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defect groups
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Aichi Univerisity of Education(愛知教育大学)

1 Introduction
Let $G$ be a finite group. Let $k$ be an algebraically closed field of characteristic $p>0.$

We denote by $B_{0}(G)$ the principal block of $kG$.
We say that two finite groups $G$ and $H$ have the same plocal structure if they

have a common Sylow psubgroup $P$ such that whenever $Q_{1}$ and $Q_{2}$ are subgroups
of $P$ and $f$ : $Q_{1}arrow Q_{2}$ is an isomorphism, then there is an element $g\in G$ such
that $f(x)=x^{g}$ for all $x\in Q_{1}$ if and only if there is an element $h\in H$ such that
$\mathrm{f}(\mathrm{x})=x^{h}$ for all $x\in Q_{1}$ .

Conjecture 1.1 (Broue $[1],[2]$ and Rickard [10]) Let $G$ and $H$ be finite groups
having the same -local structure with common Sylow -subgroup $P$ . If $P$ is abelian
then the principal blocks $B_{0}(G)$ and $B_{0}(H)$ would be splendid equivalent.

If a finite group $G$ has an abelian Sylow psubgroup $P$ then $G$ and $N_{G}(P)$ have
the same $p$-local structure. So we normally take $N_{G}(P)$ as $H$.

There is a counterexmaple to the conjecture if $P$ is not abelian. However it
would be meaningful to investigate other cases of non abelian defect groups. The
purpose of this note is to present some examples of splendid equivalent blocks with
non-abelian defect groups.

2 PGL$(3, 22)$ and PGU$(3, 22)$

Throught the rest of this note, let $k$ be an algebraically closed field of characteristic
3.

Set
$G=PGL(3,2^{2})\triangleright G’=PSL(3,2^{2})$

and
$H=PGU(3,2^{2})\triangleright H’=PSU(3,2^{2})$ .
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$4\mathrm{E}\mathrm{I}$

Let $Q$ be a common Sylow 3-subgroup of $G’$ and $H’$ , and let $P$ be a common Sylow
3-subgroup of $G$ and $H$ . Then $Q\cong Z_{3}\cross Z_{3}$ , an elementary abelian 3-group of
order 9, and $P\cong M(3)$ , an extraspecial 3- roup of order 27 of exponent 3. Note
that $H’\cong N_{G’}(Q)\cong(C_{3}\cross C_{3})\aleph$ $Q_{8}$ and $H\cong N_{G}(Q)4$ $(C_{3}\cross C_{3})\aleph$ $SL(2,3)$ . In
particular $G$ and $H$ have the same 3-local structure.

The principal blocks Bo $(\mathrm{G}’)$ and BO $(H’)$ have 5 simple modules $\{k_{G’}, T_{1}’, T_{2}’,T_{3}’, S’\}$

and $\{k_{H’}, 1_{1}’,1_{2}’,1\mathrm{J}, 2’\}$ respectively. The principal blocks Bq(G) and $B_{0}(H)$ have 3
simple modules $\{k_{G’},T, S\}$ and $\{k_{H}, 3,2\}$ respectively. We have

$T\downarrow_{G’}=T_{1}’\oplus T_{2}’\oplus T_{8}’$, $T4$$’\uparrow^{G}=T,$ $S’\downarrow_{G’}=S,$

and
3 $\mathrm{Q}_{H^{1}}=1_{1}’\oplus 1_{2}’\oplus 1_{3}’$ , $1_{\dot{l}}’\uparrow^{H}=3,$ $2’\downarrow_{H’}=2.$

Theorem 2.1 (Kunugi-Usami) The principal blocks of $B_{0}(G)$ and $B_{0}(H)$ are splen-
did equivalent.

In [7] and [8], Okuyama proved that the principal blocks $B_{0}(G’)$ and $B_{0}(H’)$ are
splendid equivalent. However we reconstruct a splendid equivalence between Bo (Gf)
and $\mathrm{B}\mathrm{O}(\mathrm{H}\mathrm{f})$ , since the equivalence constructed in [7] does not lift to any derived
equivalence between $B_{0}(G)$ and $B_{0}(H)$ . Let

$F’={\rm Res}_{H}^{G’}$, : $\mathrm{s}\mathrm{t}\mathrm{m}\mathrm{o}\mathrm{d}B_{0}(G’)$ $arrow \mathrm{s}\mathrm{t}\mathrm{m}\mathrm{o}\mathrm{d}B_{0}(H’)$

be the restriction functor. Then $F’$ gives a stable equivalence of Morita type since
the Sylow 3-subgroup $Q$ of $G’$ and $H’$ is $\mathrm{T}\mathrm{I}$ . Then we have the following lemma.

Lemma 2.2 There exist exact sequences

(1) $0arrow\Omega^{-1}$ $(\begin{array}{l}k_{H’}2’1_{l}\end{array})arrow\Omega^{2}F’(T_{\dot{l}}’)arrow k_{H’}arrow 0$

(2) $0arrow\Omega^{-1}$ $(\begin{array}{l}k_{H’}2\end{array})arrow\Omega F’(S’)arrow k_{H’}\oplus k_{H’}arrow 0.$

We easily know the structure of the projective indecomposable $kH’$ modules
Therefore, using the above lemma, we can conclude that the tilting complex defined
by a sequence $\{1_{1}’,1_{2}’,1_{3}’\}$ , $\{1_{1}’,1_{2}’,1_{3}’,2’\}$ , $\{1\mathrm{J}, 1_{2}’,1_{3}’,2’\}$ of subsets of $\{k_{H’}, 1_{1}’,1_{2}’,1_{3}’,2’\}$

(see [7]) gives a derived equivalence between $\mathrm{B}\mathrm{O}(\mathrm{H}\mathrm{r})$ and $B_{0}(G’)$ .
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Now we consider the case in Theorem 2.1. The restriction functor ${\rm Res}_{H}^{G}$ induces a
stable equivalence, but does not lift to any derived equivalences. Therefore what we
have to do next is to construct a suitable stable equivalence of Morita type between
$B_{0}(G)$ and $B_{0}(H)$ .

Let
$Marrow^{\pi}k_{G\mathrm{x}H}arrow 0$

be a $\Delta(P)$-projective cover of $k_{G\mathrm{x}H}$ , and let

$Narrow^{\iota}\Omega_{\Delta(P)}(k_{G\mathrm{x}H})arrow 0$

be a $\Delta(Q_{0})$ -projective cover of $\Omega_{\Delta(P)}(k_{G\mathrm{x}H})$ , where $Q_{0}$ is a unique subgroup of $P$

(up to $G$-conjugate) such that $B_{0}(C_{G}(Q_{0}))\not\cong B_{0}(C_{H}(Q_{0}))$ . Define a complex

$M^{\cdot}$ : $0-Narrow^{\emptyset}Marrow 0,$

where $\phi$ $=$ ton. Then, $\mathrm{B}\mathrm{r}_{\Delta(R)}(M^{\cdot})$ is a splendid tilting complex for $Cq\{R$) and
$C_{H}(R)$ for any subgroup $R$ of $P$ , so that the functor $F=-\otimes_{B_{0}(G)}$ M. induces a
stable equivalence of Morita type between $B_{0}(G)$ and $B_{0}(H)$ by a result of Rouquier
(Theorem 5.6 in [11]).

Lemma 2.3 There exist exact sequences

(1) $0arrow\Omega^{-1}($ $(\begin{array}{l}k_{H’}21_{|}\end{array}))arrow\Omega^{2}F(T_{\dot{\iota}})arrow k_{H’}^{\uparrow H}arrow 0$

(2) $0arrow\Omega^{-1}$ $(\begin{array}{l}k_{H}2\end{array})arrow$t $\Omega F(S)-$ $(\begin{array}{l}k_{H}k_{H}\end{array})\sim 0.$

It follows from Lemma 2.3 that the tilting complex defined by {3}, {2, 3}, {2, 3}
gives a derived equivalence between $B_{0}(G)$ and $B_{0}(H)$ , and actually this equivalence
is splendid, as desired.

Combining results in [6], [3], [4] and Theorem 2.1 we have the following.

Corollary 2,4 Let $q$ be a power of a prime such that 3 divides $q+1$ and $3^{2}$ does
not divide $q+$ l. Then the principal blocks $B_{0}(PGL(3, q^{2}))$ and $B_{0}(PGU(3, q^{2}))$ are
splendid equivalent.
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3 $GL(3, q^{2})$ and $GU(3, q^{2})$

Let $q$ be a power of a prime such that $3^{2}$ divides $q+$ $1$ .

Theorem 3.1 (Kunugi-Okuyama)
(1) The blocks $B_{0}(PSL(3, q^{2}))$ and $B_{0}(PSU(3, q^{2}))$ are splendid equivalent
(2) The blocks $B_{0}(SL(3, q^{2}))$ and $B_{0}(SU(3, q^{2}))$ are splendid equivalent

Let $P$ be a common Sylow 3-subgroup of $SL(3, q^{2})$ and $SU(3, q^{2})$ . Let $Q_{0}$ be a
unique subgroup of $P$ of order $3^{a}$ (up to conjugate) such that $B_{0}(C_{SL(3,q^{2})}(Q_{0}))$ is not
Morita equivalent to $B_{0}(C_{SU(3,q^{2})}(Q_{0}))$ , where 3’ is the highest power of 3 dividing
$q+1$ . As in \S 2, we construct a complex

$M^{\cdot}$ : $0arrow Narrow^{\emptyset}Marrow 0$

where /) is a composition of $\mathrm{y}\mathrm{i}$ : $Marrow k_{SL(3,q^{2})\mathrm{x}SU(3,q^{2})}$ , a $\Delta(P)$ -projective cover of
$k_{SL(3,q^{2})\mathrm{x}SU(3,q^{2})}$ , and $\iota$ : $Narrow\Omega_{\Delta(P)}(k_{SL(3,q^{2})\mathrm{x}SU(3,q^{2})})$ , a $\Delta(Q_{0})$ -projective cover of

$2_{6(7)}(k_{SL(3,q^{2})\mathrm{x}SU(3,q^{2})})$ . Then,

$M^{\cdot}\otimes M^{\cdot}*$ A $0arrow B_{0}(SL(3, q^{2}))\oplus Xarrow 0$

where $X$ is a $\Delta(Z(7 ))$ -projective $p$-permutation module. Put $F’=-$ $\mathrm{c}\mathrm{g}$

$\overline{M}$ , where
$j$

$=\mathrm{I}\mathrm{n}\mathrm{v}_{Z(P)\mathrm{x}1}(M.)$ . Then $F’$ induces a stable equivalence between $B_{0}(PSL(3, q^{2}))$

and $B_{0}(PSU(3, q^{2}))$ . To show (1), we need to show the same statement as in
Lemma 2.2. The statement for (2) follows from (1) and a fact that the functor
$Inv_{Z(P)\mathrm{x}1}(-)$ induces a one to one correspondence between the set of the trivial
source $k[SL(3, q^{2})\cross SU(3, q^{2})]-$ modules with vertex $\Delta(Z(7 ))$ and the set of the
indecomposable projective $k$ [$PSL(3,$ $q^{2})\cross$ GU(3, $q^{2})$ ] module.

We also have the following result.

Theorem 3.2 (Kunugi-Okuyama)
(1) The blocks $B_{0}(PGL(3, q^{2}))$ and $B_{0}(PGU(3, q^{2}))$ are splendid equivalent
(2) The blocks $B_{0}(GL(3, q^{2}))$ and $B_{0}(GU(3, q^{2}))$ are splendid equivalent

Remark 3.3 If a characteristic $p$ of $k$ is bigger than 3 and $p$ divides $q+$ l, then
$GL(3,q^{2})$ and $GU(3, q^{2})$ have an abelian Sylow -subgroup. The corresponding
results to Theorem 3.1 and 3.2 have been obtained from results by [5] and [9]
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