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Localization forcing and
Hechler’s theorem for the null ideal
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We prove the following theorem: For any X;-directed partially
ordered set @, there is a forcing notion satisfying ccc such that, in
the forcing model, there is a basis of the null ideal of the real line
which is order-isomorphic to Q with respect to set-inclusion. This
is a variation of Hechler’s classical result in the theory of forcing.

1 Introduction

For f,g € w¥, we say [ <* g if f(n) < g(n) for all but fnitely many
n < w. The following theorem, which is due to Hechler [6], is a classical
result in the theory of forcing (See also [4]).

Theorem 1.1. Suppose that (Q, <) is a partially ordered set such that
every countable subset of Q) has a strict upper bound in Q, that is, for
any countable set A C Q there is b € Q such that a < b for all a € A.
Then there is a forcing notion P satisfying ccc such that, in the forcing
model by P, (w*,<*) contains a cofinal subset {f, : a € Q} which is
order-isomorphic to Q, that is,
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1. for every g € w” there is a € Q such that g <* fo, and
2. for a,b € Q. fo <* fo if and only if a < b.

Soukup [8] asked if the statement of Hechler’s theorem holds for the
meager ideal or the null ideal of the real line with respect to set-inclusion.
Bartoszynski and Kada [3] have answered positively the question for the
meager ideal. In the present paper, we will give a positive answer for the
null ideal.

2 Combinatorial view of null sets

In this section, we review the relationship between Borel null sets of
the real line and combinatorics on natural numbers, which is described in
[1]. We work in the Cantor space 2 with the standard product measure.

Choose a strictly increasing function A € w* satisfying 2m—h(==1) >
n+1for 1 < n < w (for example, just let h(n) = n?). For each n < w,
let {CP : i < w} be a list of all clopen subsets of 2* of measure 2~
We assume that such h and C”’s are fixed throughout this paper.

For a function f € w*, we define

Hy =1 U G-
N n>N

Then Hy is a G5 null set, and every null set X is covered by H; for some
[ ew”. ’

Let § =[], [w]=™. We call each ¢ € S a slalom. As in the case of a
function, for a slalom ¢ € S we define

€=U U ¢

N n>N igp(n)

Then H, is a G null set, and the following hold:

1. For f € w¥ and ¢ € S, if f(n) € p(n) holds for all but finitely
many n < w, then Hy C H,.

2. For ¢,y € S, if ¥(n) C p(n) holds for all but finitely many n < w,
then Hy C H,,.



Note that the reversed implications in the above statements do not hold
in general.

Now we define a canonical way to find a nonempty closed set outside
H,.

For a slalom ¢ € S, define a function 7, € w* by induction on n < w
as follows: 7,(0) =0, and for 1 < n < w, let

ro(n) =minfi <w: CP C "‘rll_l) N U CT}.

Tol:
Jj€¢(n)

This induction goes well because, by the choice of h, we have p(CEy >
(n+1) - u(C}) for j,k < w.

Let Ry, = (.., C;’(p(n). R, is a nonempty closed set, because it is the
intersection of a decreasing sequence of closed sets in a compact space.
Let Ay = U, < Uieptn) CF- Then clearly H, C A,. By the construction
of r,, we have R, N A, =0, and hence R, N I, = 0.

For p, v € S, if r,(n) € ¥(n) for infinitely many n < w, then R,CH,
and hence Hy € H,.

3 Localization forcing

In this section, we will introduce a modified form of localization forcing
LOC, which is defined in {2, Section 3.1].

Let 7 = U, ., [Ticalw]¥. A condition p of LOC is of the form p =
(s?, F?), where s* € T, F? C w* and |F?| < |s?|. For conditions p,q in
LOC,p<qif s 2 5% F? 2 [, and for each n € |s?] \ |s7| and f € F9
we have f(n) € sP(n).

It is easy to sce the following.

1. For each n < w, the set {g € LOC : |s?] > n} is dense in LOC.
2. For each f € w*, the sct {g € LOC: f € F} is dense in LOC.
3. LOC is d—linked, and hence it satisfies ccc.

Let V be a ground model, and G a LOC-generic filter over V. In VIG],
let oo = J{s” : p € G}. Then ¢g € § and, for every f € w* NV, for all
but finitely many n < w we have f(n) € pg(n).
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Let Hg = H,,. Then in V|G|, by the observation in Section 2, for
every Borel null set X C 2“ which is coded in V, we have X C Hg.
Now we define a modified form of localization forcing.

Definition 3.1. Define LOC* as follows. A condition p of LOC* is of
the form p = (s?,w®, F?), where

1. 7T, u? <w, FP Cw¥, and
2. |FP| < wP < |sP|.
For p,q € LOC*, p < ¢ if

3. s2C &P, wI <wP, F# C FP and for n € |s?| \ |¢?| and f € F? we
Liave f(n) € s?(n);

4. wP < w+ (|sP] — |s9));
5. For n € |s?| \ |s9], we have |s?(n)] < w9+ (n — |s9]).
We show that the forcing LOC* has similar properties to LOC.

Lemma 3.2. For each n < w, the set {g € LOC* : |s?| > n} is dense in
LOC*.

Proof. Easy. a

Lemma 3.3. For each f € w*, the set {g € LOC* : f € F9} is dense in
LOC*.

Proof. Fix p € LOC* and [ € w*. Define ¢ = (s9,w?, F?) as follows:
|89 = |sP| -+ 1, sq]|s?| = sP, s¥(|s?|) = {f(|s”]) : f € [P}, w? =wP | 1
and F? = FPU{f}. It is easy to see that ¢ € LOC* and ¢ < p. O

Lemma 3.4. LOC* is o-linked, and hence it satisfies ccc.

Proof. 1t is easily seen that the set L = {p € LOC* : w? > 2 |F?|} is
dense in LOC*. For each s € 7 and w < |s|, let Ly, = {p€ L : 8" =
s and w? = w}. Then L = |J{Lsw : s € T and w < |s|} and, for each
s € T and w < ||, any two conditions in L,,, are compatible. a

Let V be a ground model, and G a LOC*-generic filter over V. In
V[G], let ¢ = |U{s” : p € G}. Then, by Lemmata 3.2 and 3.3, we have
¢c € S and, for every f € w“ NV, for all but finitely many n < w we
have f(n) € pg(n).

Let He = H,,,. The following proposition follows from the observation
in Section 2.



Proposition 3.5. Let V be a ground model and G a LOC*-generic filter
over V. Then in V|G|, for every Borel null set X C 2% which is coded
mn 'V, we have X C Hg.

As we observed in Section 2, in V|G|, we can define r,, and R, from
pc- Note that, in this context, every z € R, is a random real over V.,
We can naturally define a LOC*-name 7 for r,, so that, for p € LOC*,
if |s*] = n then p decides the value of | n, because r,,, [ n depends only

on g [ n.

4 Hechler’s theorem for the null ideal

In this section, we will construct a ccc forcing notion which yields
Hechler’s theorem for the null ideal. The idea is to use localization forcing
at each step, instead of the dominating real partial order used in Hechler’s
construction.

Let (@, <) be a partially ordered set such that every countable subset
of @ has a strict upper bound in @, that is, for every countable set
A C Q there is b € @ such that a < b for all a € A. Extend the order to
Q* =QU{Q} by letling a < Q for all a € Q.

Fix a well-founded cofinal subset R of (). Define the rank function on
the well-founded set R* = RU {Q} in the usual way. For a € Q \ R, let
rank(a) = min{rank(b) : b € R* and a < b}. For 2,y € Q*, wesay 2 € y
if # <y and rank(z) < rank(y). For 2 € Q*, let Q, = {y € Q : y K€ 2}.

For D € Q and € < rank(Q), let Dee = {y € D : rank(y) < €},
D¢ = {y € D : rank(y) = £}, and for x € Q with rank(z) = &, let
DSI={y€D5:y§a'}.

For D C @, let D = {rank(z) : 2 € D}.

For E C D C Q, we say E is downward closed in D if, for 22 € E and
y€ Dify<ztheny € E. When E is downward closed in @, we simply
say F is downward closed.

Definition 4.1. We define forcing notions N, for a € Q* by induction
on rank(a). ,

A condition p of N, is of the form p = {(s2,w?, I?) : x € D} with the
following:

1. DP is a finite subset of Qq;
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2.

3.
4.

For 2 € D?, s € T, w? < w, I'? is a finite set of N,-names for
functions in w¥, and |F?| < w?;

For x € D?, ) {w? :z € DL,} < [s&];
For 2,y € DP, if rank(z) = rank(y) then |s?| = |s5|.

Throughout this paper, for a condition p in N,, we always use the
notation D?, s2, w? and F? to denote respective components of p. Al%,
for p € N, and & € D, let l” be the length of s for z € D}.

Forp e N, a.nd b€ Q. deﬁne plb € Ny by letting p[b = {(s’i,u@,Fg) :
xr € Drn Qb}

For conditions p,q in N,, p < g if:

5.
6.

D C Dr;

For z € D%, s D s, w® > wi, FP D FY and, for all n € |s2| \ |s4]
and f € F2 we have plz iy, fl ) (n)

For £ € D2 and z,y € D, if x < y, then for all n € %\ 1§ we have
sh(n) C sb(n);

. Forée D, 3 {wk iz € Df} <X {u?:x € D} + (£ - 1),

. For¢ € D9, E C Df which is downward closed in Df and n € E\1,

we have

U{st(n): 2 € B} <Y {uwl:z€ E}+(n—I¢ e)-

Remark 1. If p < q, then for any ¢ € D7 and E C Df we can discard the
terms with indices not in E from both sides of the inequality in clause 8
(using w® > w? from clause 6) to get

2wt ize By <Y {wi:2€ END{}+ (B - 1).

We now verify that Definition 4.1 does indeed define a partial order.
(Reflexivity is clear, but we need to prove transitivity.) The simple ob-
servation in part (c) of the following proposition justifies not mentioning
a in the notation < for the order relation on N,.

Proposition 4.2. We have the following propertz'es.

(a) For any conditions p,q € N,, if p < q then for any b € Qq, p|b <

qld.



(b) The order relation on N, is transitive.

(c) For any a,b€ Q*, if p,q € Ny NNy, then p < ¢ in N, if and ondy if
p<qinN,.
Proof. (a) and (b) are proven simultaneously by induction on the rank
of a. Note that part (b) of the induction hypothesis ensures that for
9,9 € Ng and z € D7 C Q,, N, is a well-defined partial order and hence
the last part of clause 6 makes sense.

(a) All but the last part of clause 6 and clause 8 in the definition of
p[b < q[b are inherited directly from the corresponding clauses for
p < q. The last part of clause 6 holds because for x € D® = DI Q,,
(p1b) ]2 = p[z. There remains to check clause 8. Let ¢ € D%, Using
clause 8 for p < ¢ and the fact that w? > w? whenever both are defined,
we have

S{uf :x € D} = T{up € DF)
:E{w{;:mGDé’}—-E{wg:wGDg\Qb} _
< Z{wg:afeDZ}+(l§—lg)—Z{u:§l:meDg\Qb}
<X {wi:zeDi}+ (=1 — > {wl:z € DI\ Qu}
=2 {u®:2 € DF} + (i - 1.

(b) Suppose that a € Q*, p,q,” € N, and p < ¢ < r. We must show

p<r.

For the last part of clause 6, suppose we have z € Dy, ne B\,
fe F7. It n € I5 \ U2, then because feFrc F3, the fact that p < ¢
gives plz Iy, f (n) € s2(n). If n € 5N [7, then the fact that g < r gives
ql2 by, f(n) € s2(n). We have s8(n) = s%(n) by the frst part of clause 6
for p < q. Also, pl2 < g2 by part (a). Thus, plz Iy, f(n) € sP(n).
We now check clause 9 and leave the other clauses for the reader. Fix
¢eDrEC Dg which is downward closed in Di and n € i \I}. Let E7
be the downward closure of E in D§. If n € I NI, then

(U{sb(n) 12 € B} = [U{si(n) : « € B}
<Y{ui:z€E}+(n-1)
because of clause 9 forg <. Il n € lg N lg, then
(U{s%(n) : 2 € B} < U{s5(n) : 2 € B9}
<Y{wi:z€ B} +(n-1
<Y{w,:ze€eE}+ E-)+ -1
=Y {v]: 2 € B} + (n-Y).
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Q.

The second inequality follows from clause 9 for p < ¢ and the third from
Remark 1 for ¢ < r. Hence we have p < r.
(c¢) The definition of the order on N, makes no mention of a. O

Definition 4.3. For a downward closed set 4 C Q, let Ny = {p €
Ng : D? C A}, and for p € N, we define p [ A € Ny by letting p |
A= {(st,wp, FP) : + € DP N A}. For £ < rank(Q), let N; = Ng_, and
pl€=plQe. Also, for € < rank(Q), let p[{¢} = {(s2,ul, FT) : z €
Df} € Ngyr and pl[§,00) = {(s8,wh, F¥) : v € DP \ Q<¢} € No.

In this notation, N, = Ng, for a € ), and Ng has the same meaning if
we consider the subscript ) either as an element of (* or as a subset of

Clearly A € B C  implies Ny C Np C Ng. We are going to prove
that, if A C B, then N4 is completely embedded into Np. This is a
fundamental principle of the iterated forcing,.

The following lemma, which is a special case of this principle, is easily
checked.

Lemma 4.4. If B is a downward closed subset of @, £ < rank(®). p € Np
and g € Np_, ertends p[§, then U p[[¢, 00) belongs to Np and extends

both p and q. In particular, Np_, is completely embedded into Np.

Using this lemma, we prove the following.

Lemma 4.5. For douwnward closed sets A,B C @, if A C B. then N, is
completely embedded into Np by the identity map.

Proof. 1t is easy to see that the compatibility of conditions in N4 is the
same either in Ny or in Np. We show that, for p € Np and » € Ny,
if r < p| A then there is ¢ € Np satisfying ¢ < p and ¢ < r. We will
proceed by induction on sup A.

Suppose that p € Np, r € Ny and r < p[ A. Let v = maxD". By
the induction hypothesis, there is g<, € Np_, satisfying g, < pl~ and
gy <717

For » € DI, let (s, ws, Iy) = (8, w}, I7). For x € D2\ DI, lel
(S_r,’UJz, F.) = (Sg,wﬁ,Ff)

Let

L=Y{w,:z€ DEU DL} + 17

By the induction hypothesis, for each z € Df U DI, N; is completely
embedded into Np_, and so each f € F, isan N B.,-name. Choose
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¢* € Np_. so that ¢* < g, and ¢* decides the values of f | L for all
fell{F: 12 € DyUDL}). Forz e DP UD] and n € L\ |s2|, let
K;n C w be the set satisfying ¢* IF K,,, = {f(n): f € F.}.

Define s3 for z € DI U D] in the following way: If 2 € D7, then
|s3| = L, s} [, = sz, and for n € L \ I,

st(n) = UK. : 2 € DL, ).

If z € DI\ D7, then |s}| = L, st [f = s;, and for n € L\ B,

U{s:(n) : 2€ D, N DI} UU{K.n: 2 € DE N D} if B<n<l]
s3(n) = S U{Kem: 2 € (DDLU DN <, } ifll<n<L,yeDM

U{K.n:2z€ D2} if i <n<L, y¢gDH
Now we define ¢ = {(sZ,w?, F?) : z € D9} by the following:

b S

1. D?=DPUDT UD,

o

. For 2 € D7, (s2,w?, F3) = (s, w?,F9);
3. For 2 € DP U DI, (s, wd, F) = (st,w,, Fy);
4. For r € DP \ Qcyy, (83, we, F2) = (s, wP, FP),

We now check that ¢ € Ng. The conditions of Definition 4.1 are satisfied
below (resp. above) rank v because ¢* (resp. p) is a condition. Consider
what they say at rank 4. The first clause is trivial. The fourth holds
because the s{’s all have domain L. The third clause can be checked in
two cases.

(i) If 2 € DY, then DY, = (DPUD")g; = Df,, 50 T{w!: 2 € DE,} =
S{ul:ize DL} <l <L

(ii) It z € D \ D7, then DY, = D% UDL,,s0 Y {uw?:2€ DL} =
>A{w.:2€ D%, UDL,} <L ;

For the second, all the requirements except that the si’s are partial
slaloms follow from the fact that p and r are conditions. We need to check
that |s7(n)| < n for each relevant n. If 2 € D7, then for I < n < L, we
have [s;(n)| < 3 {w] : 2 € D, } < |sf| =I5 < m. I 2 € DI\ DY, we
consider four cases.



Case 1. I# < n <7 and v € D*. Definition 4.1(9) for r < pI A with
E = D%, N D} gives

Ist(n)| S Y {ut:2€ E}+(n—B) + 3 {wf:2€ DY, N\ E}
=) {ub:z€ DL }+(n—1)
<B+(n-0B)=n.

Case 2. 1P <n < I and v ¢ D™, In this case, DE,ND} C DINA = §,
solsim)| < Y {uwP:ze€ DL} <EL<n.

Case 3. I7 < n < L and vy € D*. Definition 4.1(8) for r < p| A gives
Y{wl:z€Dr} < Y {u?:ze DM} + (Ir — 7). Removing terms with
z £ x from both sides (see Remark 1) gives

S{wl:ze DL} <Y {uwP:ze DY NA}+ (I - D).
From the formula for s*(n) we now get

|s2(m)| < 22{wf: z € D} + 2 2{wf i 2 € D, N A}
<Y {uw?:ze DL, NA}+ (I -B)+ 3 {w?:2€ Di, \ A}
—Y{urize DL} + ()
<SB+ (I, -B)=1<n.

Case 4. Il < n < Landy ¢ DM, In this case we have |si(n)] <
SAuwt:ze DR} < B <n

Thus, ¢ is a condition.

We now check Definition 4.1(5-9) for ¢ < r and ¢ < p. Clause 5 follows
from the definition of ¢q. For clauses 6-9, first note that below rank ~,
they hold because ¢* < p [~ and ¢* < r [ ~. Consider what happens
at rank 4. Clause 6 holds because for 2 € D? U D7 and all the relevant
values of f and n, we have from the definitions that ¢* I+ f(n) € K,
and K, , C si(n). For clause 7, we consider three cases. Let 2 < y be
elements of D? U D,

(i) If 2,y € D7, then for checking ¢ < r, just use the monotonicity of
st(n) as a function of z. For checking ¢ < p (so now we assume
z,y € DP as well), we also need to consider values of n such that
Ir < n <7 But then sj(n) = s3(n) C sp(n) = sj(n) because
r<plA
This is the only case to consider for checking clause 7 for ¢ < r at
stage 7. The remaining cases deal with checking ¢ < p. Note that
ify € DINDE = DEN A then also » € DN DE since A is downward
closed.
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(ii) If z,y € D~ D7, use the monotonicity of s*(n) as a function of .

(iii) If 2 € DI N D? and y € DE \ D7, then consider first a value of n
such that I < n < II. We have st(n) = s,(n) C U{s.(n) : z €
DL, ,NDI} C < sy(n). Next consider n such that I, < n < L. We have

sp(n) = U{K.n:2€e DL} CU{K.n: 2 € (D” U D)<y} = s3(n).

This takes care of clause 7. Clause 8 follows from the fact that from the
definition of L we have 3 {w, : 2 € DJUD?} < L—17 < L — Ir. For

clause 9, first we check ¢ < < r. f EC D’” is downward clm@d in DTY and
I, <n< L, then | {s*(n) : 2 € E}| = ]U{I& e T € B} <Y {u:
E }. Next we check ¢ < p. Suppose y€ DPandlet E C D¥ be dow nwa,rd
‘closed. Consider four cases.

Case 1. I} <n < and v € DA, Using Definition 4.1(9) for » < p| A

and the fact that E'N A is downward closed in DP4, we have

U{si(n) 12 € E}| = |U{st(n) ;2 €e ENAYUU{s*(n) : 2 € E~ A}
=|U{sp(n) : 2 € ENA}UU{K,, :z € EX A}
SY{uize EnA+ (n—-0)+ > {ul: 2 € EX A}
=2 {ut:x€ E}+ (n—B).

Case 2. It <n <, and vy € D#. Then ENA = §, and the calculation
for case 1 reduces to

U{sz(n) : 2 € E}| = [U{s3(n) : z € E\ A}
= [U{Kzn : 2 € EX A}
<>{ur:zeE\ A}
<Y{wl:z € E}+ (n~0B).
Case 3. Il < n < L and v € D¥. Let E” be the downward closure

in D of EN A = EN DM, Using Definition 4.1(8) for r < p| A and
removing terms with 2 ¢ E™ from both sides gives

dAul 2z e B} <Y {ut:z€ ENA} + (0, —1&).
Then we get
U{si(n):2 € E} = |U{K.n:z € E"} U{A.n:2z€ EX DI}
SY{ul:zeE}+ Y {ut:z€ EX A}

SY{ut:2€ENA}+(n—1B)+ Y {ut:2€ EX 4}
<Y{ut:z€ E} +(n-1&).



Case 4. I, <n < L and y ¢ D**. We have

|U{ss(n) : x € E} = |U{K.n : 2 € E} S 3 {w?: z € E}.

Thus, ¢ < 7. The proof that ¢ < p is completed by appealing to
Lemma 4.4. , a

The following definition and lemma provide a simple mechanism for
extending conditions.

Definition 4.6. Let B € Q be a downward closed set and v € B.
o = {(s¥,w? ,FF) : 2 € D"} is a y-precondition of Np if p satisfies the
following: '

1. D7 is a finite subset of B;

2. For z € D¥, ¥ € T, w? < w, F¥ is a finite set of N,-names for
functions in ¥, and |F¥| < w?;

3. For 2 € DY \ DY, S {w? : z € DY} < |s7;

4. For z,y € D¥ | if rank(x) = rank(y) then [sg' | = |s§'|.

For ¢ € D, we will let lg' be the length of sg' for 2 € Dg .
For ~-precondition p’ of Np and p € Np, we say p is a y-preextension
of p if

1. D 2 D? and D” N\ Q<yy1 = DP \ Qeqirs

2. Py <plm

3. For z € ¥, ¥ = st FP = F? and w? > w?;

4. For £ € D¥ \ D?, F¥ = and u? = 0;

5. For 2 € DP N\ Qeys1, (7, w8, FY) = (s2, w2, FP).

Lemma 4.7. Let B C Q be a downward closed set, p € Np, v € B,
p = {(s¥,w¥ ,F¥) : 2 € D"} a ~y-preextension of p such that D¥ + 0,
and N < w. Then there is ¢ € Np such that:

1. g<pandqly<p'ly;
2. D?Y:DZ’(’ and, for x € D1, 512 8%, wl=wf and, F = FF;



3. DTN Qeyir = DP N Qeyyy and, for 2 € DIN Qeyp, 84 = o7,
4 — 9P q9 — P, .
wl =uwf and F = F?,

4. B> N.

Proof. Let L = max{d - {w? : 2 € D¥} + I N}, }

Note that clause 3 in the definition of “p’ is a ~4-preextension of P’
ensures that l{," = I5 as long as the latter is defined, i.e., as long as
v € DP,

Using Lemma 4.5, choose ¢* € Np_, so that ¢* < p/ [y and ¢* decides
the values of f | L for all f € U{FF 12 € Df} = U{Fr : 2 ¢ Dr}.
Forz € Df andn e L\ l’;’ = LN, let K;n, C w be the set satisfying
¢* - K. ={f(n): f € FP}. Note that |K, .| < |F?| < w?.

Define s, for = € Dg’ as follows: |s;| = L, s, | lij' = &%, and for
neL\F ifze DE then s;(n) = U{K,n : 2 € D} and if 2 ¢ Dr
then s,(n) = 0. Now we define g = {(s2,w?, F9) : ¢ € D7} as follows:

1. D= D7 U D¥,

2. For r € D7, (s?,w?, F3) = (s, w?, F2);

3. For 2 € Dg’, (52,02, F2) = (s;, w?, F?);

4. For 2 € DI\ Qeyyys (s2,wd, F3) = (s, w? , FY).

We now need to check that ¢ € Np and ¢ satisfies the requirement. For
= Df,', l{’/' < n < L, we check that |s,(n)| < n and leave the rest of the
verification to the reader. If z ¢ D2, then s.(n) = 0. Suppose now that
x € Dr. Th(len [sz(n)] = U{K.n: 2 € DEH < S{uP : 2z € D%} <
2| =10 =17 <n. O

Next we prove that Ng satisfies ccc.

Lemma 4.8. Let W be the collection of conditions q¢ € Ny satisfying the
following properties:

1. Forallz € D9, 2 |F3| < wi;
2. Forall§e D9, 2 -3 {wl:2eDf} <L

Then W is dense in Ng.

69
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Proof. By induction on ¢ < rank(Q), we will show that W, is dense in
Ne.

EFix p € N; and let v = max Dp. Define a +y-preextension p’ of p by the
following: D = DP, p' |y = p[+v and, for z € D?, s¥ = sP, F¥ = F?
and w? = max{w?,2- |F?|}. Let N = 2- Y {w’ : € D?}. Applying
Lemma 4.7 to p, p’ and N, we get a condition ¢ < p as in the lemma.
By induction hypothesis, there is a condition ¢* € W, ¢* < ¢[+v. Then
q* Ugq[{~} extends q (by Lemma 4.4) and belongs to W, 1. a

Lemma 4.9. Ng satisfies ccc.

Proof. Let W be the dense set given by Lemma 4.8. If A C W is un-
countable, then thin A out to an uncountable set A’ C A such that

(1) {D?:p e A’} is a A-system with root u;
(2) For £ € u, there is an I such that If = [ for all p € A';
(3) {D?:pe A'} is a A-system with root U;
(4) For 2 € U, there are s, and w, such that s2 = s, and w? = w, for
all p e A
(5) For each U’ C U, there is a number kys such that for each p € A',
Y {|F?|: for some xr € U’, z € D%} = k.

Note that, because p € W, we have 2kyy < > {u? : for some r €
U, ze D%}

Let p and g be any two conditions in A’. Let §g < & < --- < &—1 be the
increasing enumeration of DP U D?. We will inductively define conditions
i € Neg, 41, ¢ <k, so that '

1. 7; is a common extension of p[ (& + 1) and ¢ (& + 1);
2. Foreachi <k —1, rigq [ &1 S 140

Set 7_; = 0. When & ¢ wu, then only one of DP, D? contains &. If
¢ € DP\ D9, then let r; = r;,_; Up [ {&}. Then 7; inherits from r;_; and
p[{&} the properties needed for being a condition. It extends p[(£; + 1)
by Lemma. 4.4. It extends q | (£;+1) because the inclusion of the domains
holds and ¢ [ (§ + 1) = ¢ | (§&—1 + 1), so the relevant values of z and ¢
for which 2 € D? or £ € D9 in clauses 6-9 of Definition 4.1 applied to
r; < ¢l (& + 1) all have rank at most §;_; and hence the clauses hold
because 15-1 < q[(&-1 + 1). Similarly if ¢; € D7\ D",
Now suppose §; = v € u. Proceed as follows.



(a) Let L =3 {u?: 2 € D2} + Y {w?:z € D} +1,

(b) Get »* € Ny, r* < ri_q which decides the values of f | L for
feFP e Diand felf ze€ Di. Forn € L, let K, be the set
such that

(i) I {f(n): f € F¥} = K.n, if 2 € D2\ Dg;

(ii) r* - {f(n) : f € F?} = K, if # € DI\ DE;
(iii) - {f(n): fEFPUFY} =K, ., ifz € D n D1,
Note that

U{Ken 2 € DEUDIY <Y {uwP:x e D2} + S {ul 2z € D}
< 2-max(Y_{w?:2 € DI}, 3 {w?: z € DI})
<1,
where the last inequality holds because p,q € W.
(¢) For n such that I, < n < L, define s,(n) as follows.
(i) sz(n) = U{K.. : z € DZ, or forsome 2’ € DP N D3, z €
(DPUD%)y and z < 2' <2}, if 2 € DE N Dg;
(i) s5(n) = U{K:n : 2 € D%, or for some 2/ € Dz N Di, z e
(DPUDY), and z < 2’ <z}, ifz € D3\ Dr;
(iil) sx(n) = {K.n:2€ (DPUDY),},ifz e Drn Di.

Suppose E C DP is downward closed. Then

U{s:z(n) : 2 € E} = U{K.n:2z € (D?U DY, for some 2 € EN U}
UU{K.,: 2 € E and for no z € ENU do we have z < z}.

So

U{sz(n) 1z € B} < S {|F?|: z € D%, for some 2 € ENU}

+ 2 {lF¢|: z € DL, for some z € ENU}

+2{|F?|: 2z € E and for no z € ENU do we have z < 2}
< 2kprv

+ 22{|Ff|: z € E and for no x € ENU do we have z < z}
< Y {wt:z e D%, for some 2 € ENU}

+ 2 {wl:2€ E and for no x € ENU do we have z < «}
=Y {u?:2€E}.
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Similarly, if E is a downward closed subset of D?, then | J{sz(n) :

re B} <Y {wl:2€E}

(d) Let r; = ™ U {(ss,ws, Fz) : ® € DI U D2}, where the triples
(8z, Wy, Fy) are obtained as follows.

(i) Each s, has domain L, s, [1, = s8 if x € D? and s, [{, = s if
z € DI. (This is unambiguous if both clauses hold because of
item (4) in the list of properties of 4'.) For I, < n < L, s,(n)
is as defined in (c).

(ii) We have w, = w® if z € D? and w, = wi if » € DI (and this
is unambiguous if both clauses hold).

(iii) For x € D\ D9, F, = F?. ¥or x € D\ D", F; = F{. For
reDPNDY F,=FPUFYI.

We must check that r; is as desired. First we check that r; is a well-defined
condition. In Definition 4.1, clause 1 and the first and third statements
of clause 2 hold by definition. The second statement holds below rank
&; because r* is a condition. At rank v = §;, it holds because for each
r € (DPU D%y and n < L, if n < I, then |sy(n)] < n because p and
q are conditions and if I, < n < L then the argument at the end of (b)
above shows that |s,(n)| < I, < n. For the last statement, we have that
|F.| is bounded by one of |F?|, |Fd|, |F?| + |FZ|. In all cases, because
p,q € W, we have that |F,| is bounded by either 2 - |F?| < w? = w; or
2. |F3| < w? = w,. For clause 3, the property is inherited from »* if the
rank of 2 is less than &;, and, if the rank of z is &, is inherited from p
or q if & € DP\ D? or & € DI\ DP. Otherwise we have > {w, : z €
(DPUD <} < S {ul:ze DL} + > {wl:xe DL} <l < L. Clause
4 is inherited from 7* at ranks below &; and holds by definition at rank
&

Now we check that r extends p and ¢q. By symmetry, it its enough to
check that r extends p. All of the clauses 5-9 in the definition hold below
rank & because * < ri_; < p|&-1 + 1. Consider now what they say
at rank 4 = £. The inclusion of the domains and all but the last part
of 6 hold by definition of r. The last part of 6 holds because if z € D¥,
f e Frandl, <n < L, we chose * so that 7 Ik, f(n) € Kz, C s.(n).
Because f is a N,-name and N, is completely embedded in N, it follows
that r* [z = 1; [ 2 also forces f(n) € sy(n).

The proof of clause 7 is a case by case analysis. Suppose 2,y € D,
z <yandl, <n < L Each of x and y comes under either (c)(i) or



(c)(ili). Since the formulas used there are increasing functions of x, we
need only consider the following two cases.

Case 1. r € DE N D% and y € DEN DY Let m € s,(n) and fix
z witnessing this. (So m particular, m € }\Zn ) We will show that
K:n © sy(n). If z € D%, then also z € D%, 50 K, 5, C sy(n). The other
possibility is that for some 2 € D? N Di, ze(DPUDY),and z < 2/ < z.
Then 2’ € (DP U D%)<,, so again K, , C sy(n).

Case 2. 2 € Drn Dq and y € Di N\ Di. Fix z € (D? U D%)«,. Taking
2 =1z, we have z < 2/ < Y w1tnessmg that Ko n C sy(n).

For clause 8, we have that 3 {w, : z € (DPUD?),} < Y{u? : z ¢

D2} + 3 {wl : x € DI} = L — L, by the definition of L in (a). Finally,
clause 9 was checked in (c).

For ¢ =k — 1, we get that r; is a common extension of p and q.

This complete the proof that Ny is cce. O

5 Proof of the main theorem

This section is devoted to the proof of Hechler’s theorem for the null
ideal. We will show that the forcing notion N satisfies all the require-
ments of the theorem.

Lemma 5.1. For a downward closed set B C (), p € Np, £ € DP and
N < w, there is ¢ € Np such that ¢ < p and E>N.

Proof. Just apply Lemma 4.7 to p’ = p and N. |

Lemma 5.2. For a downward closed set B C Q, p € Np and a € B,
there is ¢ € Np such that ¢ < p and a € D1.

Proof. We may assume that a ¢ DP. Let a = rank(a).

If @ ¢ Dr, then define ¢ € Np by letting D? = DP U {a}, s? = @,

wl = 0, F¢ =0 and other components of ¢ are the same as p

Now we assume that o € DP. Define an a-preextension p’ of p in Ng
by letting D? = DPU{a}, s¥ is arbitrary with length &2, w? =0, FV =0
and other components of p’ are the same as p. Apply Lemma 4.7 to p, p’
and N =0, and we get ¢ € Ng with ¢ < pand a € D4. a

Lemma 5.3. For a downward closed set B C Q, p € Np and a € D?,
there is ¢ € Np such that ¢ < p and wi > |F3] + 1.

Proof. Let a = rank(a). Define an o-preextension p’ of p in Np by letting
DY = pp, w? = % -+ 1 and other components of p’ are the same as p.
Apply Lemma 4.7 to p,p' and N = 0, and we get ¢ € Np as required. O

13
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Lemma 5.4. for a downward closed set B C @, p € Ng, a € D? and
an Ng-name f for a function in w*“, there is ¢ € Np such that ¢ < p and
feFg

Proof. First use Lemma 5.3, and then put f into F1. O

Let V be a ground model and G an Ng-generic filter over V. For
a€Q,let Gla=GnNN,={pla:p€ G} Then Gais an N,-generic
filter over V.

In V[G], for a € @ let p, = J{s? : p € G and a € D?}. By Lem-
mata 5.1 and 5.2, ¢, is defined for every a € @, and belongs to S.

Lemma 5.5. In V[G], for every a € Q and f € w? N V(G [a], for all but
finitely many n < w we have f(n) € p,(n).

Proof. Follows from Lemma 5.4 and the definition of Ng. O

Lemma 5.6. For a,b € @, if a < b and rank(a) = rank(b), then for all |
but finitely many n < w we have p,(n) C wp(n).

Proof. Clear from the definition of Ng. O

Fora € Q, let H, = H,,. Then each H, is a null subset of 2. We will
show that, in V[G], the set {H, : a € Q} is order-isomorphic to (Q, <)
and cofinal in (N, C).

Lemma 35.7. Let a € Q. For a Borel null set X C 2% which is coded in
VIG la], we have X C H,.

Proof. Follows from Lemma 5.5 and the observation in Section 2. O

Lemma 5.8. In V[G], for every null set X C 2¥ there is a € Q satisfying
X C H,.

Proof. We may assume that X is a Borel set in V[G]. By our assumption
on (@, <) and because Ny satisfies cce, X is coded in V|G | a] for some
a € @, and by Lemma 5.7, we have X C H,. O

.Lemma 5.9. Fora,b€ Q, ifa <b then H, C H,.

Proof. If a <« b, then H, is coded in V|G |b] and hence H, C H, follows
from Lemma 5.7. If a < b and rank(a) = rank(b), then it follows from
Lemma 5.6 and the observation in Section 2. , O



For each a € Q, let r, = r, and R, = R, as defined in Section 2.
As we observed in Section 3, we define an Ng-name 7, for r, so that, for
p € Ng if @ € D? and |s?| = n then p decides the value of 7, [ .

Lemma 5.10. Fora,b€ Q, ifa £ b then H, € H,.

Proof. Suppose that a £ b. Since we always have RyNH), = @ and R;, # 0,
it suffices to show that R, C H,.

Fix p € Ng and M < w. By Lemmata 5.2 and 5.3, we may assume
that a,b € D? and w? > |FP| + 1.

We will find ¢ < p and m > M which satisfy g IF 75(m) € s3(m). This
implies that for infinitely many m < w we have 1,(m) € ¢, (m), and hence
Rb C Ha- .

Let a =rank(a), 6 = rank(b), B = {2 € Q : # < b}. Note that a ¢ B
by the assumption. Extend p if necessary 1o arrange the following.

If B, #0, then B, N D? £ 0.

(‘The following observation is not used in the proof, but note for clarity
that because of the definition of rank for elements of Q \ R, the ranks of
the elements of a downward closed set need not be an initial segment of
the ordinals. For example, if R = w; ordered as usual and Q is R with
new elements e,, where e, < o but no other relations hold other than the
ones needed to ensure transitivity, then e, has rank « and every subset
of {eq : @ < w1} is downward closed. Thus the assumption B, # ) can
fail even if o < 8.)

We set m = max{M, 2} + 1.

Using Lemma 5.1, get p* € Np extending p| B such that |s} | > m -+ 1.
By the choice of 7, p* decides the value of Ts(m), so let & be such that
p* IFng (M) = k.

We will construct ¢ € Ny satisfying ¢ < p and ¢ < p*, using an
argument similar to, but somewhat more difficult than, the proof of
Lemma 4.5.

The proof which follows is really two similar but different proofs, one
for the case where B, # @ and one for the case B, = . In order to be
able to write as much as possible of the two proofs as one, we will use the
abuse of notation max{lZ’, 12} to designate I2" when B, # 0 and I when
B, =0 (in which case I’ is actually not defined).

We will be done if we build ¢ < p with k € si(m). For z € DF,
let (sg,ws, Fy) = (s2°,w®",F?"). For r € DE N\ DF°, let (s,,wy, Fy) =
(s5,ws, FT). Let |

L=3%{w,:2€D2UDF} +max{lZ', 12} + m + 1.

15
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Choose go € Ny, so that go < pla, go < p* [ (and hence also gy [ B« <
p* 1), and go decides the values of £ [ L for all f € | J{F, : 2 € DLUD'}.
Forr € DPUDP and n € L\ |sg], let K;n C w be the set satisfying
go b Ken={f(n): feF:}. Fora € D2UD® and n € L\ |sg], if
(z,n) # (a,m) then let K|, = K., and let K, = K,m U {k}. By the
assumption that w? > |F?| + 1, we have |K? ,| < w, for all z € D%, U D¥’
and n € L\ |sg]. v

Define s* for 2 € D? U D? as follows. If 2 € DP', then
st]IP =s,, and forn € L\ IE,

si(n) = U{K",‘,n 1z € D’;}

3:' = L,

Ifz € D2\ D, then |s*| = L, st [I2 = s,,and forn € L\ I8,

$(n) = {U{sz(n) 1ze€ DL NDYYUIHK,L, :2€ DY, N D2}, 17 <n<max{l
I

U{K., z€(DhU DP)er}, max{!
Define ¢; by ¢1 = {('sgl, wi, F#) :x € D* U DP" U DP} where
1. For z € D%, (s@,w¥, F#) = (s2,wlk, F%)
2. For x € D2 U D¥', (8%, w¥, F#) = (8%, w,, I})
3. For z € D' \ Qay1, (8T, wP, F2) = (s8',w?’, FF")

We now check that ¢, € Ng. The conditions of Definition 4.1 are satisfied
below (resp. above) rank a because qq (resp. p*) is a condition. Consider
what they say at rank «. The first clause is trivial. The fourth holds
because the s2’s all have domain L. The third clause can be checked in
two cases.

(i) If 2 € D2, then D2 = (DP U D), = D’gz, so Y {wh :z €
D¥}y=Y{ut':2€ DL} < <L

(ii) If 2 € DI ~ D', then D%, = Df U D%, s0 S {wf : z € DL} =
S{w.:ze DR, UDL Y <Y {w,: 2€ DRUDR } < L.

For the second, all the requirements except that the s%’s are partial
slaloms follow from the fact that p and p* are conditions. We need to check
that |s*(n)| < n for each relevant n. If x € D?’, then for I¥" < n < L, we
have [st(n)| < Y {w?" 12 € DE,} < || =18 <n Ifze D\ D%, we
consider three cases.

}

}<n<L
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Case 1. £ < n < max{l%,I?}. In order for this case to be non

vacuous, we must have o € D2, Then Definition 4.1(9) for p* < p| B
with E = DZ, N DP gives

[ssm) < SS{uf: 2 € B} + (n— 1) + S{ul : 2 € D2, E}
=y {uP:z€ DL} +(n—-18)
<P+ (n—-0)=n. .
Case 2. max{i2',i2} < n < L. If a € D¥®, then Definition 4.1(8) for
p* < plB gives
S{wt 1 2€ D'} < S {wP: 2z € DAB} 4 (IF - I2).
Removing terms with z £ z from both sides (see Remark 1) gives
. T{wl:zeDL}<Y{ul:zeDZ,nB}+ (I — 7).
From the formula for s,(n) we now get

[s(n)] < S {wt* : z € D’;;} +Y{uw?:z € D’_é_z \ B}
<YA{ul:ze DL NBY+ (I —8) + X {wt : z € D}, \ B}
=2 {uwt:ze DL} + (I - )

S -B) =8 <n

If o ¢ DPB then B, =@, s0 o € DP'. The formula for s*(n) thus reduces
to s3(n) = U{A7, : 2 € DL,}, and hence |st(n)| < S{u? : z € D%} <
£ <n.

Thus, ¢, is a condition. We now check Definition 4.1(5-9) for ¢, < p*
and q1 < p| BU Qcap1. (We only need the latter, but the former is
needed at one point of the proof.) Clause 5 follows from the definition
of ¢1. For clauses 6-9, first note that below rank «, they hold because
g < plaand g < p* . Consider what happens at rank «. Clause 6
holds because for z € D? U D?" and all the relevant values of f and n, we
have [rom the definitions that go IF f (n) € K, and K, ,, C s*(n). Tor
clause 7, we consider three cases. Let » < y be elements of D? U Dr,

(i) If 2,y € D?’, then for checking ¢; < p*, just use the monotonicity

of s7(n) as a function of z. For checking ¢; < p | BU Q<at1, We
also need to consider values of n such that I < n < 2", But then
sz(n) = s’ (n) C s&"(n) = sk(n) because p* < p| B.
This is the only case to consider for checking clause 7 for ¢; < p* at
stage a. The remaining cases deal with checking ¢1 < p[ BUQ<ay1.
Note that if y € D2 N DE = D2 N B then also x € D2’ N DP since
B is downward closed.
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(ii) If 2,y € DP \ DP', use the monotonicity of s*(n) as a function of
x.

(iii) If 2 € D¥ N DP and y € D? \ DF', then consider first a value of
n such that 22 < n < I2". We have s%(n) = s,(n) C U{s.(n): z €
DL, N Dr} C sy(n). Next consider n such that P<n<L We
have sj(n) = U{KL, : z € DL} S UKL, 2 € (DRUDE )} =

sy(n).

That takes care of clause 7. Clause 8 follows from the fact that if @ € D",
then from the definition of L we have Y {w, :2 € D2 UDR} < L - I,
and if o € D2\ D?', then Y {w, : € DE" UDE} < L — I&. For clause
9, first we check ¢; < p*. If a € DP", E C DF" is downward closed in
D and & < n < L, then | U{s}(n) : z € B} = {K], :2 € E}| <
S {uP’ : r € E}. Next we check ¢1 < p| BU Qcqat1. Note that the
elements of rank o are the same for the domains of p and p| B U Q<q¢1.
Also a € D?, since a € D?. Let E C D? be downward closed. Consider
two cases.
Case 1. I < n <P, We have

U{st(n) .z € E} = |U{st(n): 2 € ENB}U|J{st(n) : z € E\ B}
=|U{sZ'(n): 2 € ENB}UU{K., 2 € EX B}|

<Y{uw?B:zeEnB}+(n—-0)+Y{wt:2€ EX B}

=Y{uwt:z € E} +(n— D).

Case 2. max{lF',I’} < n < L. Let E' = {¢ € DF : for some 2 €
E, z < 2}. We have

U{st(n) : z € E}| = |U{st(n) : 2 € ENnB}UU{s:(n) : z € EX B}|
= |U{K.,, :2€ E'}YUU{R., : 2 € EX B}
<Y{w :z€E'}+ Y {uwf:x€ E\ B}.

If E is empty, then this last expression is < Y {w? : x € E}. If not, then
Definition 4.1(8) applied to p* < p| B (with terms outside E’ eliminated
from both sides) gives that

SAut 2 € E'}+ > {uwP:z€ E\ B}

<S{wP:z€e ENB}+ (% ~ )+ X {ul:2€ E\ B}
=Y {uwf:re B} + (8 - 1)
<Y{ul:zeE}+(n-0).



Thus, the conditions for ¢; < p* and q; < p] BUQ<q41 hold up to rank
. Above rank «, ¢ agrees with p*, so Definition 4.1(6-9) hold trivially
for g1 < p*. For g3 < p[BU Qa1 we need to prove the the clauses for
€ > a. All of them follow from the fact that p* < p| B, ¢, | € < p* [ €,
and ¢; agrees with p* at rank £. (The fact that ¢; [£€ < p* [ £ is used to
check the last part of clause 6.)

Now we apply Lemma 4.5 to p and ¢y, and we get ¢ € Ng such that
g < p and q I 75(m) € sI(m). O

Now we have the following main theorem.

Theorem 5.11. Let N be the collection of null sets in 2. Suppose that Q
is a partially ordered set such that every countable subset of Q has a strict
upper bound in Q. Then in the forcing model by Ng, (N, C) contains a
cofinal subset {I, : a € Q} which is order-isomorphic to (Q, <), that is,

1. for every X € N there is a € Q such that X C H,, and
2. fora,be Q. H, C H, if and only if a < b.
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