY(B!C, G). Hence A € Z'(4,G; BIS, [h, —]|gie) for some h € G.
However, we have also [k, —)4 € Z'(A, G; B¢, [h, ~]56)). Theorem 3.6 yields that

(B, ~1r: Zj,y(4/BI9, Co(*(BI?)) — 2'(4,G; B, [h, ~]gicn)
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is bijective. Thus A = n - [h, —]4 for some n € Z (A/B|G| Ce("(BI))). Again applying
induction to C!¢l < A/BI¢l ~ (B/BI®!) x C as in (**) we have

res 4/ pic ciol (Zh, ) (A/BI, Co (*(BI9))) = B, _,(C1, co(*(BIS1))).

Hence there exists g € Cq(*(BIG!)) such that res a/B161 cie1(n) = [g9, =]jx,-], the commutator of
g with respect to the action Inn[h, —]~. This means that

A(be) = n(c) - [k, be] = [g, cljp,— - [h, bc] = [g,beljp,—1 - [h,be] for all b € BIEI, ¢ e CIOl,
Consequently, res, 461(A) = [g, =], - [h, =] = [gh, =] on Al¢! by Lemma 3.5, as desired. [

As observed in Corollary 3.4, the second statement of the Schur-Zassenhaus theorem (Theorem
1.6) is equivalent to the following theorem, which can be reduced to the case where either A or
G is abelian by the Feit-Thompson theorem and by our arguments.

Theorem 4.2. If A and G are finite groups with gcd(|4|, |G]) = 1, then Z1(A,G) = B1(4,G).

Proof. We use induction on |A| and |G|. By the Feit-Thompson theorem, we may assume that
either A’ < Aor G' < G.

(1) Suppose that A’ < A, and consider the short exact sequence 1 — A’ — A4 — AJA" - 1. By
induction, we have Z!(4’, G) = B!(4/,G), so that

Z'A,G) = | ZYAG A\ [h~w).
he[G/Col(A')]

By applying Theorem 3.6 to [h, —]4 € Z1(A, G; A, [h, —]a'),
[h,=)r: Zj, 1 (A/A',Ca(*A) = Z'(A,G; A, [h,—w)

is bijective. However, A/A’ is abelian and (4/A")Hl = A/A’ for all H < G by hypothesis. Hence
Theorem 4.1 implies that

Zjh,(A/A',Ce(*A) = B, _\(A/A',Cs(*4).

Consequently, it follows from Lemma 3.5 that every element of Z!(4, G) is of the form [g, —] (hy—]" ‘
[h, =] = [gh, —] for some g,h € G.

(2) Suppose that G’ < G, and consider the short exact sequence 1 = G' - G — G /G’ — 1. We
have a natural map Z'(4, G) — Z'(4,G/G'). However, G/G' is an A-module of order relatively
prime to |A|. Hence it is well known in cohomology theory that Z'(4,G/G') = B'(4,G/G').
Therefore, for each A € Z'(A4, G), there exists some h € G such that G'A(a) = G'[h,a] for all
a € A. By Theorem 3.8,

[h=)r: Z,_(A,G") = {n € Z"(4,G) | G'n(a) = G'[h,a] for all a € A}

_is a bijection. However, Z[h,_](A, G = B{lh __](A, G') by induction. Consequently, it follows
from Lemma 3.5 that A = [g, —]j ) - [k, =] = [gh, —] for some g € G'. O

As stated in the proof, this theorem is a generalization of a well known theorem in cohomology
theory for A-modules G. Although we have used the Feit-Thompson theorem, the arguments of
(1) and (2) in the proof are very parallel.
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