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The stochastic variational inequality problem is to find a vector $x\in R^{n}$

such that
$x\in S,$ $\mathrm{F}\{\mathrm{x},$ $\omega)^{T}(y-x)\geq 0$ $\forall y\in S,$ (1)

where $S\subseteq R^{n}$ is a nonempty closed convex set, $F$ : $R^{n}\cross\Omegaarrow R^{n}$ is a
vector-valued function, and $(\Omega, \mathrm{r}, P)$ is a probability space with $\Omega$ $\subseteq R^{m}$ .
When $S$ is the nonnegative orthant $R_{+}^{n}:=\{x\in R^{n}|x\geq 0\}$ , this problem is
rewritten as the stochastic complementarity problem

$F(x, \omega)\geq 0,$ $x\geq 0,$ $F(x, \omega)^{T}x=0.$ (2)

In general, there is no $x$ satk Tying (1) or (2) for all $\omega$ $\in$ Q. An existing
approach is to consider the following deterministic formulations of (1) and
(2), respectively:

$x\in S,$ 7$( \infty x)^{T}(y-x)\geq 0$ $\forall y\in S,$

and
$F_{\infty}(x)\geq 0,$ $x\geq 0,$ $F_{\infty}(x)^{T}x=0,$

where $F_{\infty}(x):=\mathrm{E}[F(x, \omega)]$ is the expectation function of the random func-
tion $\mathrm{F}\{\mathrm{x},$ $\omega$ ). Note that these problems are in general different from those
which are obtained by simply replacing the random variable $\omega$ by its ex-
pected value $\mathrm{E}[\omega]$ in (1) or (2). Since the expectation function $F_{\infty}(x)$ is
usually still difficult to evaluate exactly, one may construct a sequence of
functions $\{F_{k}(x)\}$ that converges in a certain sense to $F_{\infty}(x)$ , and solve a
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sequence of problems (3) or (4 ) in which $F_{\infty}(x)$ is replaced by $F_{k^{\alpha}}(x)$ . In
practice, approximating functions F7 (x) may be constructed by using discrete
distributions $\{(\omega^{i},p_{i}), i=1, \ldots, k\}$ as

$F_{k}(x):= \sum_{i=1}^{k}F(x, \omega^{i})p_{i}$ ,

where $p_{i}$ is the probability of sample $\omega^{\iota}$ .
Convergence properties of such approximation problems have been stud-

ied in [8] by extending the earlier results for stochastic optimization and
deterministic variational inequality problems.

The deterministic complementarity problem has played an important role
in studying equilibrium systems that arise in mathematical programming,
operations research and game theory. There are numerous publications on
complementarity problems. In particular, Cottle, Pang and Stone [4] and
Facchinei and Pang [5] give comprehensive treatment of theory and meth-
ods in complementarity problems. Ferris and Pang [6] present a survey of
applications in engineering and economics. On the other hand, in many
practical applications, complenmentarity problems often involve uncertain
data. However, references for stochastic complementarity problems are rela-
tively scarce [1], compared with stochastic optimization problems for which
abundant results are available in the literature; see $[9, 10]$ in particular for
simulation-based approaches in stochastic optimization.

In [2], confining ourselves to the stochastic linear complementarity prob-
lem (SLCP)

$M(\omega)x+q(\omega)\geq 0,$ $x\geq 0,$ $(M(\omega)x+q(\omega))^{T}x=0,$ (5)

where $M(\omega)\in R^{n\mathrm{x}n}$ and $q(\omega)\in R^{n}$ are random matrices and vectors, we
propose a new deterministic formulation that is based on the concept of
expected residual minimization.

To this end, we will use a function $\phi$ : $R^{2}arrow R,$ called an NCP function,
which has the property

$\phi(a, b)=0$ $\Leftrightarrow$ $a\geq 0$ , $b\geq 0,$ $ab=0.$

Two popular NCP functions are the $” \min$” function

$\phi(a, b)=\min(a, b)$



aIld the Fischer-Burmeister (FB) function

$\phi(a, b)=a+b-\sqrt{a^{2}+b^{2}}$ .

All NCP functions including the $” \min$” function and FB function are equiv-
alent in the sense that they can reformulate any complementarity problem
as a system of nonlinear equations having the same solution set. In the last
decade, NCP functions have been used as a powerful tool for dealing with
linear complementarity problems [3].

With an NCP function $\phi$ , we may consider the following problem which
is to find a vector $x\in R_{+}^{n}$ that minimizes an expected residual for the SLCP
(5):

$\min_{x\in R_{+}^{n}}\mathrm{E}[||\Phi(x, \omega)||^{2}]$ , (6)

where

$\Phi(x, \omega)$ $:=(\begin{array}{l}\phi((M(\omega)x+q(\omega))_{1}x_{1})\vdots\phi((M(\omega)x+q(\omega))_{n},x_{n})\end{array})$

We call problem (6) an expected residual minimization (ERM) problem assO-

ciated with the SLCP (5). Throughout, we assume that $M(\omega)$ and $q(\omega)$ are
continuous functions of $\omega$ and the norm $||$ $||$ is the Euclidean norm $||$ $||2$ .
Now let us note that, if $\Omega$ has only one realization, then the ERM problem
(6) reduces to the standard LCP and the solubility of (6) does not depend
on the choice of NCP functions. However, the following example shows that
we do not have such equivalence if $\Omega$ has more than one realization.

Example 1. Let $n=1$ , $m=1$ , $\Omega=\{\omega^{1}, \omega^{2}\}=\{0,1\}$ , $p_{1}=p_{2}=1/2,$

$M(\omega)=\omega(1-\omega)$ and $q(\omega)=1-$ 2w. Then we have $M(\omega^{1})=M(\omega^{2})=0,$

$q(\omega^{1})=1$ , $q(\omega^{2})=-1$ and

$\mathrm{E}[||\Phi(x, \omega)||^{2}]=\frac{1}{2}\sum_{i=1}^{2}||\Phi$ $(x, \omega^{i})$ $||^{2}$ .

The objective function of the ERM problem (6) defined by the $” \min$” function
is

$\frac{1}{2}[(\min(1, x))^{2}+(\min(-1, x))^{2}]=\{$

$x^{2}$ $x\leq-1$

$\frac{1}{2}(x^{2}+1)$ $-1\leq x\leq 1$

1 $x>1$
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and the problem has a unique solution $x^{*}=0.$ However, problem (6) defined
by the FB function has no solution as the objective function

$\frac{1}{2}[(1+x-\sqrt{1+x^{2}})^{2}+(-1+x-\sqrt{1+x^{2}})^{2}]$

is monotonically decreasing on $[0, \infty)$ .
In order to find a solution of an ERM problem (6) numerically, it is neces-

sary to study the objective function of (6) defined by an NCP function. There
are a number of NCP functions. In [2], we focus on the $” \min$” function and
the FB function. We use $\Phi_{1}(x, \omega)$ and $\Phi_{2}$ ($x$ , ci) to distinguish the function
$\Phi(x, \omega)$ defined by the $” \min$” function and the FB function, respectively. We
use $\Phi(x, \omega)$ to represent both $\Phi_{1}(x, \omega)$ and $\Phi_{2}(x, \omega)$ when we discuss their
common properties.

We consider the following ERM problem:

$\min_{x\geq 0}f$ $(x):=\mathit{1}_{\Omega}||$
$D$ $(x, \omega)||^{2}\rho(\omega)d\omega$ , (7)

where $\rho$ : $\Omegaarrow R_{+}$ is a continuous probability density function satisfying

$\int_{\Omega}\mathrm{p}(\omega)\mathrm{c}\#\omega$ $=1$ and $\int_{\Omega}||\mathrm{c}\mathrm{p}$ $||^{2}\mathrm{q}(\mathrm{u})d\omega<\infty$ . (8)

Obviously, if $M(\omega)\equiv M$ and $q(\omega)\equiv$ g, then (7) reduces to the standard
linear complementarity problem.

In [2], we show that a sufficient condition for the existence of minimizers
of the ERM problem (7) and its discrete approximations is that there is
an observation $\omega^{i}$ such that the coefficient matrix $M(\omega^{i})$ is an $R_{0}$ matrix.
Moreover, we prove that every accumulation point of minimizers of discrete
approximation problems is a solution of the ERM problem (7). Especially, for
a class of SLCPs with a fixed coefficient matrix $M(\omega)\equiv M,$ we show that $M$

being an $R_{0}$ matrix is a necessary and sufficient condition for the boundedness
of the solution sets of the ERM problem and its discrete approximations with
any $q(\omega)$ . We show that a class of SLCPs with a fixed coefficient matrix, the
ERM problem with the $” \min$” function is smooth and can be solved without
using discrete approximation. We present numerical results to compare the
formulations (4) and (6), as well as the formulations as a stochastic program
with recourse and a stochastic program with joint probabilistic constraints,
for solving a stochastic linear amming problem in oil refinery plants [9].
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