obooo0ooooOoooO 13580 20040 110-116

110

Blow-up profile for a nonlinear heat equation
with the Neumann boundary condition
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This paper is concerned with the nonlinear diffusion equation

ut=Au+u? in Q x (0,7T),
gu — on 89 x (0,T),

ov

u(z,0) = w(z) z€Q,

where ) is a bounded smooth domain in R¥, v is the unit outward normal
vector on 9, p > 1 is a constant and uy € L*®({2) is a nonnegative function
with ||tgl|eo # 0. For the solution u(z,t) of the nonlinear diffusion equation,
the blow-up time T is defined by

T = sup{r > 0] u(z,t) is bounded in Q x (0,7)}.

Then, 0 < T < 400 and lims,r||u(z,t)|l¢@@) = +oo hold. The blow-up set
of the solution u(z,t) is defined as the set

{z € Q1| there is a sequence (Zy,t,) in Q x (0,T) such that

(T, tn) = (z,T) and u(zp,tn) — +00 as n — oo}

This set is a nonempty closed set in Q. From standard parabolic estimates,
we can obtain the blow-up profile, which is a continuous function defined by

u(z) = lim u(z,t)

outside the blow-up set.
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The blow-up problem has been studied by many authors since the pi-
oneering work due to Fujita [13]. There are a number of results for the
nature of the blow-up set. For the Cauchy problem with (N —2)p < N + 2,
Veldzquez [34] showed that the (N —1)-dimensional Hausdorff measure of the
blow-up set is bounded in compact sets of R whenever the solution is not
- the constant blow-up one (p — 1)'5-1-_1(T - t)"p_i—l. For the Cauchy problem
or the Cauchy-Dirichlet problem in a convex domain with (N —2)p < N+2,
Merle and Zaag [25] showed that for any finite set D C 2, there exists ug
such that the blow-up set is D (See also [1] and [3]). For the Cauchy problem
with IV = 1, Herrero and Veldzquez [17] showed that for any point Z in the
blow-up set of a solution @ and ¢ > 0, there exists ug with ||ug — Gollc < €
such that the blow-up set of u consists of a single point z with |z — Z| < e.
For the Cauchy-Dirichlet problem in an ellipsoid centred at the origin with
(N — 2)p < N, Filippas and Merle [10] showed that if the blow-up time is
large, then the blow-up set consists of a single point near the origin. Also, for
the Cauchy or Cauchy-Dirichlet problem with (N —2)p < N+ 2, the second
author [27] showed the following. For any nonnegative function ¢ € C(£)
and 6 > 0, if € > 0 is small, then any point z in the blow-up set satisfies
¢(z) > max, ¢(y) — for ug = e~ '¢. For the Cauchy-Neumann problem,
the first author [18] showed the following. Suppose that @ = (0,7) x Qy is a
cylindrical domain with a bounded smooth domain € in RV~! and that a
nonnegative function ¢ € L*(Q) satisfies [ #(z1, 2, -, Zn) coszidz > 0.
If ¢ > 0 is small, then the blow-up set is contained in the base plane
{0} x Qg for ug = €¢. Recently, for the Cauchy-Neumann problem with
(N —2)p < N +2, the first and second authors [20] obtained the following.
Let P be the orthogonal projection in L?(f2) onto the eigenspace correspond-
ing to the second eigenvalue of the Laplace operator with the Neumann con-
dition. For any nonnegative function ¢ € L*(f2) and neighborhood W of
{z € Q| (P¢)(z) = max,eq(P¢)(y)}UdQ, if € > 0 is small, then the blow-up
set is contained in W for ug = €¢. See, e.g., the references in this paper for
related results or other studies on blow-up formation in u; = Au + u?.



112

In this papar, we study the blow-up profile.

For large initial data u§ = e~'¢, we have the following.

Theorem 1 ([35]) Let ¢ € C*(Q) be a positive function satisfying 32 = 0
on 02, and let § > 0 be a constant. Then, there ezists ¢ > 0 such that
for any € € (0,e0], the blow-up set of the solution u® with the initial data
uj = € '¢ is contained in the set S := {z € Q|$(z) > max 5 ¢(y) — 6}
and the blow-up profile us satisfies the inequality

< 4.
C(\S) |

cus(z) - (#(2) 07D — (max,ead(y))"00) 7

Theorems 2 and 3 are instability results for constant blow-up solutions.

Theorem 2 ([36]) Let f € C(Q) be a positive function, and let & and
Ty be positive constants. Then, there exist C and gy > 0 satzsfymg the
following: For any € € (0,¢], there ezists u§ € C%({) satzsfymg =0
on 0X) and

ug(z) — (p — 1)"1:’_1TT0_Jﬁ < CeP!

()

such that the blow-up time of the solution u® with initial data u*(z, 0) = u§(x)
1S larger than Ty and the inequality

llew®(z, To) — f(z)l|lc@y < 0

holds.

Theorem 3 ([36]) Let f € C*(Q) be a positive function satisfying %5 =0
on 0N), and let & and c be positive constants. Then, there exist C and
g0 > 0 satisfying the following: For any € € (0,€), there ezists u§ € C%(Q)
with % =0 on 09 and ||u§ — c|lg2(qy < CeP™! such that the blow-up set
of the solutzon u® with the initial data u§ is contained in the set S := {z €
Q| f(x) > max,cq f(y)—0} and the blow-up profile u; satisfies the inequality

<4.
C(Q2\S5)

eug(x) — (f(J') >-1) (ma.xyef—]f(y))‘(1’—1))—PTl
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Let A; be the i-th eigenvalue of —Ap = Ay with the Neumann boundary
condition 2 = 0, where 0 = A; < Ay < A3 < ---. We denote the orthog-
onal projection in L?*(2) onto the eigenspace X; corresponding to the i-th
eigenvalue by F;. Here, we remark that P;¢ = T?lﬂ Jq @dzx is a constant.

For small initial data u§ = €¢, the first and second authors already showed
Propositions 4 and 5 below.

Proposition 4 ([20]) Let ¢ € L*(Q) be a nonnegative function with ||@||c
# 0. Then, there ezist a constant eg > 0 and a family {(t°,0°)}ec(0,c0] C
R? such that the solution u® with the initial data u§ = €¢ and its blow-
up time T satisfy lim, 0t = 1, lime,10e? 1T = (p — 1)~} (P,¢)~ 1),
lim, 0P eMT°6¢ = (p — 1) (P1¢)"? and

Jim |5 (1= = Dt 7o 1)

= 0.
L>=(Q)

¢ (max,ea(P29) W) — (P29)(a))

Proposition 5 ([19]) Let ¢ € L*®(f2) be a nonnegative function with ||¢|co
# 0. Then, there exist C and gg > 0 such that for any € € (0,&], the
solution u® with the initial data u§ = ¢ and its blow-up time T® satisfy

ué(z,t) < C(T* — t)—p%l for all (z,t) € Q x [T —1,T*).

We obtain the following as a corollary of the propositions above.

Theorem 6 ([21]) Let ¢ € L®(Q) be a nonnegative function with ||| 7
0, and let 6§ > 0 be a constant. Then, there exists €9 > 0 such that for any
g € (0,¢&q], the blow-up set of the solution u® with the initial data ug = ¢ 1is
contained in the set S 1= {z € Q| (Py¢)(z) > max, cq(P2d)(y) —3d}. Further,
the blow-up time T¢ and the blow-up profile ué satisfy the inequality

T

A &
67717 — (p — 1) (Pig) V)| + |7t P T i (2)

_ 1
p-1

< 4.
c(f\9)

—(p - 1)1 (Pi9)7T ((maxyen(Peo) (1) — (P29)(3))
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