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Abstract: Data stream mining, i.e., the on-line processing and analysis of rapidly and

continuously arriving large volumes of data, has emerged as an exciting new area of re
search. Application domains include financial transactions, sensor network measurements,

and telecommunication networks. A new generation of mining algorithms are needed for
real-time analysis and query response for these applications since most conventional data
mining algorithms can only be applied to static data sets that may be updated periodically
in large chunks, but not to continuous streams of data. We examine how some classical
tools from statistical and signal analysis have been modified and enhanced to solve real
world problems involving data streams.

1. Introduction

A data stream is a sequence of points that can be read only once, in a fixed order and rate
that is normally determined by a system, not by the recipient user. The problem of processing

tends of thousands of time series data streams appears in numerous application domains, ffom

financial transactions to sensor network measurements, telecommunication networks, manufic-

turing systems, and scientific data monitoring systems [1, 2, 9]. Analysis of information in data

streams poses some different chalenges than those found in classical data mining. Some features
that characterize algorithms for stream mining are: fast, real-time processing; means for coping

with massive volumes of (possibly infinite) data; a single pass for examination and analysis

of stream elements; a systemdetermined (not user-determined) order of stream elements; and

limited availability of memory for analysis and synopsis storage.

Research involving data streams has been conducted from several different perspectives.

Some examples are: stream data management systems and their system architecture, stream
query models, computer languages for facilitating fast query response, and fast (approximate)

algorithms. At least four broad areas of research have emerged from this last perspective -
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algorithms. They axe: clustering and summarization; classification of stream data; computation

and analysis of statistical parameters associated with data streams; and wavelet-based synopsis

generation and analysis. In the past few years the volume of published work on stream mining

has increased so rapidly that it would be impossible to conduct a comprehensive survey of even

a few of the major topics in the field. This paper examines some selected works that have

made significant progress towards solving real world problems from the last two perspectives

associated with data streams mentioned above, namely statistical parameter and wavelet-based

synopses computation and analysis.

The remainder of this paper is organized as follows. In the next section we review some

classical tools ffom statistical analysis and signal analysis. In the following section we review

selected examples in which these tools have been modified and enhanced to solve real world

problems involving data streams.

2. Models and ffiols for Stream Analysis

Algorithms for stream mining rely on several tools from statistical analysis. They include:

modeling of the stream as an ordered or unordered sequence; modeling of the stream as in-

dividual items without pre-processing or as pre processed aggregates; physical- and time used

windowing of streams to facilitate analysis; and approximation and monitoring of classical sta

tistical parameters. Some statistical parameters of interest in typical applications are: averages,

standard deviations, best fit slopes, cross-correlation and auto correlation coefficients, and the

sensitivity of values in a stream to values in another stream. In this section we review some

statistical tools that are particularly useful in data stream analysis techniques that have been

developed to date.

Histograms

Histograms are one of the more frequently used tools in the statistical analysis of data The

main idea in histogram analysis is to:

$\circ$ partition a given data distribution according to some rule;

$\circ$ place the partitioned data into separate entitites known as buckets; and then

$\circ$ compute the frequencies, means, standard deviations or other characteristics of data for

each bucket.
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For One imensional problems, histograms are usualy constructed to be equi-width or equi-depth

with respect to a user-specified attribute. Sometimes more sophisticated schemes are used, for

example, minimizing the standard deviation for each bucket for a given maximum number of

buckets.

Multi-dimensional histogram construction is a much more difficult problem (and an entirely

different beast) than its one-dimensional counterpart [19]. Algorithms for its construction and

dynamic update are needed for query optimization in stream mining systems. This paper

does not review this research area, but interested readers should consult the doctoral thesis by

Poosala [20] and citations thereof 1.

Point $\mathrm{v}\mathrm{s}$ . Window Models - for time-series analysis

Time series data stream analysis falls into two broad categories: point monitoring and

aggregate monitoring. In point monitoring, only the most recent data point is important. In a

typical application scenario, whenever a data point (representing, e.g., temperature, pressure,

stock price) falls above or below certain thresholds, an alarm or notification is sent to a monitor.

In aggregate monitoring, parmeters for analyzing the time series, such as the minimum,

maximum, average, or standard deviation, are computed using data points selected according

to a rule. One type of selection rule is based on windowing. Windows may be based on

geographical information (e.g., location of sensors), physical parameters (e.g., temperature,

pressure, or color) as well as temporal data. Some of the more common schemes proposed

for time series analysis, assuming no pre processing of the data, place the data into temporal

windows based on endpoints. Some examples of commonly used windows are:

$o$ fixed windows – for identifying data points which lie between 2 fixed endpoints; e.g.,

computing the average value during a fixed time interval $[t:,t_{|+1}.]$ .

$\circ$ sliding windows - for identifying data points which lie between 2 sliding endpoints (forward

or ba&w\pi d); e.g., computing the highest value in the past 24 hours.

$\circ$ landmark windows - for identifying data points which lie between 1 fixed and 1 sliding

window; e.g., computing the average price since Jan 1, 2004.

$\circ$ damped windows- for lending more recent data points higher weight.

le.g., using the citations options in CiteSeer or Researchlndex search engine: $h\mathrm{g}.\cdot//\mathrm{c}itesser.nj.n\infty.wm/cs$
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Correlation Measures

Understanding correlations between two data streams or a data stream with its own past is

important in numerous applications, such as scientific data, stock trading and complex mechan-

ical systems. In classical statistical theory, means for quantitatively evaluating the magnitudes

of correlations have been precisely defined [5]. Some important examples that have been ex-

tended for use in data stream mining systems are given below. The synchronized correlation of

two streams $X=\{x:\}$ and $\mathrm{Y}=\{y:\}$ ; is defined as

correlation $(X, \mathrm{Y})=\cdot\frac{\frac{1}{w}\sum_{=1}^{w}x_{\dot{1}}y_{\dot{1}}-\overline{x}\overline{y}}{-\cdot\sqrt{\sum_{\dot{|}-}^{w}-1(x_{i}-\overline{x})^{A}(y_{\dot{1}}-\overline{y})^{\ell}}}$..
$r$.

where $\overline{x}$ and $\overline{y}$ denote the averages of streams $\{x:\}$ , and $\{y_{\dot{1}}\}$ , respectively. The lagged correlation

of two streams $X=\{x_{\dot{*}}\}$ and $\mathrm{Y}=\{y_{\dot{*}+k}\}$; with constant $k$ $\in N,$ $k$ $<w,$ is

lagged correlation $(X, \mathrm{Y})=.\frac{\frac{1}{w}\sum_{\dot{l}=1}^{w}x_{\dot{*}}y_{\dot{|}+k}-\overline{x}\overline{y}}{\sqrt{\sum_{-}^{w}-1(x_{}-\overline{x})^{4}(y_{\dot{\mathrm{r}}+\mathrm{k}}-\overline{y})^{A}}}.$.
.

where $\overline{x}$ and $\overline{y}$ denote the averages of streams $\{xi\}$ , and $\{y_{*+\mathrm{k}}.\}$ , respectively. The lagged

correlation of a data stream with itself, i.e., $X=\{x:\}$ and $\mathrm{Y}=\{x+k\}$ is known as self-
correlation or autO-correlation.

Wavelet Analysis

“Wavelets are families of functions $h_{a,b}$ :

$h_{a,b}=|a|^{-1/2}h$ $(\mathrm{u})$ ; $a$ , $b\in R$ , $a\neq 0$

generated from a single function $h$ by dilations and translations” [3]. One of the applications of

the theory is to construct a basis set $\{h_{a,b}\}$ for efficient and accurate approximation of functions,

operators, and signals [18]. A second class of applications involves the use ofwavelet transforms

for analysis of non-stationary signals, i.e., time frequency analysis $[21, 22]$ . For wavelets with a

mother function $h$ , the continuous wavelet transfo$m$ for a function $f\in L^{2}(\mathcal{R})$ is

{ $h_{a,b}$ , $f)=|a|^{-}$’2 $\int dx\cdot h(\frac{x-b}{a})\cdot f(x)$

for $a,b\in \mathcal{R}$, $a\neq 0,$ and the discrete wavelet transform is

$\langle$ $h_{\mathrm{m}}$ ,$n$ ’
$f$ ) $=|a_{0}|^{-m/2} \int dx\cdot$ $h(a_{0}^{-m}x-nb_{0})\cdot$ $f(x)$
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for $a0$ $>1$ , $b_{0}\neq 0[4]$ .

Data stream mining systems to date that use wavelet technologies have been based only

on Haar wavelets. The one dimensional Haar wavelet decomposition amounts to taking the

averages and differences of two neighboring signals and scaling (i.e., multiplying) by a factor of

$1/\sqrt{2}$. Signal processing scientists describe the Haar wavelet transform process as convolving the

signal (or stream) with the low pass filter $\{1/\sqrt{2},1[\sqrt{2}\}$ and the high pass filter $\{-1/\sqrt{2},1/\sqrt{2}\}$ ,

then down-sampling by two [23]. The wavelet decomposition is an attractive tool for data stream

analysis, because its extension to the multidimensional case is straightforward. Simply apply

the one-dimensional decomposition separately to each of the coordinates, one at a time.

3. Selected Real-World Data Stream Mining Problems

In this section we examine how some real world problems with data streams have been

tadcled using the modeling and analysis described above. These problems involve data streams

from securities trading, approximate query processing systems, and telecommunications call

detail records.

Analysis of Stodc Market Data Streams using the DFT

Detection of correlations among multiple data streams appears in many applications. For

example, more than 20,000 sensors send one tick per second as part of the monitoring system for

NASA’s Space Shuttle system [12]. A more difficult problem involving 50,000 streams with up

to 100,000 ticks per second is the analysis of securities trading in the New York Stock Exchange

(NYSE). Zhu and Shasha $[24, 25]$ developed a means for fast approximation of cross- orrelation

and into orrelation coefficients.

Zhu and Shasha’s algorithm works as follows. The data are placed into very long sliding

windows, each of which consists of an integer number of much smaler, basic windows. Sliding

windows can shift by one, two or any integer number of basic windows. Summaries or digests

for each of these smaller windows are computed and stored. The digests facilitate fast updating

of information in the sliding windows.

The central idea in the algorithm is to take advantage of some valuable relationships and

approximation properties of the discrete fourier transform (DFT) applied to time-series data:

$\circ$ the DFT preserves Euclidean distances between two sequences;
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. the DFT possesses the symmetry property; and

. the first few DFT coefficients usually approximate well the curve of the time series of data

ffom real-world problems in the field.

Bceause of the third property, the DFT is suited for data stream applications since good approx-

imations can be quidcly determined even when only the first few DFT coefficients for each basic

window are computed. The inner products of these coefficients can then be used to compute

cross-correlations and aut0-correlations of the two time series.

Typically there are several trades per second for each of the approximately 300 stocks on
the NYSE. If a stock experiences no trading activity within a time frame, then its most recent

value is used. Sliding windows vary between 0.5 hours to 2 hours, and basic windows are

0.5 minutes to several minutes, depending on the number of stocks to be monitored and the

computational resources of the user. The target is to identify only those pairs which show

positive, high-value synchronized and lagged correlations that exceed a user-specified threshold.

More recently, Zhu and Shasha have extended their work to detection of abnormal patterns in

data stream aggregates, known as elastic bursts [25].

Wavelets for Highest $\mathrm{B}$-Term Approximation

Wavelet-based techniques have been applied in a variety of data mining applications [14],

and recently, they are being used in data stream mining. Some attractive properties associated

with the wavelet transform are:

$\circ$ For a signal with wavelet coefficients $\{w_{1}, w_{2}, \ldots, w_{N-1}\}$ , sorted in decreasing order so
that $|\mathrm{t}\mathrm{j}7\mathrm{g}\mathrm{l}|\geq|\mathrm{t}\mathrm{g}2|\geq|w_{\mathrm{J}3}|\geq\cdots$ , the highest $B$ -term approximation $\sum_{k=1lk}^{B}wx$: (where

the $xi_{l}$ are the wavelet basis vectors) is also the best $B$-term approximation, i.e., it mini-

mizes the sum squared error for any given $B$ .

$\circ$ The energy of a signal, which is equivalent to the square of its $L_{2}$-norm, is preserved under

the wavelet transform.

$\circ$ In empirical observations of many types of natural signals, the highest $B$-term apprax-

imation of many naturally occurring signals is very accurate for very small values of $B$

(i.e., has relatively small error).
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$\circ$ Puther efficiencies in computation and storage space can be achieved by approximating

the highest $B$-term representation with a similar error.

$\circ$ wavelet transform techniques can be extended straightforwardly to higher dimensions,

without scalability problems, unlike some traditional signal processing techniques.

Matias, Vitter, and Wang studied multiresolution and wavelet transform-based analysis

methods for histogram construction for on-line selectivity estimation [16]. They subsequently

extended the work to consider tracking of the most significant wavelet transform coefficients

over time [17]. The work also extends that by Lee, Kim, and Chung [13] on tradcing the most

significant DFT coefficients over time. Although results from experiments by Matias et al.

using synthetic data appear to be promising, no provable error bounds are given.

Garofalakis and Gibbons [6] proposed a method for generating probabilistic wavelet syn-

opses, i.e., synopses that are generated using wavelet transform coefficients and probabilistic

thresholding. Their method can generate synopses fast enough for data stream analysis and

provides error guarantees insuring highly accurate answers for approximate query processing

systems. Work on dynamic maintenance of probabilistic wavelet synopses is currently on going.

Gilbert, Kotodis, Muthikrishnani, and Strauss [7] developed a method to generate small

space memory requirement (or $u$srnall space), one pass summaries of call detail records from

AT&T to “enable answering point, range, and aged aggregate queries from one or more data

streams”. In addition to new results, the paper presents an excellent, short review of related

works on one-pass algorithms, small space representations of massive amounts of data, dynamic

maintenance of synopses and the difficulties associated with maintaining summaries of the

largest $k$ items and with identifying new trends in an evolving stream. For the particular

application considered by the authors, sampling techniques cannot be used to reduce the scale

of the problem size, so the $\mathrm{u}\Re$ of wavelet transforms is critical to achieving the high processing

speeds needed for data stream analysis. Gilbert et al. recognized that in addition to the

desirable properties associated with the highest $B$-term approximation of the wavelet transform

noted by Matias, Vitter, and Wang, further efficiencies in computation and storage space can

be achieved by approximating the highest $B$-term representation without significant increase in

the error. They developed and applied an approximation technique that performs wel in call

detail record query processing.
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4. Conclusion

We surveyed some selected works that solved real world problems that can be effectively

modeled as data stream mining systems. Since the data streams evolve massive volumes of

temporally changing data, traditional techniques from data mining cannot necessarily be ap-

plied straightforwardly. Many more difficult problems involving sensor systems and incomplete

data pose even greater challenges in this emerging area of research. Faster and more accurate

methods for approximating and analyzing data streams are being sought.
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