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ABSTRACT
In this report, we shall give an operator transform $\hat{T}$ from class A to the class of

hyponormal operators. Then we shall show that $\sigma(\hat{T})=$ a(T) and $\sigma_{a}(\hat{T})=$ a(T)
in case $T$ belongs to class A. Next, as an application of $\hat{T}$ , we will show that every
class A operator has SVEP and property $(\beta)$ .

1. INTRODUCTION

As a research on non-normal operators on a Hilbert space, many authors studied

properties of hyponormal operators. Recently, in the development of operator inequality,

many operator classes which include the class of hyponormal operators were defined,

and many authors studied these new classes. In the study of these new classes, the

Aluthge transform is a very useful tool. It is an operator transform ffom the class

of $w$-hyponormal and semi-hyponormal operators to the class of semi-hyponormal and

hyponormal operators, respectively. By using Aluthge transform, we can treat spectrum

properties of these new operator classes like hyponormal operators. But until now, we
have not obtained any property of Aluthge transform of a class A operator which is a

weaker class than the class of $w$-hyponormal operators, so it was difficult to discuss on

properties of class A operators. In this report, we shall give a new operator transform $\hat{T}$

of $T$ from class A to the class of hyponormal operators with modulus $|\hat{T}|=|T^{2}1$ . Then

we will show that the spectrum of $\hat{T}$ coincides with one of $T$ in case $T$ belongs to class
$\mathrm{A}$ , and can obtain some properties of class A operators by using hyponormality of $\hat{T}$ .

In what follows, a capital letter means a bounded linear operator on a complex Hilbert

space ??. An operator $T$ is said to be positive (denoted by $T\geq 0$) if $(Tx,x)\geq 0$

for all $x\in 7t.$ For a positive number $p$, an operator $T$ is said to be phyponormal if
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$(T^{*}T)^{p}\geq(TT^{*})^{p}$ holds. Especially, a phyponormal operator $T$ is said to be hyponormal

and semi-hyponormal if $p=1$ and $p= \frac{1}{2}$ , respectively. For positive numbers $s$ and $t$ , an
operator $T$ belongs to class $\mathrm{A}(s, t)$ if $(|T^{*}|^{t}|T|^{2s}|T^{*}|^{t})^{\frac{\iota}{s+t}}\geq|T^{*}|^{2t}$. Especially, we denote
class $\mathrm{A}(1,1)$ by class $A$ , simply. We remark that class A was first defined by the inequality
$|T2|\geq|T|^{2}$ , and it is known that inequalities $|7$” $|\geq|T|^{2}$ and $(|T^{*}||T|^{2}|T^{*}|)^{\frac{1}{2}}\geq|7$ $*|^{2}$

are equivalent. Class A operator has been defined in [9] as a nice application of Puruta
inequalty [8]. Then as a generalization of class $\mathrm{A}$ , class $\mathrm{A}(s,t)$ was defined in [7].

Inclusion relations among these classes are known as follows:

{hyponormal} $\subset$ {$\mathrm{p}$-hyponormal, $0<p<1$}
$\subset$ {class $\mathrm{A}$ ( $s$ , $t$ ), $s,t\in(0,1]$ }

(L1)
$\subset$ {class $\mathrm{A}$}
$\subset$ {paranormal, i.e., $|$!’x$||\geq||7x||^{2}$ for $||x||=1$ }.

The first relation was shown by using L\"owner-Heinz inequality, the second one was shown
in [7], the third one was shown in [12] (if $T$ is invertible, it was shown in [7], see also

[11] $)$ , and the last one was shown in [9].

An operator $T$ has the single valued extension property (simply denoted by SVEP) at
$)\in \mathbb{C}$ if the following assertion holds:

If i) $\subset \mathbb{C}$ is an open neighborhood of A and if 7: $\prime Darrow H$ is a vector-
valued analytic function such that $(T-\mu)f(\mu)=0$ for all $\mu\in$ $D$ , then
$f$ is identically zero on $D$ .

When $T$ has SVEP for every A $\in \mathbb{C}$ , we simply say that $T$ has SVEP.
SVEP has been much studied by many authors. This is a good property for operators

and there are plenty of applications in operator theory. For example, if $T$ has SVEP,

then for any $\mathrm{A}\in \mathbb{C}$, $T-\mathrm{A}$ is invertible if and only if it is surjective. This result was
suggested in Finch [6].

As a generalization of SVEP, an operator $T$ has property $(\beta)$ at A $\in \mathbb{C}$ if the following

assertion holds:

If $D$ $\subset \mathbb{C}$ is an open neighborhood of A and if $f_{n}$ : $Darrow \mathit{1}l$ $(n=$

1, 2, . . .) are vector-valued analytic functions such that $(T-\mu)f_{n}(\mu)arrow$e
0 uniformly on every compact subset of 2), then $f_{n}(\mu)arrow 0,$ again
uniformly on every compact subset of 7).

When $T$ has property (f3) for every A $\in \mathbb{C}$ , we simply say that $T$ has property $(\beta)$ . This

was first introduced by Bishop [4], in an attempt to develop a general spectral theory

for operators on Banach spaces. According to Putinar [17], “every hyponormal operator

has property $(\beta)$ .”

When $T$ has property $(\beta)$ for every $\mathrm{A}\in \mathbb{C}$ , we simply say that $T$ has property $(\beta)$ . This

was first introduced by Bishop [4], in an attempt to develop a general spectral theory

for operators on Banach spaces. According to Putinar [17], “every hyponomal operator

has $prope\hslash y$ $(\beta)$ .”
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An operator $T=U|T|$ is said to be $w$-hyponormal if $|T|\geq|T|\geq|\tilde{T}^{*}|$ hold, where
$\overline{T}=|T|^{\frac{1}{2}}U|T|^{\frac{1}{2}}$ is the Aluthge transform of $T$ (see [2] and [3]). It is known that the class

of $w$-hyponormal operators coincides with class $\mathrm{A}(\frac{1}{2}, \frac{1}{2})$ (see [11] and [12].) Recently,

Kimura [16] showed that every $w$-hyponormal operator has SVEP and property $(\beta)$ .

To study some properties of semi-hyponormal operators, we often consider the follow-

ing transforms.

(i) $S=U|T|^{\frac{1}{2}}$ , (\"u) $\overline{T}=|\mathrm{r}1U|T\mathrm{p}$ (Aluthge transform).

If $T$ is semi-hyponormal then $S$ and $T$ are both hyponormal. Therefore we can expect

to obtain some properties of semi-hyponormal operators by using above transforms and
properties of hyponormal operators. But it is well known that $\mathrm{a}(\mathrm{S})\neq \mathrm{a}(\mathrm{T})$ and $\sigma(\tilde{T})=$

$\mathrm{a}(\mathrm{T})$ , so that, to study some spectral properties of semi-hyponormal operators, (ii) is a
better transform than (i). Aluthge obtained more general result as follows: “If $T$ is p-

hyponormal, then (i) $\tilde{T}$ is $p+ \frac{1}{2}$ -hyponormal in case $0<p \leq\frac{1}{2}$ , and (ii) $\overline{T}$ is hyponormal

in case $p \geq\frac{1}{2}$
” in [2]. Aluthge transform has more interesting properties itself. For

example, $||\tilde{T}||\leq||$TH and $W(\tilde{T})\subseteq\overline{W(T)}$ in [14, 15, 19, 21], where $W(T)$ means the

numerical range of an operator $T$ . Moreover, by considering $n$-th iterated of Aluthge

transform $\overline{T_{n}}$ of $T$ , we obtained the following parallel results $\lim_{narrow\infty}||T_{n}1$ $=r(T)$ in [22]

and $\cap\overline{W(\overline{T_{n}})}n=\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{v}\sigma(T)$ in [1].

But until now, we do not know that for a class A operator $T$ , whether $\tilde{T}$ belongs to

the class of $w$-hyponormal operators or not. We obtained a transform from class A to

the class of $w$-hyponormal operators is only $T^{2}$ in [12], but obviously $\sigma(T)7\sigma(T^{2})$ .
In this report, first we shall give an operator transform $\hat{T}$ ffom class A to the class of

hyponormal operators as an analogue of Aluthge transform satisfying $\sigma(\hat{T})=\sigma(T)$ , and

obtain some spectral properties of class A operators. Next as an application of this

transform, we shall show that every class A operator has SVEP and property $(\beta)$ which

is an extension of Kimura’s result.

2. AN OPERATOR TRANSFORM FROM CLASS A
TO THE CLASS OP HYPONORMAL OPERATORS

Let us start this section to prove the following result:

Theorem 2.1. Let $T=U|T|$ be the polar decomposition of a class $A$ operator. Then

$\hat{T}=WU|T^{2}|^{\frac{1}{2}}$

is hyponomal, where $|T||T$
” $|=W||T||T^{*}||$ is the polar decomposition.
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To prove this result, we need the following theorems:

Theorem A ([12]). Let A. and $B$ be positive operators. Then for each $p\geq 0$ and $r\geq 0$ ,
the following assertions hold:

(i) If $(B^{\frac{r}{2}}A^{p}B^{\frac{r}{2}})^{\frac{r}{p+r}}\geq B^{r}$ , then $A^{p}\geq(A^{e}2B^{r}A^{\frac{p}{2}})^{B}\overline{\mathrm{p}}+\overline{r}$ .
(ii) If $A^{p}\geq(A^{R}2B^{r}A^{2}2)\overline{\mathrm{p}}+e_{\overline{r}}$ and $N(A)\subset$ N(A), then $(B^{\frac{r}{2}}A^{p}B^{\frac{r}{2}})^{\frac{r}{\mathrm{p}+r}}\geq B^{r}$.

Theorem $\mathrm{B}([13])$ . Let $T=U|T|$ , $S=V|S|$ and

$|7$ $||5$ $”|=W||T||S’||$

be the polar decompositions. Then $TS=UWV|TS|$ is also the polar decomposition.be the polar decompositions. Then $TS=UWV|TS|$ is also the polar decomposition.

Proof of Theorem 2.1. Since $T$ is a class A operator, the following inequalties hold:

(2.1) $(|T|U^{*}|T|^{2}U|T|)^{\frac{1}{2}}=|T^{2}|$ $\geq|T|^{2}\Leftrightarrow(|T^{*}||T|^{2}|T^{*}|)^{\frac{1}{2}}\geq|\mathrm{r}|^{2}$.

By (i) of Theorem $\mathrm{A}$, we have

(2.2) $|T|^{2}\geq(|T||T^{*}|^{2}|T|)^{\frac{1}{2}}=(|T|U|T|^{2}U^{*}|T|)^{\frac{1}{2}}$ .

Then by (2.1) and (2.2), $|T|U|T|$ is semi-hyponormal.

On the other hand, since $|7$ $|=U^{*}U|T|$ and $U|T|$ are the polar decompositions, by
Theorem $\mathrm{B}$ we have the polar decomposition of $|T|U|7$ $|$ as follows:

(2.3) $|T|$ . $U|T|=U^{*}UWU||T|U|T||$ ,

where $|T||7^{*}|=W||T||T^{*}||$ is the polar decomposition. Here by the definition of $W$ , we
have $N(U)\subset N(|T^{*}||T|)=N(W^{*})$ and $W^{*}U^{*}U=W^{*}$ on $??=N(U)\oplus R(U^{*})$ . Then
we can arrangement (2.3) as follows:

(2.1) $|T|U|7$ $|=U^{*}UWU||T|U|T||=WU|T^{2}|$ .

Since $|T|U|T|=WU|T^{2}|$ is the polar decomposition of a semi-hyponormal operator,
$\hat{T}=WU|T^{2}|^{\frac{1}{2}}$ is hyponormal. Hence the proof is complete. $\square$

We remark that by (2.4) we can obtain the following relation for any $T\in B(H)$ :

(2.5) $\hat{T}|T^{2}|^{\frac{1}{2}}=|T|T$.(2.5) $\overline{T}|T^{2}|^{\frac{1}{2}}=|T|T$.

For an operator $T$ , we denote the spectrum, the point spectrum, the approximate point
spectrum and the residual spectrum by $\sigma(T)$ , $\sigma_{p}(T)$ , $\mathrm{a}\mathrm{o}(\mathrm{T})$ and $\mathrm{a}\mathrm{o}(\mathrm{T})$ , respectively. A
complex number $\mu$ is in the normal approximate point spectrum $\sigma_{na}(T)$ if there exists
a sequence $\{\mathrm{x}\mathrm{n}\}$ of unit vectors such that $(T-\mu)x_{n}arrow 0$ and $(T-\mu)^{*}x_{n}arrow 0$ as
$narrow t$ $\infty$ . It is easy to see that if $T$ is hyponormal, then $\sigma_{a}(T)=\sigma_{na}(T)$ because the
inequality $||$ $(T-\mu)^{*}x||\leq||$ $(7 -\mu)x||$ always holds for all $\mu\in \mathbb{C}$ and an $x\in \mathcal{H}$ ,
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Next, we have the following spectral relation between $T$ and $T$ in case $T$ belongs to
class A.

Theorem 2.2. Let $T$ be a class $A$ operator, Then $\sigma(\hat{T})=\sigma(T)$ .

To prove Theorem 2.2, we shall prepare the following results.

Lemma 2.3. If $T$ belongs to the class $A$ and $\mu$ is a non-zero complex number, then for
a sequence $\{x_{n}\}$ of unit vectors, $(T-\mu)x_{n}arrow 0$ implies $(T-\mu)^{*}x_{n}arrow 0.$

Lemma 2.3 is an extension of [18, Lemma 4] which discussed on a similar property for
a fixed vector $x$ .

Proof By the assumption, we have

$(T-\mu)x_{n}arrow 0$ and $(T^{2}-\mu^{2})x_{n}arrow 0.$

Since

$|||Txn||-|\mu||\leq||$ $(7 -\mu)x_{n}||$ and $|||7" xn||-|\mu|^{2}|\leq||$ $(7 2-\mu^{2})x_{n}||$ ,

we have

(2.6) $||Tx_{n}||$ $arrow|\mu|$ and $||T^{2}x_{n}||$ $arrow|\mu|^{2}$ .

Since $T$ belongs to class $\mathrm{A}$ , we obtain

$||Txn||^{2}=(|T|^{2}x_{n},x_{n})$

$\leq(|T^{2}|x_{n}, x_{n})$

$\leq||$ !”D$n||$ by Cauchy-Schwarz inequality

$=||7^{2}xn||$ ,

and by (2.6) we have

(2.7) $(|T^{2}|x_{n}, x_{n})arrow|\mu|^{2}$ .

Therefore by (2.6) and (2.7),

$||$ $(| 7"|-|\mu|^{2})xn||^{2}=||$ ? 2 $xn||^{2}-2|\mu|^{2}(|T^{2}|x_{n}, x_{n})+|\mu|^{4}$

$arrow|\mu|^{4}-2|\mu|^{4}+|\mu|^{4}=0,$

that is,

(2.8) $(|T^{2}|-|\mu|^{2})x_{\mathrm{n}}$ $arrow 0.$

On the other hand, by (2.6) and (2.8), we have

$||(|T^{2}|-|T|^{2})^{\frac{1}{2}}x_{n}||^{2}=(|T^{2}|x_{n}, x_{n})-(|T|^{2}x_{n}, x_{n})arrow 0,$

Lemma 2.3. If $T$ belongs to the class $A$ and $\mu$ is a non-zero complex number, then for
a sequence $\{x_{n}\}$ of unit vectors, $(T-\mu)x_{n}arrow 0$ implies $(T-\mu)^{*}x_{n}arrow 0.$

Lemma 2.3 is an extension of [18, Lemma 4] which discussed on asimilar property for
afixed vector $x$ .

Proof By the assumption, we have

$(T-\mu)x_{n}arrow 0$ and $(T^{2}-\mu^{2})x_{n}arrow 0.$

Since

$Tx_{n}||-|\mu||\leq||(T-\mu)x_{n}||$ and $|||T^{2}x_{n}||-|\mu|^{2}|\leq||(T^{2}-\mu)2x_{n}||$ ,

we have

(2.6) $||Tx_{n}||arrow|\mu|$ and $||T^{2}x_{n}||arrow|\mu|^{2}$ .

Since $T$ belongs to class $\mathrm{A}$ , we obtain

$||Tx_{n}||^{2}=(|T|^{2}x_{n},x_{n})$

$\leq(|T^{2}|x_{n}, x_{n})$

$\leq|||T^{2}|x_{n}||$ by Cauchy-Schwarz inequality

$=||T^{2}x_{n}||$ ,

and by (2.6) we have

(2.7) $(|T^{2}|x_{n}, x_{n})arrow|\mu|^{2}$ .

Therefore by (2.6) and (2.7),

$||(|T^{2}|-|\mu|^{2})x_{n}||^{2}=||T^{2}x_{n}||^{2}-2|\mu|^{2}(|T^{2}|x_{n}, x_{n})+|\mu|^{4}$

$arrow|\mu|^{4}-2|\mu|^{4}+|\mu|^{4}=0,$

that is,

(2.8) $(|T^{2}|-|\mu|^{2})x_{\mathrm{n}}arrow 0.$

On the other hand, by (2.6) and (2.8), we have

$||(|T^{2}|-|T|^{2})^{\frac{1}{2}}x_{n}||^{2}=(|T^{2}|x_{n}, x_{n})-(|T|^{2}x_{n}, x_{n})arrow 0,$
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that is,

(2.9) $(|T^{2}|-|T|^{2})xn$ $arrow 0.$

Then by (2.8) and (2.9),

$(|T|^{2}-|\mu|^{2})xn=(|T|^{2}-|T^{2}|)x_{n}+$ $(|T^{2}|-|\mu|^{2})x_{n}$ $arrow 0.$

Therefore
$(T- \mu)^{*}x_{n}=\frac{1}{\mu}$ $\{(|T|^{2}-|\mu|^{2})x_{n} -T^{*}(T-\mu)x_{n}\}$ $arrow 0.$

Hence the proof is complete. 口

Theorem $\mathrm{C}([10])$ .
(i) If $A$ is $nomal_{f}$ then for any $B\in$ B(U), $\sigma(AB)=\sigma(BA)$ .
(ii) Let $T=U|T|$ be the polar decomposition of a $p$-hyponormal operator $(p>0)$ .

Then for any $t>0_{f}$

$\sigma(U|T|^{t})=\{e^{i\theta}r^{t} : e^{i\theta}r\in\sigma(T)\}$.

Theorem $\mathrm{D}([20])$ . Let 72 be a set of the complex plane $\mathbb{C}$ , $\mathrm{T}(\mathrm{i})$ be an operator-valued

function of $t\in[0,1]$ which is continuous in the norm topology, $\tau_{t}$ , $t\in[0,1]$ , be a family of
bijective mapping from 72 onto $\tau_{t}(\mathcal{R})\subset \mathbb{C}$ , and for any fixed $z$ $\in$ $\mathrm{R}$ , $\tau_{t}(z)$ be a continuous

function of $t\in[0,1]$ such that $\tau_{0}$ is the identity function. Suppose

$\sigma_{a}(T(t))\cap\tau_{t}(72)=\tau_{t}(\sigma_{a}(T(0))\cap \mathcal{R})$

for all $t\in[0,1]$ . Then for all $t\in[0,1]$ ,

$\sigma_{r}(T(t))\cap\tau_{t}(\mathcal{R})=\tau_{t}(\sigma_{r}(T(0))\cap \mathcal{R})_{:}$

$\sigma(T(t))\cap\tau_{t}(\mathcal{R})=\tau_{t}(\sigma(T(0))\cap \mathcal{R})$ .

Let $\mathcal{F}$ be the set of all strictly monotone increasing continuous nonnegative functions
on $\mathbb{R}^{+}=[0, \infty)$ . Let 2 $0=\{\Psi\in F: \#(0)=0\}$ and $T=U|T|$ . For $\mathrm{I}\in F_{0}$ , the mapping
$\tilde{\Psi}$ is defined by $\tilde{\Psi}(\rho e^{\dot{\iota}\theta})=e’$ It(o) and $\tilde{\Psi}=U\Psi(|T|)$ .

Theorem $\mathrm{E}([5])$ . Let $T=U|T|$ and $\Psi\in \mathcal{F}_{0}$ . Then

$\sigma_{na}(\Psi(T))=$ I $((\mathrm{r}_{m}(T))$ .

Proof of Theorem 2. 2. Let $T=U|T|$ be the polar decomposition. First, we shall prove
that if $T$ is a class A operator then

(2.10) $\sigma(U|T|^{2})=\{r^{2}e^{i\theta} : re’\in\sigma(T)\}$ .

Proof of Theorem 2.2. Let $T=U|T|$ be the polar decomposition. First, we shall prove
that if $T$ is aclass A operator then

(2.10) $\sigma(U|T|^{2})=\{r^{2}e^{i\theta} : re^{\dot{\iota}\theta}\in\sigma(T)\}$ .

Let $T(t)$ $=U|T|^{1+t}$ and $\tau_{t}(re^{\theta}.\cdot)=e^{\theta}.\cdot r^{1+t}$ . Since
$|\mathrm{T}(\mathrm{t})|=|T|^{1+t}$ a $\mathrm{d}$ $|\mathrm{T}(\mathrm{t})|=|7^{*}|^{1+t})$
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we obtain

$T$ belongs to class A $\Leftrightarrow(|T^{*}||T|^{2}|T^{*}|)^{\frac{1}{2}}\geq|T$’ $|^{2}$

$\Leftrightarrow(|T(t)^{*}|^{\frac{1}{1+t}}|T(t)|^{\frac{2}{1+t}}|T(t)^{*}|^{\frac{1}{1+t}})^{\frac{1}{2}}\geq|T(t)^{*}|^{\frac{2}{1+t}}$

$\Leftrightarrow T(t)$ belongs to class $\mathrm{A}(\frac{1}{1+t}, \frac{1}{1+t})$

$\Rightarrow T(t)$ belongs to class A by (1.1).

By Lemma 2.3 and Theorem $\mathrm{E}$ , we have

$\sigma_{a}(T(t))-\{0\}=\sigma_{na}(T(t))-\{0\}$

$=\tau_{t}(\sigma_{na}(T)-\{0\})$

$=\tau_{t}(\sigma_{a}(T)-\{0\})$

$=\tau_{t}(\sigma_{a}(T))-\{0\}$ .

$\Rightarrow T(t)$ belongs to class A by (1.1).

By Lemma 2.3 and Theorem $\mathrm{E}$ , we have

$\sigma_{a}(T(t))-\{0\}=\sigma_{na}(T(t))-\{0\}$

$=\tau_{t}(\sigma_{na}(T)-\{0\})$

$=\tau_{t}(\sigma_{a}(T)-\{0\})$

$=\tau_{t}(\sigma_{a}(T))-\{0\}$ .

On the other hand, if $0\in\sigma_{a}(T(t))$ , then there exists a sequence $\{x_{n}\}$ of unit vectors

such that $U|T|^{1+t}x_{n}arrow$r 0. Hence by

$|\mathrm{F}$ $x_{n}||^{2}=(U|T|^{1+t}x_{n}, U|T|^{1-t}x_{n})arrow 0,$

we have $0\in ya$ (T). Conversely, if $0\in\sigma_{a}(T)$ , then we have $0\in v_{a}(T(t))$ by

$||U|T|^{1+t}xn||\leq|||7$ $|t||$ . $||Txn1$ $arrow 0$ .

Hence we obtain $\sigma_{a}(T(t))=\tau_{t}(\sigma_{a}(T))$ for all $t\in[0,1]$ , and by Theorem $\mathrm{D}$ we have
$\sigma(T(t))=\tau_{t}(\sigma(T))$ for all $t\in[0,1]$ . Especially, put $t=1$ we have (2.10).

Next, by (i) of Theorem $\mathrm{C}$ and (2.10) we obtain

$\sigma(WU|T^{2}|)=\sigma(|T|U|T|)=\sigma(U|T|^{2})=\{e^{i\theta}r^{2} : e^{\dot{l}\theta}r\in\sigma(T)\}$ .

By Theorem 2.1, $\hat{T}$
$\mathrm{i}$ hyponormal. Hence by (ii) of Theorem $\mathrm{C}$ , we have

$\sigma(\hat{T})=$ $\mathrm{r}(.\mathrm{I}WU|T^{2}|$ $\mathrm{j}_{)}$ $=\{e^{i\theta}r : e^{i\theta}r^{2}\in\sigma(U|T|^{2})\}=\sigma(T)$.

Therefore the proof is complete.Therefore the proof is complete. 口

In general, Theorem 2.2 does not hold for an arbitrary operator. In fact let

$T=(\begin{array}{ll}1 10 0\end{array})$

Then $\mathrm{a}(\mathrm{T})=\{0,1\}$ . Let $T=U|T|$ be the polar decomposition of $T$ , then we obtain

$|T|U|T|=|T|\geq 0$ because $T^{2}=T$ holds. Hence by (2.4) and the definition of $\hat{T}$ , we

have
$\hat{T}=|T|^{\frac{1}{2}}$ .
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On the other hand, by the simple calculation, we have

$|T|^{2}=$ $(\begin{array}{ll}1 11 1\end{array})$ and $|T|^{\underline{\frac{1}{\circ}}}= \frac{1}{2^{3/4}}$ $(\begin{array}{ll}1 11 1\end{array})$

Hence $\sigma(\hat{T})=\{0, \ell\overline{2}\}4$ $r(T)$ .

But in case $T$ belongs to class $\mathrm{A}$ , we can precise Theorem 2.2 as follows:

Theorem 2.4. Let $T$ be a class $A$ operator. For a complex number $\mu$ and a sequence
$\{x_{n}\}$ of unit vectors,

$(T-\mu)x_{n}arrow 0$ if and only if $(\hat{T}-\mu)x_{n}arrow 0.$

Proof Let $T=U|T|$ be the polar decomposition, (a) We shall prove that $(T-\mu)x_{n}arrow 0$

implies $(\hat{T}-\mu)x_{n}arrow 0.$ In case $\mu=0,$ it is obvious by

$||\hat{T}$x$n||=||$ $\mathrm{F}^{2}|\mathrm{g}_{x}n||=(|T^{2}|x_{n}, x_{n})^{\frac{1}{2}}arrow 0.$

So we shall prove the case $\mu\neq 0.$ By Lemma 2.3, we have $(T-\mu)^{*}x_{n}arrow 0.$ Then we
obtain

(2.11) $(|T|-|\mu|)x_{n}arrow 0,$ $(|T^{*}|-|\mu|)x_{n}arrow 0,$

and

( $||T||T^{*}||^{2}-|\mu|^{4}$) $x_{n}arrow 0.$

Hence we have

( $||T||T^{*}||^{\frac{1}{2}}-|\mu|$ ) $x_{n}arrow 0.$

On the other hand, if $\mu=e^{i\theta}|/$’ $|$ , then by (2.11) we have

$(U-e^{i\theta})x_{n}= \frac{1}{|\mu|}\{U(|\mu|-|T|)xn+(T-\mu)x_{n}\}$ $arrow 0.$

Hence

$(\hat{T}-\mu)x_{n}=$ $(WU|T^{2}|^{\frac{1}{2}}-|7^{\mathrm{i}}|e")xn$

$=$ $\{WU(|T|U^{*}|T|^{2}U|T|)^{\frac{1}{4}}-|\mu|e"\}x_{n}$

$=$ $\{W(|T^{*}||T|^{2}|T^{*}|)^{\frac{1}{4}}U-|\mu|e’\}x_{n}$

$=W|T||T^{*}||^{\frac{1}{2}}(U-e^{\dot{\iota}\theta})x_{n}+e^{\dot{\iota}\theta}(W||T||T^{*}||^{\frac{1}{2}}-|\mu|)x_{n}$ ,

and we only prove $(W||T||T^{*}||^{\frac{1}{2}}-|\mu|)x_{n}$ $arrow 0.$ By the fact $|T||7$” $|=W||T||T^{*}||$ and

$(W||T||T^{*}||^{\frac{1}{2}}-|\mu|)x_{n}$ $= \frac{1}{|\mu|}\{-W||T||T^{*}||^{\frac{1}{2}}(||T||T^{*}||^{\frac{1}{2}}-|\mu|)x_{n} +(|T||"|-|\mu|^{2})xn\}$ ,

we obtain $(W||T||T^{*}||^{\frac{1}{2}}-|\mu|)xnarrow 0.$ Hence $(\hat{T}-\mu)x_{n}arrow 0.$

Hence $\sigma(\hat{T})=\{0, \ell\overline{2}\}\neq\sigma(T)$ .

But in case $T$ belongs to class $\mathrm{A}$ , we can precise Theorem 2.2 as follows:

Theorem 2.4. Let $T$ be a class $A$ operator. For a complex number $\mu$ and a sequence
$\{x_{n}\}$ of unit vectors,

$(T-\mu)x_{n}arrow 0$ if and only if $(T-\mu)x_{n}arrow 0.$

Proof Let $T=U|T|$ be the polar decomposition, (a) We shall prove that $(T-\mu)x_{n}arrow 0$

implies $(\hat{T}-\mu)x_{n}arrow 0.$ In case $\mu=0,$ it is obvious by

$||\hat{T}x_{n}||=|||T^{2}|^{\frac{1}{2}}x_{n}||=(|T^{2}|x_{n}, x_{n})^{\frac{1}{2}}arrow 0.$

So we shall prove the case $\mu\neq 0.$ By Lemma 2.3, we have $(T-\mu)^{*}x_{n}arrow 0.$ Then we
obtain

(2.11) $(|T|-|\mu|)x_{n}arrow 0,$ $(|T^{*}|-|\mu|)x_{n}arrow 0,$

and
$(||T||T^{*}||^{2}-|\mu|^{4})x_{n}arrow 0.$

Hence we have
$(||T||T^{*}||^{\frac{1}{2}}-|\mu|)x_{n}arrow 0.$

On the other hand, if $\mu=e^{i\theta}|\mu|$ , then by (2.11) we have

$(U-e^{i\theta})x_{n}= \frac{\mathrm{I}}{|\mu|}\{U(|\mu|-|T|)x_{n}+(T-\mu)x_{n}\}arrow 0.$

Hence

$(\hat{T}-\mu)x_{n}=(WU|T^{2}|^{\frac{1}{2}}-|\mu|e^{i\theta})x_{n}$

$=\{WU(|T|U^{*}|T|^{2}U|T|)^{\frac{1}{4}}-|\mu|e^{\theta}\dot{.}\}x_{n}$

$=\{W(|T^{*}||T|^{2}|T^{*}|)^{\frac{1}{4}}U-|\mu|e^{i\theta}\}x_{n}$

$=W|T||T^{*}||^{\frac{1}{2}}(U-e^{\dot{\iota}\theta})x_{n}+e^{\dot{\iota}\theta}(W||T||T^{*}||^{\frac{1}{2}}-|\mu|)x_{n}$ ,

and we only prove $(W||T||T^{*}||\overline{\overline{2}}-|\mu|)x_{n}arrow 0.$ By the fact $|T||T^{*}|=W||T||T^{*}||$ and

$(W||T||T^{*}|| \overline{\overline{2}}-|\mu|)x_{n}=\frac{\mathrm{A}}{|\mu|}\{-W||T||T^{*}||^{\frac{-}{2}}(||T||T^{*}||\overline{2}. -|\mu|)x_{n}+(|T||T^{*}|-|\mu|^{2})x_{n}\}$,

we obtain $(W||T||T^{*}||^{\overline{\overline{2}}}-|\mu|)x_{n}arrow 0.$ Hence $(\hat{T}-\mu)x_{n}arrow 0.$
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(b) We shall show that $(T-\mu)x_{n}arrow 0$ implies $(T-\mu)x_{n}arrow 0.$ In case $\mu=0,$ it is
easy since $|7$ $2|\geq|T|^{2}$ holds. So we shall prove the case $\mu(=|\mu|ei\theta)$ $\neq 0.$ By Theorem
2.1, $T\wedge$ is hyponormal. Then it is known that $(\hat{T}- \mathrm{u})xnarrow 0$ implies $(\hat{T}-\mu)^{*}x_{n}.arrow 0$ ,
and also we have

$(|\hat{T}|-|\mu|)x_{n}$ $arrow 0$ and $(|\hat{T}^{*}|-|\mu|)x_{n}$ $arrow 0.$

Then by

$|\mathrm{i}$
$|=|\mathrm{y}" \mathrm{F}$ $=$ $(|T|U^{*}|T|^{2}U|T|)\mathrm{i}$ and $|\hat{T}^{*}|=$ $(|T|U|T|^{2}U^{*}|T|) \frac{1}{4}$ ,

we obtain

( $(|T|U^{*}|T|^{2}U|T|)^{\frac{1}{2}}-|\mu|^{2}$ ) $x_{n}arrow 0$ and $((|T|U|T|^{2}U^{*}|T|)^{\frac{1}{2}}-|\mu|^{2}$ ) $x_{n}arrow$p 0.

On the other hand, since $T$ belongs to class $\mathrm{A}$, by (2.1) and (2.2) we have

(2.12) $(|T|U^{*}|T|^{2}U|T|)^{\frac{1}{2}}\geq|T|^{2}\geq(|T|U|T|^{2}U^{*}|T|)^{\frac{1}{2}}$ .

Hence $((|T|^{2}-|\mu|^{2})xn’ x_{n})$ $arrow 0$ holds. By (2.12), since

$0\leq||$ $\{(|T|U’ |7 |^{2}U|T|)4 -|T|^{2}\}\frac{1}{2}x_{n}||^{2}$

$=$ $( \{(|T|U^{*}|T|^{2}U|T|)\frac{1}{2}-|\mu|^{2}\}x_{n}, x_{n})$ $-$ $((|T|^{2}-|\mu|^{2})x_{n}, x_{n})$ $arrow 0,$

(2.12) $(|T|U^{*}|T|^{2}U|T|)^{\frac{1}{2}}\geq|T|^{2}\geq(|T|U|T|^{2}U^{*}|T|)^{\frac{1}{2}}$ .

Hence $((|T|^{2}-|\mu|^{2})x_{n}, x_{n})arrow 0$ holds. By (2.12), since

$0\leq||\{(|T|U’|T|^{2}U|T|)^{\frac{1}{2}}-|T|^{2}\}^{\frac{1}{2}}x_{n}||^{2}$

$=(\{(|T|U^{*}|T|^{2}U|T|)^{\frac{1}{2}}-|\mu|^{2}\}x_{n},x_{n})-((|T|^{2}-|\mu|^{2})x_{n}, x_{n})arrow 0,$

we have

$(|T|^{2}-|\mu|^{2})x_{n}$ $=\{|T|^{2}-(|T|U^{*}|T|^{2}U|T|)^{\frac{1}{2}}\}x_{n}+$ $\{(|T|U^{*}|T|^{2}U|T|)\frac{1}{2}-|\mu|^{2}\}x_{n}$ $arrow 0.$

By the polar decompositions $\hat{T}=WU|T^{2}|^{\frac{1}{2}}$ a $\mathrm{d}$ $|T|U|T|=WU|T^{2}|$ , we have

$(|T|U- \mu)x_{n}=\frac{1}{|\mu|}|T|U(|\mu|-|T|)x_{n}+\frac{1}{|\mu|}\hat{T}(|T^{2}|^{\frac{1}{2}}-|\mu|)x_{n}+(\hat{T}-\mu)x_{n}arrow 0.$

Hence we obtain $(T-\mu)Ux_{n}=U(|T|U-\mu)x_{n}-0.$ Then by Lemma 2.3, we obtain
$(T-\mu)^{*}Ux_{n}arrow 0$ and $(e^{i\theta}|T|-|7 |U)xn=e^{i\theta}(T-\mu)^{*}Ux_{n}arrow 0.$ Therefore we have

$(T-\mu)x_{n}=U(|T|-|\mu|)xn+(|\mu|U-e^{i\theta}|T|)x_{n}+e^{\dot{\iota}\theta}(|T|-|\mu|)xnarrow 0.$

Hence the proof is complete. $\square$

By the polar decompositions $T\wedge=WU|T^{2}|^{\frac{1}{2}}$ and $|T|U|T|=WU|T^{2}|$ , we have

$(|T|U- \mu)x_{n}=\frac{1}{|\mu|}|T|U(|\mu|-|T|)x_{n}+\frac{1}{|\mu|}\hat{T}(|T^{2}|^{\frac{1}{2}}-|\mu|)x_{n}+(\hat{T}-\mu)x_{n}arrow 0.$

Hence we obtain $(T-\mu)Ux_{n}=U(|T|U-\mu)x_{n}-0.$ Then by Lemma 2.3, we obtain
$(T-\mu)^{*}Ux_{n}arrow 0$ and $(e^{i\theta}|T|-|\mu|U)x_{n}=e^{i\theta}(T-\mu)^{*}Ux_{n}arrow 0.$ Therefore we have

$(T-\mu)x_{n}=U(|T|-|\mu|)x_{n}+(|\mu|U-e^{i\theta}|T|)x_{n}+e^{\theta}\dot{.}(|T|-|\mu|)x_{n}arrow 0.$

Hence the proof is complete. $\square$

Corollary 2.5. Let $T$ be a class $A$ operator, then $\sigma_{p}(T)=\sigma_{p}(T)$ and $\sigma_{a}(T)=\sigma_{a}(T)$ .

3. AN APPLICATION OF $\acute{\dot{T}}$ TO SVEP AND PROPERTY $(\beta)$

In this section, we shall show that every class A operator has SVEP and property (fj)

as an application of $\hat{T}$ .

Theorem 3.1. If $T$ belongs to class $A$ , then $T$ has SVEP and property $(\beta)$ .

To prove Theorem 3.1, we prepare the following lemma which is a slight modification
of [16, Lemma 2.5].
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Lemma 3.2. Let 7) be an open subset of $\mathbb{C}$ and $f_{n}$ : $Darrow$ $lt$ $(n=1,2, \ldots)$ be vector-
valued analytic functions such that $\mu^{2}f_{n}(\mu)arrow 0$ uniformly on every compact subset of
D. Then $f_{n}(\mu)arrow 0,$ again uniformly on every compact subset of V.

Proof. Let us fix an arbitrary A $\in$ V. It suffices to show that there exists a constant
$r>0$ such that $\{|\mu-\mathrm{A}|\leq r\}\subset D$ and $f_{n}(\mu)arrow 0$ uniformly on $\{|\mu-\mathrm{A}|\leq r\}$ . If
A $\neq 0,$ then we need merely to take $r$ such as $0\not\in\{|\mu-\mathrm{A}|\leq r\}\subset$ $\mathrm{z})$ . So we consider
the case where A $=0.$ Take any constant $r>0$ such that $\{|\mu|\leq r\}\subset D.$ Then for each
$n=1,2$, $\ldots$ , we can find an $\omega_{n}$ with $|4|=r$ such that $||$ $7_{n}(\mu)$ $||\leq||$ $\mathrm{f}_{n}(\mathrm{u}_{n})||$ on $\{|\mu|\leq r\}$

by the maximum principle. Thus

$||$ A $( \mu)||=\frac{1}{|\omega_{n}|^{2}}|\mathrm{w}_{n}|$
’

$||$ A $( \mu)||\leq\frac{1}{r^{2}}||\mathrm{u}1$ $\mathrm{Z}(\omega_{n})||-0$

uniformly on $\{|\mu|\leq r\}$ . $\square$uniformly on $\{|\mu|\leq r\}$ . $\square$

Proof of Theorem 3.1. By the definition of SVEP and property $(\beta)$ , we have only to
prove that $T$ has property $(\beta)$ .

Let 2) be an open neighborhood of $\mathrm{A}\in \mathbb{C}$ and $f_{n}(n=1,2, \ldots)$ be vector-valued
analytic functions on $D$ such that $(T-\mu)f_{n}(\mu)arrow$t 0 uniformly on every compact
subset of $D$ . We may assume that $\sup_{n}||$

$\mathrm{f}_{n}(\mu)||<+\mathrm{o}\mathrm{o}$ on every compact subset of $\mathrm{Z}$).

In fact, let $M_{n}$ be a positive number such that $||f_{n}(\mu)||\leq M_{n}$ . Then by replacing $f_{n}(\mu)$

with $\frac{f_{n}(\mu)}{M_{n}+1}$ , we have $\sup_{n}||$
$7_{n}(\mu)||\leq 1$ and $(T-\mu)f_{n}(\mu)arrow 0$ uniformly on every compact

subset of $\mathrm{Z}$).

By the assumption $(T-\mu)f_{n}(\mu)arrow 0$ uniformly, we have $(T^{2}-\mu)2f_{n}(\mu)arrow 0$ also
uniformly. Since

$|||T\mathrm{f}_{n}(\mu)||-||\mu f_{n}(\mu)|||\leq||(T-\mu)f_{n}(\mu)||$ and $|||T^{2}$ $\mathrm{f}_{n}(\mu)||-||\mu^{2}f_{n}(\mu)|||\leq||(\mathrm{i}^{2}-\mu^{2})f_{n}(\mu)||$ ,

we have

(3.1) $||Tf_{n}(\mu)||-||\mu f_{n}(\mu)||arrow$p 0 and $||T^{2}f_{n}(\mu)||-||\mu^{2}$ $\mathrm{f}_{n}(\mu)||arrow 0$ uniformly.

Since $T$ belongs to class $\mathrm{A}$ , we obtain

$||7\mathrm{V}n(\mu)||^{2}-||\mu f_{n}(\mu)||^{2}=(|T|^{2}f_{n}(\mu), \mathrm{j}_{n}(\mu))$ $-(|\mu|^{2}f_{n}(\mu), f_{n}(\mu))$

$\leq(|T^{2}|f_{n}(\mu), \mathrm{f}_{n}(\mu))$ $-(|\mu|^{2}f_{n}(\mu), 7_{n}(\mu))$

$\leq|||7$
”

$|$ $\mathrm{f}_{n}(\mu)$ $||$ $||$ $\mathrm{f}_{n}(\mu)||-||\mu^{2}f_{n}(\mu)||$ . $||f_{n}(\mu)||$

$=$ $(||T^{2}f_{n}(\mu)||-||\mu^{2} 7_{n}(\mu)||)$ $||$ $\mathrm{f}_{n}(\mu)||$

by Cauchy-Schwarz inequality, and by (3.1) we have

(3.2) $(|T^{2}|f_{n}(\mu), 7_{n}(\mu))-(|\mu|^{2}f_{n}(\mu), f_{n}(\mu))arrow$ $0$ uniformly.

$\leq(|T^{2}|f_{n}(\mu), f_{n}(\mu))-(|\mu|^{2}f_{n}(\mu), f_{n}(\mu))$

$\leq|||T^{2}|f_{n}(\mu)||$ $||f_{n}(\mu)||-||\mu^{2}f_{n}(\mu)||$ . $||f_{n}(\mu)||$

$=(||T^{2}f_{n}(\mu)||-||\mu^{2}f_{n}(\mu)||)||f_{n}(\mu)||$

by Cauchy-Schwarz inequality, and by (3.1) we have

(3.2) $(|T^{2}|f_{n}(\mu), f_{n}(\mu))-(|\mu|^{2}f_{n}(\mu), f_{n}(\mu))arrow 0$ uniformly.
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Therefore by (3.1) and (3.2), we have

$||$ $(|T^{2}|-|\mu|^{2})f_{n}(\mu)||^{2}=||T^{2}7_{n}(\mu)||^{2}-2|\mu|^{2}(|T^{2}|f_{n}(\mu), 7_{n}(\mu))$ $+|\mu|^{4}||f_{n}(\mu)$ $||^{2}$

$=||T^{2}f_{n}(\mu)||^{2}-||\mu^{2}$ $\mathrm{f}_{n}(\mu)||^{2}-2|\mu|^{2}((|T^{2}|-|\mu|^{2})f_{n}(\mu), \mathrm{f}_{n}(\mu))$

$arrow 0$ uniformly,

that is,

(3.3) $(|T^{2}|-|\mu|^{2})f_{n}(\mu)arrow 0$ and $(|T^{2}|^{\frac{1}{2}}-|\mu|)f_{n}(\mu)arrow 0$ uniformly.

On the other hand, by (3.1) and (3.2),

$0\leq||\mathrm{C}\mathrm{F}$ $2|-|7$ $|2) \frac{1}{2}7_{n}(\mu)||^{2}$

$=(|T^{2}|f_{n}(\mu), \mathrm{j}_{n}(\mu))$ $-(|T|^{2}f_{n}(\mu), \mathrm{j}_{n}(\mu))$ $arrow 0$ uniformly,

$0\leq||(|T^{2}|-|T|^{2})^{\frac{1}{2}}f_{n}(\mu)||^{2}$

$=(|T^{2}|f_{n}(\mu), f_{n}(\mu))-(|T|^{2}f_{n}(\mu), f_{n}(\mu))arrow 0$ uniformly,

that is,

(3.4) $(|T^{2}|-|T|^{2})$ $7_{n}$ (p) $arrow 0$ uniformly.

Hence by (3.3) and (3.4), we have

(3.5) $(|T|^{2}-|\mu|^{2})$ $7_{n}(\mu)arrow 0$ and $(|T|-|\mu|)f_{n}(\mu)arrow 0$ uniformly.

Therefore we obtain
$(\hat{T}-\mu)|T^{2}|5f_{n}(\mu)1=(|T|T-\mu|T^{2}|^{\frac{1}{2}})f_{n}(\mu)$ by (2.5)

$=|T|(T-\mu)f_{n}(\mu)+\mu(|T|-|\mu|)f_{n}(\mu)+\mu(|\mu|-|7^{2}\mathrm{E})$ $\mathrm{f}_{n}$ (p)

$arrow 0$ uniformly by (3.3) and (3.5).

By Theorem 2.1, $\hat{T}$ is hyponormal, so $\hat{T}$ has property $(\beta)$ , that is,

$|7$
” $|\mathrm{N}f_{n}(\mu)arrow 0$ uniformly,

By Theorem 2.1, $T\wedge$ is hyponormal, so $T\wedge$ has property $(\beta)$ , that is,

$|T^{2}|^{\frac{1}{2}}f_{n}(\mu)arrow 0$ uniformly,

that is,
$T^{2}f_{n}(\mu)arrow 0$ uniformly.

Hence we have $\mu^{2}f_{n}(\mu)arrow 0$ uniformly, and also $7_{n}(\mu)$ $arrow 0$ uniformly by Lemma 3.2.

This completes the proof. $\square$
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