BROUÉ'S CONJECTURE FOR THE PRINCIPAL 5-BLOCK OF THE CHEVALLEY GROUP $G_2(4)$

YOKO USAMI (宇佐美 陽子, お茶の水女子大, 理)

Department of Mathematics, Ochanomizu University NORIHIDE YOSHIDA (吉田 憲秀,千葉大学,理)

> Department of Mathematics, Faculty of Science, Chiba University

§1 Preliminaries

1.1. Let $(\mathcal{K}, \mathcal{O}, k)$ be a splitting *p*-modular system for all subgroups of the considered groups, that is, \mathcal{O} is a complete discrete valuation ring with unique maximal ideal \mathcal{P}, \mathcal{K} is its quotient field of characteristic 0 and *k* is its residue field \mathcal{O}/\mathcal{P} of prime characteristic *p* and we assume that \mathcal{K} and *k* are both big enough to be splitting fields for all subgroups of the considered groups. The principal *p*-block $B_0(G)$ of a group *G* is the indecomposable two-sided ideal of the group ring $\mathcal{O}G$ to which the trivial module belongs. In this paper "modules" always mean finitely generated modules. They are left modules, unless stated otherwise. Given a finite-dimensional *k*-algebra Λ , mod- Λ denotes the category of finitely generated Λ -modules. All complexes will be cochain complexes. We write \otimes to mean \otimes_k . For a subgroup *H* of a group *G*, let *U* and *V* be $\mathcal{O}G$ -and $\mathcal{O}H$ -modules, respectively. We write $\operatorname{Res}_H^G U$ or $U_{\downarrow H}$ for the restriction of *U* to *H*, namely

$$\operatorname{Res}_{H}^{G} U = U_{\downarrow H} =_{\mathcal{O}H} \mathcal{O}G \otimes_{\mathcal{O}G} U$$

and $V^{\uparrow G}$ for the induction of V to G namely

 $V^{\uparrow G} =_{\mathcal{O}G} \mathcal{O}G \otimes_{\mathcal{O}H} V.$

We use similar notation for kG-modules and kH-modules and for ordinary characters. Let \mathcal{O}_G be the trivial $\mathcal{O}G$ -module and k_G be the trivial kG-module. For $\mathcal{O}G$ -module V we write $\overline{V} = k \otimes_{\mathcal{O}} V$. For an \mathcal{O} -algebra B we write

$$\overline{B} = k \otimes_{\mathcal{O}} B,$$

1.2. Let A and B be two symmetric \mathcal{O} -algebras. According to Rouquier [Ro] we define two types of equivalence. The usual Morita equivalences are a special case of Rickard equivalences. For left A-module U, we denote by U^* the right A-module Hom_{\mathcal{O}} (U, \mathcal{O}) .

Definition 1.3. We say that M is an exact(A, B)-bimodule if it is projective as an A-module and as a right B-module.

Definition 1.4. Let C^{\bullet} be a bounded complex of exact (A, B)-bimodules. Assume that we have isomorphisms

 $C^{\bullet} \otimes_B C^{\bullet \star} \simeq A \oplus Z_1^{\bullet}$ as complexes of (A, A)-bimodules

 $C^{\bullet *} \otimes_A C^{\bullet} \simeq B \oplus Z_2^{\bullet}$ as complexes of (B, B)-bimodules

where A and B are viewed as complexes concentrated in degree 0 and Z_1^{\bullet} and Z_2^{\bullet} are homotopy equivalent to 0. Then we say that C^{\bullet} induces a Rickard equivalence between A and B or that C^{\bullet} is a Rickard complex.

Definition 1.5. Let C^{\bullet} be a complex of (A, B)-bimodules. Assume that we have isomorphisms

 $C^{\bullet} \otimes_B C^{\bullet *} \simeq A \oplus {Z'_1}^{\bullet}$ as complexes of (A, A)-bimodules

 $C^{\bullet *} \otimes_A C^{\bullet} \simeq B \oplus {Z'_2}^{\bullet}$ as complexes of (B, B)-bimodules

where $Z_1^{\prime \bullet}$ and $Z_2^{\prime \bullet}$ are homotopy equivalent to complexes of projective bimodules. Then we say that C^{\bullet} induces a *stable equivalence* between A and B.

§2 Group ring

2.1. Now we concentrate our attention on group rings. Let G be a finite group with an abelian Sylow *p*-subgroup P. We denote by *e* the block idempotent of the principal block $B_0(G)$ of $\mathcal{O}G$. Let H be a subgroup of G such that $H \supset N_G(P)$. We denote by f the block idempotent of the principal block $B_0(H)$ of $\mathcal{O}H$. **Definition 2.2.** A bounded complex C^{\bullet} of (OHf, OGe)-bimodules is called splendid if its components are *p*-permutation modules whose indecomposable summands have vertices contained in $\Delta P = \{ (x, x) \in H \times G \mid x \in P \}$. Note that any component of a splendid complex is an exact bimodule.

Definition 2.3. Let G be a finite group with a Sylow p-subgroup P, and let $H \leq G$ be a subgroup containg P. A splendid Rickard complex for $B_0(G)$ and $B_0(H)$ is a bounded complex X^{\bullet} of finitely generated $(B_0(H), B_0(G))$ -bimodules such that

- (i) $X^{\bullet} \otimes_{B_0(G)} X^{\bullet*}$ is chain homotopy equivalent to $B_0(H)$, considered as a complex of $B_0(H)$ -bimodules,
- (ii) $X^{\bullet *} \otimes_{B_0(H)} X^{\bullet}$ is chain homotopy equivalent to $B_0(G)$, considered as a complex of $B_0(G)$ -bimodule, and
- (iii) X^{\bullet} is splendid.

In this case we say that X^{\bullet} induces a splendid Rickard equivalence between $B_0(G)$ and $B_0(H)$. (If X^{\bullet} is a splendid Rickard complex, then the functor

$$X^{\bullet} \otimes_{B(G)} ? : D^{\flat}(\operatorname{mod} B_0(G)) \to D^{\flat}(\operatorname{mod} B_0(H))$$

is an equivalence of triangulated categories, and $X^{\bullet} \otimes_{B_0(G)}$? gives an equivalence between chain homotopy categories, and not just derived categories. $D^b(\mod B_0(G))$ is a full subcategory of $D(\mod B_0(G))$ consisting of bounded objects, where $D(\mod B_0(G))$ is the dirived category of the finitely generated module category of $B_0(G)$. We write them $D^b(B_0(G))$ and $D(B_0(G))$ for short.)

Conjecture 2.4. Broué's conjecture ([Br2]). Let G be a finite group with an abelian Sylow p-subgroup P. Then the principal p-block $B_0(G)$ of G and the principal p-block $B_0(N_G(P))$ of $N_G(P)$ are derived equivalent. (Moreover, they are splendidly Rickard equivalent in the refined version by Rickard.)

§3 Results

3.1. Broué's conjecture is known to be true for cyclic Sylow *p*-subgroups and for elementary abelian Sylow 3-subgroup of order 9 (see [KK]). Holloway proved that Broué's conjecture is true for some specific groups with elementary abelian Sylow 5-subgroups of order 25 in [H]. In particular, he proved it (actually, the splendid

Rickard equivalence) for the principal 5-blocks of J_2 (as well as $2.J_2$). Note that $G_2(4)$ contains a subgroup isomorphic to J_2 and these two groups have a common elementary abelian Sylow 5-subgroup P of order 25, and the common normalizer of P. We prove the splendid Rickard equivalence of the principal 5-blocks of $G_2(4)$ and J_2 . See Theorem 3.2. On the other hand, the first author already proved the splendid Morita equivalence between the principal 5-blocks of some family of the Chevalley groups $G_2(2^n)$ including $G_2(4)$. See Theorem 3.3. With Holloway's work we obtain following Corollary 3.4. (In fact the normalizer of P in $G_2(2^n)$ depends on n, but the factor group by its maximal normal p'-subgroup does not depend on n.)

Theorem 3.2. (Usami, Yoshida 2003). The principal 5-blocks of $G_2(4)$ and J_2 are splendidly Rickard equivalent.

Theorem 3.3. (Usami [U] 2001). Assume that

5 divides $2^n + 1$ but 5^2 does not divide it. (3.1)

Then the principal 5-blocks of $G_2(2^n)$ and the principal 5-block of $G_2(4)$ are Morita equivalent. Here a $\Delta(P)$ -projective trivial source $G_2(4) \times G_2(2^n)$ -module and its Odual induce this Morita equivalence as bimodules, where P is a common abelian Sylow 5-subgroup of $G_2(2^n)$ and $G_2(4)$ and $\Delta(P) = \{(x, x) \in G_2(4) \times G_2(2^n) | x \in P\}$.

Corollary 3.4. Broué's conjecture is true for the principal 5-blocks of $G_2(2^n)$ with n satisfying (3.1).

§4 General Methods

4.1. With G, P and H in 2.1 we proceed according to the following steps : Step 1. Construct a local splendid Rickard complex between $B_0(C_G(Q))$ and $B_0(C_H(Q))$ for each nontrivial *p*-subgroup Q of P.

Step 2. Construct a splendid complex which induces a stable equivalence between $B_0(G)$ and $B_0(H)$.

Step 3. Construct a global splendid Rickard complex between $B_0(G)$ and $B_0(H)$. Here we introduce a general functor (from global to local) and we also introduce a useful theorem for Step 2. **Definition 4.2.** [Br1]. For an $\mathcal{O}G$ -module V and any p-subgroup P of G, we set

$$\operatorname{Br}_{P}(V) = V^{P} / (\sum_{Q} Tr_{Q}^{P}(V^{Q}) + \mathcal{P}V^{P})$$

$$(4.1)$$

where V^P denotes the set of fixed points of V under P and Q runs over all proper subgroups of P and

$$Tr_Q^P(v) = \sum_{x \in P/Q} x(v)$$
(4.2)

for a p-subgroup Q of P and $v \in V^Q$.

Remark 4.3. Let Q be a nontrivial *p*-subgroup of G. We can see Br_Q is a functor between the following categories :

$$\operatorname{Br}_Q : \{ \mathcal{O}G\operatorname{-modules} \} \to \{ kN_G(Q)\operatorname{-modules} \}$$

and then

$$Br_Q$$
: { complexes of $\mathcal{O}G$ -modules} \rightarrow { complexes of $kN_G(Q)$ -modules}.

Remark 4.4. With the notation in 2.1 and any nontrivial subgroup Q of P note that

$$\operatorname{Br}_{\Delta Q}(\mathcal{O}G) = kC_G(Q)$$

and

$$\operatorname{Br}_{\Delta Q}(fOGe) = \overline{f}_Q k C_G(Q) \overline{e}_Q$$

as bimodules, where \overline{f}_Q and \overline{e}_Q are the principal block idempotents of $kC_H(Q)$ and $kC_G(Q)$ respectively.

Theorem 4.5. (Rouquier and Bou, see Theorem 5.6 in [Ro]). With the notation in 2.1 let C^{\bullet} be a splendid complex of (OHf, OGe)-bimodules. The following assertions are equivalent.

- (i) C^{\bullet} induces a stable equivalence between OGe and OHf.
- (ii) For every nontrivial subgroup Q of P the complex $Br_{\Delta Q}(C^{\bullet})$ induces a Rickard equivalence between $kC_G(Q)\overline{e}_Q$ and $kC_H(Q)\overline{f}_Q$.

4.6. We can consider a direct summand of a permutation module over k as well as over \mathcal{O} . Then we can define a splendid complex over k similarly to Definition 2.2, and the definitions of a splendid Rickard complex and splendid Rickard equivalence still make sense if we replace the coefficient ring \mathcal{O} by the field k. A splendid Rickard equivalence over \mathcal{O} induces a splendid Rickard equivalence over k just by applying the functor $k \otimes_{\mathcal{O}}$? to a splendid Rickard complex. Note that any direct summand of a permutation module and any map between such modules can be lifted from k to \mathcal{O} . Then by Theorem 2.8 in [Ri1] a splendid Rickard complex over k can be lifted to a splendid Rickard complex over \mathcal{O} that is unique up to isomorphism. Then it is sufficient to work over k in order to prove the refined version of Broué's conjecture.

Theorem 4.7. (Rickard) (see [Ri2, Theorem 6.1] and [H, Theorem 4.4]) Suppose that C^{\bullet} is a complex of $(kH\overline{f}, kG\overline{e})$ -bimodules that induces a splendid stable equivalence between $kG\overline{e}$ and $kH\overline{f}$ and let $\{S_1, \ldots, S_r\}$ be a set of representatives for the isomorphism classes of simple $kG\overline{e}$ -modules. If there are objects $X_1^{\bullet}, \ldots, X_r^{\bullet}$ of $D^b(kH\overline{f})$ such that, for each $1 \leq i \leq r$, X_i^{\bullet} is stably isomorphic to $C^{\bullet} \otimes S_i$ and $kG\overline{e}$

such that

- (a) $\operatorname{Hom}_{D^{\flat}(kH\overline{f})}(X_{i}^{\bullet}, X_{j}^{\bullet}[m]) = 0$ for m < 0,
- (b) $\operatorname{Hom}_{D^{b}(kH\overline{f})}(X_{i}^{\bullet}, X_{j}^{\bullet}) = \begin{cases} 0 & \text{if } i \neq j, \\ k & \text{if } i = j, \end{cases}$ and
- (c) $X_1^{\bullet}, \ldots, X_r^{\bullet}$ generate $D^b(kH\overline{f})$ as a triangulated category,

then there is a splendid Rickard complex X^{\bullet} that lifts C^{\bullet} and induces a splendid Rickard equivalence between $kG\overline{e}$ and $kH\overline{f}$ such that, for each $1 \leq i \leq r, C^{\bullet} \bigotimes_{kG\overline{e}} S_i \cong KG\overline{e}$

 X_i^{\bullet} in $D^b(kH\overline{f})$.

§5 Steps 1 and 2 for Theorem 3.2

5.1. In this section we set

 $G = G_2(4), G \supset J \supset N_G(P) \text{ where } J \cong J_2, \tag{5.1}$

where P is a common elementary abelian Sylow 5-subgroup of G and J of order 25. We have

$$N_G(P) = N_J(P) \cong P : D_{12}$$

, that is, a semi-direct product of P by the dihedral group D_{12} of order 12. Fusion of the subgroups of P is controlled by $N_G(P)$ and

there are, up to conjugacy in $N_G(P)$, two nontrivial cyclic 5-subgroups of P, where only one, Q has distinct centralizers in G and J. (5.2)

Q is generated by a 5-element in conjugate class 5C in the character tables of J_2 and also of $G_2(4)$ in Atlas [CCNPW]. We fix Q from now on. We set

$$k \otimes_{\mathcal{O}} B_0(G) = k \otimes_{\mathcal{O}} \mathcal{O}Ge = kG\overline{e} \text{ and } k \otimes_{\mathcal{O}} B_0(J) = k \otimes_{\mathcal{O}} \mathcal{O}Jf = kJf.$$

5.2. Before we go further we review the principal 5-block of A_5 . A_5 contains a subgroup isomorphic to D_{10} which is a normalizer of a fixed cyclic Sylow subgroup of order 5. As (kD_{10}, kA_5) -bimodule $\overline{B}(A_5)$ is indecomposable and its projective cover is

$$\overline{R}_0 \otimes \overline{P}_0 \oplus \overline{R}_1 \otimes \overline{P}_1 \to \overline{B}(A_5) \to 0$$
(5.3)

where \overline{P}_0 and \overline{R}_0 are the projective covers of the trivial kA_5 -module and the trivial kD_{10} -module, respectively, and \overline{P}_1 is the projective indecomposable module of the principal block of kA_5 , that is not isomorphic to \overline{P}_0 , and \overline{R}_1 is the unique projective indecomposable kD_{10} -module which is not isomorphic to \overline{R}_0 . The splendid Rickard equivalence between the principal blocks of kA_5 and kD_{10} is induced by the splendid Rickard complex

$$\cdots \ 0 \to 0 \to \overline{R}_1 \otimes \overline{P}_1 \to \overline{B}(A_5) \to 0 \to 0 \cdots$$
 (5.4)

which we can obtain by deleting the first term of (5.3). Keeping (5.4) in mind we construct a splendid Rickard complex between $kC_G(Q)\overline{e}_Q$ and $kC_J(Q)\overline{f}_Q$. See (5.6) below. Then we seek a splendid complex C^{\bullet} which induces a stable equivalence between $B_0(G)$ and $B_0(J)$. (By Theorem 4.5 it is just to find C^{\bullet} such that $\operatorname{Br}_{\Delta(Q)}(C^{\bullet})$ is equal to (5.6).

Lemma 5.3. Let Q be a nontrivial subgroup of P such that Q has distinct centralizers in G and J. Then we have the following.

- (i) $C_G(Q) = Q \times A_5$ and $C_J(Q) = Q \times D_{10}$.
- (ii) Tensoring (kQ, kQ)-bimodule kQ to (5.3) we obtain minimal $\Delta(Q)$ -projective cover of indecomposable $\overline{f}_Q kC_G(Q)\overline{e}_Q \cong kQ \otimes \overline{f}_Q kA_5\overline{e}_Q$:

$$kQ \otimes \overline{R}_0 \otimes \overline{P}_0 \oplus kQ \otimes \overline{R}_1 \otimes \overline{P}_1 \longrightarrow kQ \otimes \overline{f}_Q kA_5 \overline{e}_Q \longrightarrow 0$$
(5.5)

(iii) Deleting the first term of (5.5) we obtain the following splendid complex which induces the splendid Rickard equivalence between the principal blocks $kC_G(Q)\overline{e}_Q$ and $kC_J(Q)\overline{f}_Q$.

$$\cdots \ 0 \to 0 \to kQ \otimes \overline{R}_1 \otimes \overline{P}_1 \to \overline{f}_Q kC_G(Q)\overline{e}_Q \to 0 \to 0 \cdots$$
(5.6)

(iv) The following is the minimal ΔQ -projective cover of $k_{\Delta Q,2} \uparrow (Q \times Q) \cdot 2 \otimes \overline{f}_Q k A_5 \overline{e}_Q$:

$$k_{\Delta Q,2}^{\dagger (Q \times Q),2} \otimes \overline{R}_{0} \otimes \overline{P}_{0} \oplus k_{\Delta Q,2}^{\dagger (Q \times Q),2} \otimes \overline{R}_{1} \otimes \overline{P}_{1}$$

$$\rightarrow k_{\Delta Q,2}^{\dagger (Q \times Q),2} \otimes \overline{f}_{Q} k A_{5} \overline{e}_{Q} \rightarrow 0.$$
(5.7)

Furthermore we have

$$k_{\Delta Q,2}^{\uparrow (Q \times Q),2} {}_{\downarrow Q \times Q} \cong kQ$$

and then the restriction of (5.7) to $C_J(Q) \times C_G(Q)$ is (5.5).

Lemma 5.4. (i) There exists an exact sequence (with M^0 as the Scott module of $J \times G$ with vertex ΔP , Scott $(J \times G, \Delta P)$)

Scott $(J \times G, \Delta Q) \oplus M^{-1} \oplus (\text{some projective bimodule}) \longrightarrow M^0 \longrightarrow 0 (\text{exact})$ (5.8) such that $k \otimes (5.8)$:

 $\overline{\operatorname{Scott}}(J \times G, \Delta Q) \oplus \overline{M}^{-1} \oplus (\text{some projective bimodule}) \longrightarrow \overline{M}^0 \longrightarrow 0 (\text{exact})$

is the minimal $\Delta(Q)$ -projective cover of \overline{M}^0 , where \overline{M}^{-1} is the indecomposable trivial source module with vertex $\Delta(Q)$ which corresponds to the second term with vertex ΔQ in (5.7).

(ii) Deleting the Scott module and the projective summand from (5.8) we obtain a splendid complex

 $\cdots 0 \to 0 \to M^{-1} \longrightarrow M^0 \to 0 \to 0 \cdots$

which induces a splendid stable equivalence between $B_0(G)$ and $B_0(J)$.

§6 Step 3 for Theorem 3.2

6.1. We obtain a candidate of a splendid Rickard complex between $B_0(G)$ and $B_0(J)$: (We use a perfect isometry between the sets of their ordinary characters to search some candidates.)

 $X^{\bullet}: \cdots \longrightarrow 0 \longrightarrow ($ a projective bimodule $) \longrightarrow ($ a projective bimodule $) \longrightarrow M^{-1} \longrightarrow M^{0} \longrightarrow 0 \longrightarrow \cdots$

 \mathbf{Set}

$$X^{\bullet} \underset{\mathcal{O}Ge}{\otimes} S_{i} = \overline{X}^{\bullet} \underset{kG\overline{e}}{\otimes} S_{i} = X_{i}$$

for simple OGe-modules $\{S_i \mid 1 \le i \le 6\}$. We have only to check conditions (a), (b) and (c) in Rickard's Theorem (Theorem 4.7).

参考文献

- [Br1] M.Broué, On Scott modules and *p*-permutation modules, Proc. Amer. Math. Soc. 93 (1985), 401-408.
- [Br2] M.Broué, Isométries parfaites, types de blocs, catégories, dérivées, Astérisque, 181-182 (1990), 61-92.
- [CCNPW] J.H.Conway, R.T.Curtis, S.P.Norton, R.A.Parker and R.A.Wilson, Atlas of finite groups, (Clarendon Press, 1985).
- [H] M.Holloway, Broué's conjecture for the Hall-Janko group and its double cover, Proc. London Math. Soc. (3) 86 (2003), 109-130.
- [KK] S.Koshitani and N.Kunugi, Broué's conjecture holds for principal 3-blocks with elementary abelian defect group of order 9, J. Algebra 248 (2002), 575-604.
- [Ri1] J.Rickard, Some Recent Advances in Modular Representation Theory, Canadian Mathematical Society Conference Proceedings, 23 (1998) 157-177.
- [Ri2] J.Rickard, Equivalences of derived categories for symmetric algebras, J. Algebra 257 (2002), 460-481.

- [Ro] R.Rouquier, 'Block theory via stable and Rickard equivalences', Modular representation theory of finite groups (ed. M.J.Collins, B.J.Parshall and L.L.Scott), proceedings of symposium held at the University of Charlottesville, May 8-15, 1998 (de Gruyter, Berlin, 2001) 101-146.
- [U] Y.Usami, Morita equivalent principal 5-blocks of the Chavalley groups $G_2(2^n)$, preprint, Ochanomizu University.

(computer)

- [G] The GAP Group, GAP Groups, Algorithms, and Programming, Version 4.3: 2002. (http://www.gap-system.org)
- [M] Michael Ringe, The C MeatAxe, Lehrstuhl D Für Mathematik, RWTH, Aachen, Germany.