Blow-up profile for a nonlinear heat equation with the Neumann boundary condition

K. Ishige, N. Mizoguchi and H. Yagisita*

October 18, 2003

This paper is concerned with the nonlinear diffusion equation

$$\begin{cases} u_t = \Delta u + u^p & \text{in } \Omega \times (0, T), \\ \frac{\partial u}{\partial \nu} = 0 & \text{on } \partial \Omega \times (0, T), \\ u(x, 0) = u_0(x) & x \in \bar{\Omega}, \end{cases}$$

where Ω is a bounded smooth domain in \mathbb{R}^N , ν is the unit outward normal vector on $\partial\Omega$, p>1 is a constant and $u_0\in L^\infty(\Omega)$ is a nonnegative function with $||u_0||_{\infty}\neq 0$. For the solution u(x,t) of the nonlinear diffusion equation, the blow-up time T is defined by

$$T = \sup\{\tau > 0 \mid u(x,t) \text{ is bounded in } \bar{\Omega} \times (0,\tau)\}.$$

Then, $0 < T < +\infty$ and $\overline{\lim}_{t\to T} ||u(x,t)||_{C(\bar{\Omega})} = +\infty$ hold. The blow-up set of the solution u(x,t) is defined as the set

 $\{x\in \bar{\Omega}\mid \text{ there is a sequence } (x_n,t_n) \text{ in } \bar{\Omega}\times (0,T) \text{ such that }$

$$(x_n, t_n) \to (x, T)$$
 and $u(x_n, t_n) \to +\infty$ as $n \to \infty$.

This set is a nonempty closed set in $\bar{\Omega}$. From standard parabolic estimates, we can obtain the *blow-up profile*, which is a continuous function defined by

$$u_*(x) = \lim_{t \to T} u(x, t)$$

outside the blow-up set.

^{*}柳下浩紀(東京理科大学理工学部数学科・嘱託助手)

The blow-up problem has been studied by many authors since the pioneering work due to Fujita [13]. There are a number of results for the nature of the blow-up set. For the Cauchy problem with (N-2)p < N+2, Velázquez [34] showed that the (N-1)-dimensional Hausdorff measure of the blow-up set is bounded in compact sets of \mathbb{R}^N whenever the solution is not the constant blow-up one $(p-1)^{-\frac{1}{p-1}}(T-t)^{-\frac{1}{p-1}}$. For the Cauchy problem or the Cauchy-Dirichlet problem in a convex domain with (N-2)p < N+2, Merle and Zaag [25] showed that for any finite set $D \subset \Omega$, there exists u_0 such that the blow-up set is D (See also [1] and [3]). For the Cauchy problem with N=1, Herrero and Velázquez [17] showed that for any point \bar{x} in the blow-up set of a solution \bar{u} and $\varepsilon > 0$, there exists u_0 with $||u_0 - \bar{u}_0||_C \leq \varepsilon$ such that the blow-up set of u consists of a single point x with $|x - \bar{x}| \leq \varepsilon$. For the Cauchy-Dirichlet problem in an ellipsoid centred at the origin with (N-2)p < N, Filippas and Merle [10] showed that if the blow-up time is large, then the blow-up set consists of a single point near the origin. Also, for the Cauchy or Cauchy-Dirichlet problem with (N-2)p < N+2, the second author [27] showed the following. For any nonnegative function $\phi \in C(\Omega)$ and $\delta > 0$, if $\varepsilon > 0$ is small, then any point x in the blow-up set satisfies $\phi(x) \geq \max_{y} \phi(y) - \delta$ for $u_0 = \varepsilon^{-1} \phi$. For the Cauchy-Neumann problem, the first author [18] showed the following. Suppose that $\Omega = (0, \pi) \times \Omega_0$ is a cylindrical domain with a bounded smooth domain Ω_0 in \mathbf{R}^{N-1} and that a nonnegative function $\phi \in L^{\infty}(\Omega)$ satisfies $\int_{\Omega} \phi(x_1, x_2, \dots, x_N) \cos x_1 dx > 0$. If $\varepsilon > 0$ is small, then the blow-up set is contained in the base plane $\{0\} \times \bar{\Omega}_0$ for $u_0 = \varepsilon \phi$. Recently, for the Cauchy-Neumann problem with (N-2)p < N+2, the first and second authors [20] obtained the following. Let P be the orthogonal projection in $L^2(\Omega)$ onto the eigenspace corresponding to the second eigenvalue of the Laplace operator with the Neumann condition. For any nonnegative function $\phi \in L^{\infty}(\Omega)$ and neighborhood W of $\{x\in\bar{\Omega}\,|\,(P\phi)(x)=\max_{y\in\bar{\Omega}}(P\phi)(y)\}\cup\partial\Omega,\,\text{if }\,\varepsilon>0\,\,\text{is small, then the blow-up}$ set is contained in W for $u_0 = \varepsilon \phi$. See, e.g., the references in this paper for related results or other studies on blow-up formation in $u_t = \Delta u + u^p$.

In this papar, we study the blow-up profile.

For large initial data $u_0^{\varepsilon} = \varepsilon^{-1} \phi$, we have the following.

Theorem 1 ([35]) Let $\phi \in C^2(\bar{\Omega})$ be a positive function satisfying $\frac{\partial \phi}{\partial \nu} = 0$ on $\partial \Omega$, and let $\delta > 0$ be a constant. Then, there exists $\varepsilon_0 > 0$ such that for any $\varepsilon \in (0, \varepsilon_0]$, the blow-up set of the solution u^{ε} with the initial data $u_0^{\varepsilon} = \varepsilon^{-1}\phi$ is contained in the set $S := \{x \in \bar{\Omega} | \phi(x) \geq \max_{y \in \bar{\Omega}} \phi(y) - \delta\}$ and the blow-up profile u_*^{ε} satisfies the inequality

$$\left\|\varepsilon u_*^{\varepsilon}(x) - \left(\phi(x)^{-(p-1)} - (\max_{y \in \tilde{\Omega}} \phi(y))^{-(p-1)}\right)^{-\frac{1}{p-1}}\right\|_{C(\tilde{\Omega} \setminus S)} \leq \delta.$$

Theorems 2 and 3 are instability results for constant blow-up solutions.

Theorem 2 ([36]) Let $f \in C(\bar{\Omega})$ be a positive function, and let δ and T_0 be positive constants. Then, there exist C and $\varepsilon_0 > 0$ satisfying the following: For any $\varepsilon \in (0, \varepsilon_0]$, there exists $u_0^{\varepsilon} \in C^2(\bar{\Omega})$ satisfying $\frac{\partial u_0^{\varepsilon}}{\partial \nu} = 0$ on $\partial \Omega$ and

$$\left\| u_0^{\varepsilon}(x) - (p-1)^{-\frac{1}{p-1}} T_0^{-\frac{1}{p-1}} \right\|_{C^2(\bar{\Omega})} \le C \varepsilon^{p-1}$$

such that the blow-up time of the solution u^{ε} with initial data $u^{\varepsilon}(x,0) = u_0^{\varepsilon}(x)$ is larger than T_0 and the inequality

$$\|\varepsilon u^{\varepsilon}(x,T_0)-f(x)\|_{C(\bar{\Omega})}\leq \delta$$

holds.

Theorem 3 ([36]) Let $f \in C^2(\bar{\Omega})$ be a positive function satisfying $\frac{\partial f}{\partial \nu} = 0$ on $\partial \Omega$, and let δ and c be positive constants. Then, there exist C and $\varepsilon_0 > 0$ satisfying the following: For any $\varepsilon \in (0, \varepsilon_0]$, there exists $u_0^{\varepsilon} \in C^2(\bar{\Omega})$ with $\frac{\partial u_0^{\varepsilon}}{\partial \nu} = 0$ on $\partial \Omega$ and $||u_0^{\varepsilon} - c||_{C^2(\bar{\Omega})} \leq C\varepsilon^{p-1}$ such that the blow-up set of the solution u^{ε} with the initial data u_0^{ε} is contained in the set $S := \{x \in \bar{\Omega} \mid f(x) \geq \max_{y \in \bar{\Omega}} f(y) - \delta\}$ and the blow-up profile u_*^{ε} satisfies the inequality

$$\left\|\varepsilon u_*^{\varepsilon}(x) - \left(f(x)^{-(p-1)} - (\max_{y \in \bar{\Omega}} f(y))^{-(p-1)}\right)^{-\frac{1}{p-1}}\right\|_{C(\bar{\Omega} \setminus S)} \leq \delta.$$

Let λ_i be the *i*-th eigenvalue of $-\triangle \varphi = \lambda \varphi$ with the Neumann boundary condition $\frac{\partial \varphi}{\partial \nu} = 0$, where $0 = \lambda_1 < \lambda_2 < \lambda_3 < \cdots$. We denote the orthogonal projection in $L^2(\Omega)$ onto the eigenspace X_i corresponding to the *i*-th eigenvalue by P_i . Here, we remark that $P_1 \phi = \frac{1}{|\Omega|} \int_{\Omega} \phi \, dx$ is a constant.

For small initial data $u_0^{\varepsilon} = \varepsilon \phi$, the first and second authors already showed Propositions 4 and 5 below.

Proposition 4 ([20]) Let $\phi \in L^{\infty}(\Omega)$ be a nonnegative function with $\|\phi\|_{\infty} \neq 0$. Then, there exist a constant $\varepsilon_0 > 0$ and a family $\{(t^{\varepsilon}, \delta^{\varepsilon})\}_{\varepsilon \in (0, \varepsilon_0]} \subset \mathbb{R}^2$ such that the solution u^{ε} with the initial data $u_0^{\varepsilon} = \varepsilon \phi$ and its blow-up time T^{ε} satisfy $\lim_{\varepsilon \to +0} t^{\varepsilon} = 1$, $\lim_{\varepsilon \to +0} \varepsilon^{p-1} T^{\varepsilon} = (p-1)^{-1} (P_1 \phi)^{-(p-1)}$, $\lim_{\varepsilon \to +0} \varepsilon^{p-1} e^{\lambda_2 T^{\varepsilon}} \delta^{\varepsilon} = (p-1)^{-1} (P_1 \phi)^{-p}$ and

$$\lim_{\varepsilon \to +0} \left\| \frac{t^{\varepsilon}}{\delta^{\varepsilon}} \left(1 - (p-1)^{\frac{1}{p-1}} t^{\varepsilon \frac{1}{p-1}} u^{\varepsilon} (x, T^{\varepsilon} - 1) \right) \right\|$$

$$-e^{\lambda_2}\left(\left(\max_{y\in\bar{\Omega}}(P_2\phi)(y)\right)-(P_2\phi)(x)\right)\Big\|_{L^{\infty}(\Omega)}=0.$$

Proposition 5 ([19]) Let $\phi \in L^{\infty}(\Omega)$ be a nonnegative function with $||\phi||_{\infty} \neq 0$. Then, there exist C and $\varepsilon_0 > 0$ such that for any $\varepsilon \in (0, \varepsilon_0]$, the solution u^{ε} with the initial data $u_0^{\varepsilon} = \varepsilon \phi$ and its blow-up time T^{ε} satisfy $u^{\varepsilon}(x,t) \leq C(T^{\varepsilon}-t)^{-\frac{1}{p-1}}$ for all $(x,t) \in \bar{\Omega} \times [T^{\varepsilon}-1, T^{\varepsilon})$.

We obtain the following as a corollary of the propositions above.

Theorem 6 ([21]) Let $\phi \in L^{\infty}(\Omega)$ be a nonnegative function with $\|\phi\|_{\infty} \neq 0$, and let $\delta > 0$ be a constant. Then, there exists $\varepsilon_0 > 0$ such that for any $\varepsilon \in (0, \varepsilon_0]$, the blow-up set of the solution u^{ε} with the initial data $u_0^{\varepsilon} = \varepsilon \phi$ is contained in the set $S := \{x \in \overline{\Omega} | (P_2 \phi)(x) \geq \max_{y \in \overline{\Omega}} (P_2 \phi)(y) - \delta\}$. Further, the blow-up time T^{ε} and the blow-up profile u_*^{ε} satisfy the inequality

$$\left| \varepsilon^{p-1} T^{\varepsilon} - (p-1)^{-1} (P_1 \phi)^{-(p-1)} \right| + \left\| \varepsilon^{-1} e^{-\frac{\lambda_2 T^{\varepsilon}}{p-1}} u_*^{\varepsilon}(x) \right\|$$

$$-(p-1)^{-\frac{1}{p-1}}(P_1\phi)^{\frac{p}{p-1}}\left((\max_{y\in\bar{\Omega}}(P_2\phi)(y))-(P_2\phi)(x)\right)^{-\frac{1}{p-1}}\left\|_{C(\bar{\Omega}\setminus S)}\leq \delta.$$

References

- [1] D. Amadori, Unstable blow-up patterns, Diff. and Integral Eq., 8 (1995), 1977-1996.
- [2] P. Baras and L. Cohen, Complete blow-up after T_{max} for the solution of a semilinear heat equation, J. Funct. Anal., 71 (1987), 142-174.
- [3] J. Bebernes, A. Bressan and V. A. Galaktionov, On symmetric and nonsymmetric blowup for a weakly quasilinear heat equation, NoDEA, 3 (1996), 269-286.
- [4] H. Bellout and A. Friedman, Blow-up estimates for a nonlinear hyperbolic heat equation, SIAM J. Math. Anal., 20 (1989), 354-366.
- [5] J. Bricmont and A. Kupiainen, Universality in blow-up for nonlinear heat equations, Nonlinearity, 7 (1994), 539-575.
- [6] L. A. Caffarrelli and A. Friedman, Blow-up solutions of nonlinear heat equations, J. Math. Anal. Appl., 129 (1988), 409-419.
- [7] X.-Y. Chen and H. Matano, Convergence, asymptotic periodicity, and finite-point blow-up in one-dimensional semilinear heat equations, J. Differential Equations, 78 (1989), 160-190.
- [8] Y.-G. Chen, Blow-up solutions of a semilinear parabolic equation with the Neumann and Robin boundary conditions, J. Fac. Sci. Univ. Tokyo IA, 37 (1990), 537-574.
- [9] S. Filippas and W. Liu, On the blowup of multidimensional semilinear heat equations, Ann. Inst. Henri Poincaré Analyse non linéaire, 10 (1993), 313-344.
- [10] S. Filippas and F. Merle, Compactness and single-point blowup of positive solutions on bounded domains, Proc. Roy. Soc. Edinburgh A, 127 (1997), 47-65.
- [11] A. Friedman and A. A. Lacey, The blow-up time for solutions of nonlinear heat equations with small diffusion, SIAM J. Math. Anal., 18 (1987), 711-721.
- [12] A. Friedman and B. McLeod, Blow-up of positive solutions of semilinear heat equations, Indiana Univ. Math. J., 34 (1985), 425-447.
- [13] H. Fujita, On the blowing up of solutions of the Cauchy problem for $u_t = \Delta u + u^{1+\alpha}$, J. Fac. Sci. Univ. Tokyo I, 13 (1966), 109-124.

- [14] V. A. Galaktionov and S. A. Posashkov, Application of new comparison theorem in the investigation of unbounded solutions of nonlinear parabolic equations, Differential Equations, 22 (1986), 809-815.
- [15] V. A. Galaktionov and J. L. Vazquez, Continuation of blowup solutions of nonlinear heat equations in several space dimensions, Comm. Pure Appl. Math., 50 (1997), 1-67.
- [16] Y. Giga and R. V. Kohn, Nondegeneracy of blowup for semilinear heat equations, Comm. Pure Appl. Math., 42 (1989), 845-884.
- [17] M. A. Herrero and J. J. L. Velázquez, Generic behaviour of one-dimensional blow up patterns, Ann. Scuola Norm. Sup. Pisa Cl. Sci. IV, 19 (1992), 381-450.
- [18] K. Ishige, Blow-up time and blow-up set of the solutions for semilinear heat equations with large diffusion, Adv. Diff. Eqns., 7 (2002), 1003-1024.
- [19] K. Ishige and N. Mizoguchi, Blow-up behavior for semilinear heat equations with boundary conditions, *preprint*.
- [20] K. Ishige and N. Mizoguchi, Location of blow-up set for a semilinear parabolic equation with large diffusion, *preprint*.
- [21] K. Ishige, N. Mizoguchi and H. Yagisita, Blow-up profile of a solution for a nonlinear heat equation with large diffusion, in preparation.
- [22] C. F. Kammerer, F. Merle and H. Zaag, Stability of the blow-up profile of non-linear heat equations from the dynamical system point of view, Math. Ann., 317 (2000), 347-387.
- [23] A. A. Lacey and D. Tzanetis, Complete blow-up for a semilinear diffusion equation with a sufficiently large initial condition, IMA J. Appl. Math., 41 (1988), 207-215.
- [24] K. Masuda, Analytic solutions of some nonlinear diffusion equations, Math. Z., 187 (1984), 61-73.
- [25] F. Merle and H. Zaag, Stability of the blow-up profile for equations of the type $u_t = \Delta u + |u|^{p-1}u$, Duke Math. J., 86 (1997), 143-195.
- [26] F. Merle and H. Zaag, A Liouville theorem for vector-valued nonlinear heat equations and applications, Math. Ann., 316 (2000), 103-137.
- [27] N. Mizoguchi, Location of blowup points of solutions for a semilinear parabolic equation, preprint.
- [28] N. Mizoguchi, H. Ninomiya and E. Yanagida, Critical exponent for the bipolar blowup in a semilinear parabolic equation, J. Math. Anal. Appl., 218 (1998), 495-518.

- [29] N. Mizoguchi and E. Yanagida, Life span of solutions for a semilinear parabolic problem with small diffusion, J. Math. Anal. Appl., 261 (2001), 350-368.
- [30] C. E. Mueller and F. B. Weissler, Single point blow-up for a general semilinear heat equation, Indiana Univ. Math. J., 34 (1985), 881-913.
- [31] C.-C. Poon, Blow-up behavior for semilinear heat equations in non-convex domains, Diff. and Integral Eq., 13 (2000), 1111-1138.
- [32] S. Sakaguchi and T. Suzuki, Interior imperfect ignition cannot occur on a set of positive measure, Arch. Rational Mech. Anal., 142 (1998), 143-153.
- [33] J. J. L. Velázquez, Higher dimensional blow up for semilinear parabolic equations, Comm. in PDE, 17 (1992), 1567-1596.
- [34] J. J. L. Velázquez, Estimates on the (n-1)-dimensional Hausdorff measure of the blow-up set for a semilinear heat equation, Indiana Univ. Math. J., 42 (1993), 445-476.
- [35] H. Yagisita, Blow-up profile of a solution for a nonlinear heat equation with small diffusion, to appear, J. Math. Soc. Japan.
- [36] H. Yagisita, Variable instability of a constant blow-up solution in a nonlinear heat equation, to appear, J. Math. Soc. Japan.

Hiroki YAGISITA

Department of Mathematics, Faculty of Science and Technology, Tokyo University of Science, Noda 278-8510, Japan.