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1 Introduction

A special class of discrete variable methods which is intended to integrate exactly the IVPs with a
known solution is derived. This class of the methods, which have variable coefficients, is designed
to integrate the ODE exactly only for the case that the solution is a given elementary function,
such as trigonometric or exponential function. These methods are expected to be efficient even
for the case that the solution is slightly perturbed from the objective functions. A classical
example of this class of the methods is the trigonometric linear multistep method of Adams type
by Gautschi [5]. This method is designed to be exact, if the solutions are trigonometric functions
with a known frequency.

The other examples of this class of methods derived so far are:

1. St\"ormer and Cowell type trigonometric methods [5], [17].

2. Nystr\"om type trigonometric methods [9].

3. Exponentially fitted linear multistep method [2], [18].

4. Linear multistep method for mixed polynomials [19].

5. Runge-Kutta (-Nystr\"om) type trigonometric methods [10], [15].

6. Runge-Kutta-Nystr\"om method for mixed polynomials [3].

To unify the approaches used to derive the trigonometric and exponential $\mathrm{R}\mathrm{u}\mathrm{n}\mathrm{g}\mathrm{e}-\mathrm{I}\acute{\mathrm{c}}$ utta(-Nystr\"om)
methods, Ozawa [11], [12] has established a technique to adapt the methods to any desired func-
tions (not necessary elementary functions), and has given the condition that the coefficients of
such methods exist. He has also established the order conditions for the methods to have order $p$ .

The purpose of this work is to develop a computationally cheap Runge-Kutta method which
are exact for a given set of functions, by using the same technique introduced in Ozawa [11], [12].

2 Functionally fitted Runge-Kutta method

Consider the initial value problem

$y’(t)=f(y(t))$ , $y(0)=y_{0}$ , $t\in[0, T]$ , (1)

and the $s$-stage Runge-Kutta method

$\mathrm{Y}\{\begin{array}{l}y_{n+1}=y_{n}+h\sum_{\dot{t}=1}^{s}b_{i}f(\mathrm{Y}_{i})\mathrm{Y}_{}=y_{n}+h\sum_{j=1}^{s}a_{\dot{l},j}f(\mathrm{Y}_{j})\end{array}$

$i=1$ , $\ldots$ , $s$ ,
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for solving the problem (1), where $h$ is a step-size, and $y_{n}$ is a numerical approximation to the
solution $y(t)$ at $t=nh.$ Almost all Runge-Kutta methods are designed to be exact when the
solution $y(t)$ are polynomials of a given degree or less. In our approach, however, the Runge-Kutta
method is designed to be exact not necessary for polynomials but for the linear combinations of
predetermined functions $\{\Phi_{m}(t)\}_{m=1}^{s}$ . We call the functions $\{\Phi_{m}(t)\}_{m=1}^{s}$ the basis functions, and
call the resulting Runge-Kutta method a functionally fitted Runge-Kutta (FRK) method.

Here we show a procedure to determine the coefficients of the FRK. First of all, we determine
a set of basis functions $\{\Phi_{m}(t)\}_{m=1}^{s}$ , taking into account the information on the equation or the
solution. Next, we give the sparsity pattern of the Butcher array $A=(a_{t,j})$ ; we consider only the
case that the abscissae $c_{i}$ ’s are constant and different from each other. In accordance with the
sparsity pattern, and with the other requirements (if exist), we set some values (usually 0) to the
specified elements of the array. Here we denote by $A_{i}$ $(i=1, \ldots, s+1)$ the set of subscripts of these
specified elements in the ith row. Finally, to determine the remaining coefficients $a_{i,j}(i\in A\backslash A_{i})$ ,
where $A\equiv\{1,2, \ldots, s\}$ , we choose $(s-|A_{i}|)$ different functions from the set of $!_{m}(t)$ ’s, and solve
the following simultaneous equation:

$\sum_{j\in A\backslash A_{j}}a_{i,j}\Phi_{m}’(t+c_{j}h)=\frac{\Phi_{m}(t+c_{i}h)-\Phi_{m}(t)}{h}-\sum_{j\in A_{i}}a_{:}$ ,,$\cdot\Phi_{m}’(t+c_{j}h)$ ,
(2)

$m\in F_{i}(i=1, \ldots, s+1)$ ,

where we use the convention $a_{s+}l,j$ $=b_{j}$ , and denote by $F_{i}\subseteq A$ the set of the subscripts of the
basis functions $\Phi_{m}(t)$ used in (2). For the uniqueness of the coefficients $a_{i,j}$ and $b_{j)}$ we assume
$|\mathrm{F}.|$ $=s-|4,|$ , that is, the number of the unknowns is equal to that of the equations for each $i$ .

For example, suppose we would like to design a three-stage explicit FRK method, then after
choosing $\mathrm{D}_{1}(t)$ , $\mathrm{I}_{2}(t)$ and $!_{3}(t)$ , we must take $a_{1,1}=a_{1,2}=a_{1,3}=0$ , $a_{2,2}=a_{2,3}=0$ , and
$a_{3,3}=0,$ so that

$A_{1}=\{1,2,3\}$ , $A_{2}=\{2,3\}$ , $A_{3}=\{3\}$ , $A_{4}=\phi$ ,
$\mathrm{t}_{1}=\phi$ , $\mathrm{r}_{2}=\{1\}$ , $’ 3=\{1,2\}$ , $\mathrm{r}4$ $=\{1,2,3\}$ ,

and solve the simultaneous equations:

$a_{2,1} \varphi_{1}(t)=\frac{\Phi_{1}(t+c_{2}h)-\Phi_{1}(t)}{h}$ ,

$a_{3,1}7m(t)+a_{3,2} \varphi_{m}(t+c_{2}h)=\frac{\Phi_{m}(t+c_{3}h)-\Phi_{m}(t)}{h}$ , $m=1,2$ ,

$b_{1}f_{m}(e \mathit{5})+b_{2}\varphi_{m}(t+c_{2}h)+b_{3}\varphi_{m}(t+c_{3}h)=\frac{\Phi_{m}(t+h)-\Phi_{m}(t)}{h}$ , $m=1,2,3$,

where $\varphi_{m}(t)=\Phi_{m}’(t)$ . Note that any choices are possible for the sets $F_{2}$ and $7_{3}$ , only if the
conditions $|$ $72|=1$ and $|" 3|=2$ are satisfied. The method obtained in this example is exact for
any constant multiple of $!_{1}(t)$ . In general, the method obtained by (2) is exact for the elements
of the linear space spanned by the $\Phi_{m}(t)$ , for $m \in\bigcap_{i=1}^{s+1}$ F., since each stage value $\mathrm{Y}_{i}$ is exact for
linear combinations of $\Phi_{m}(t)$ ’s for $m\in F_{\dot{l}}$ .

The coefficients $a_{\dot{l},j}$ and $b_{i}$ determined in this way depend, in general, not only on $h$ , but also
on $t$ . We shall consider, however, the case that these coefficients depend only on $h$ ; if the basis
functions $m(t) are polynomials, exponentials or sinusoidal functions, then this is the case, as we
will see later. By this assumption, it is possible to take $t=0$ in (2) without loss of generality.
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In [11] and [12], $A_{i}=\phi$ and $\mathcal{F}_{i}=A$ for all $i$ , that is, there exist $s$ unknowns in each of the
simultaneous equations, and all the functions $I)_{m}(t)$ $(m=1, \ldots, s)$ are used to determine these
coefficients. Therefore, the resulting method is necessarily a fully implicit one. For this case,
Ozawa [11] has shown that the coefficients given by (2) are unique for all $h$ and $t\in[0, T]$ , if the
Wronskian matrix associated with $\varphi_{m}(t)=\Phi_{m}’(t)$

$W(t)\equiv(\begin{array}{ll}\varphi_{1}^{(1)}(t)\varphi_{1}(t) \varphi_{\mathrm{S}}^{(1)}(t)\varphi_{s}(t)\vdots \vdots\varphi_{1}^{(s-1)}(t) \varphi_{s}^{(s-1)}(t)\end{array}).$

, (3)

is nonsingular. Moreover these coefficients are analytic, if all of the functions $\{\Phi_{m}(t)\}_{m=1}^{\theta}$ are
analytic on $[0, T]$ . Here we extend the result to a general case as follows:

LEMMA 1 Assume that we are given different constants $d_{j}$ $(j=1, \ldots, r)$ and different analytic
functions $\psi_{m}(t)(m=1, \ldots, r)$ . Let $\alpha(h)$ be analytic function at $h=0.$ Then for the given $d_{k}$

and $d_{l}$ (not necessarily different), the simultaneous equation

$\sum_{j=1}^{r}\alpha_{j}(h)\psi_{m}(d_{j}h)=\frac{\Psi_{m}(d_{k}h)-\Psi_{m}(0)}{h}$ - $\alpha(hEm(d_{\mathrm{t}} h)$ , $m=1$ , $\ldots$ , $r$, (4)

$\Psi_{m}(t)=\int\psi_{m}(t)\mathrm{d}t$

has unique analytic solutions $\alpha_{j}(h)(j=1, \ldots, r)$ , if the Wronskian matrix associated with $\mathrm{q}_{m}(t)$

$W_{\psi}(t)\equiv(\begin{array}{ll}\psi_{1}^{(1)}(t)\psi_{1}(t) \psi_{\prime}^{(1)}(t)\psi_{r}(t)\vdots \vdots\psi_{1}^{(r-1)}(t) \psi_{r}^{(r-1)}(t)\end{array})$ (5)

is nonsingular.

Although this lemma corresponds to the case that $|\mathrm{A}|$ $=1$ in (2), it is straightforward matter to
extend the result to the general case that $|4_{i}|\geq 1.$

3 Local truncation error of FRK method

In general, the numerical results given by the FRK will have truncation errors, except for the
cases that the method is fitted to the problem (1) completely. Therefore, we must evaluate the
errors by using “order of accuracy.” The definition of the measure for the FRK is the same as is
used for conventional methods. That is, if the numerical solution by the FRK satisfies

$y_{1}-y(h)=\mathrm{O}(h^{p+1})$ , $y(0)=y_{0}$ , $harrow 0,$

for any sufficiently smooth solution $y(t)$ , then we shall call the integer $p$ the order of accuracy of
the FRK. However, unlike the conventional case, we must consider the errors in the situation that
the coefficients $a_{:,j}$ and $b_{\dot{l}}$ also vary as functions of $h$ , when $harrow 0.$
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To analyze the local truncation error of the $\mathrm{F}\mathrm{R}\mathrm{K}$ , let us introduce the following quantities:

$B(q) \equiv\sum_{i}b_{i}c_{i}^{q-1}-\frac{1}{q}$ , (6)

$C_{i}(q) \equiv\sum_{j}a_{i,j}c_{j}^{q-1}-\frac{c_{i}^{q}}{q}$ , $\mathrm{i}$ $=1$ , $\ldots$ , $s$ , (7)

$D(q) \equiv\sum_{}b_{i}C_{i}(q)$ , (8)

where $a_{\mathrm{j}:)}$ a$\mathrm{n}\mathrm{d}$

$b_{j}$ are the coefficients generated by (2).
In [11] and [12], for the case $A_{i}=\phi$ , Ozawa has shown

$B(q)=\mathrm{O}(h^{s+1-q})$ , $q=1$ , $\ldots$ , $s$ ,
$C_{\dot{l}}(q)=\mathrm{O}(h^{s+1-q})$ , $q=1,$ . . . , $s$ , $i=1,$ . . . , $s$ .

For the present case, this result is straightforwardly extended to

$B(q)=\mathrm{O}(h^{r_{s+1}+1-q})$ , $7^{=1}$ , $\ldots$ , $r_{s+1}$ ,
(9)

$C_{i}(q)=\mathrm{O}(h^{r.+1-q}.)$ , $q=1$ , $\ldots$ , $r_{:}$ , $\mathrm{i}$ $=1$ , $\ldots$ , $s$ .

where we set $r=:|$ $\mathrm{F}\mathrm{J}$ $(i=1,2, \ldots , s+1)$ . We express the errors at the stages and step by using
$B(q)$ and $C_{i}(q)$ . First we consider the residuals at the stages and step. Let $y(t)$ be any sufficiently
smooth function (not necessary the solution of (1)), then

$R \equiv y(0)+h\sum_{1}$
.

$b_{i}y’(c_{i}h)-y(h)= \sum_{q\geq 1}\frac{h^{q}B(q)}{(q-1)!}(y’(0))^{(q-1)}$ ,

(10)
$R_{i} \equiv y(0)+h\sum_{j}a_{i,j}y’(c_{j}h)-y(c_{i}h)=\sum_{q\geq 1}\frac{h^{q}C_{i}(q)}{(q-1)!}(y’(0))^{(q-1)}$.

Note that if $y(t)=\Phi_{m}(t)$ these residuals vanish, that is,

$\sum_{q\geq 1}\frac{h^{q}B(q)}{(q-1)!}(\varphi_{m}(0))^{(q-1)}=0,$
$m\in F_{s+1}$ ,

(10)
$\sum_{q\geq 1}(q-\mathrm{i}(\varphi_{m}(0))^{(q-1)}=0h^{q}C(q)1)!$’

$m\in \mathcal{F}_{i}$ .

On the other hand, if $\Phi_{m}(t)$ are polynomials of some degree or less, then $B(q)$ and $C_{i}(q)$ vanish
for the first several $\mathrm{g}$

’
$\mathrm{s}$ , and $\varphi_{m}^{(q-1)}(t)=0$ for the other higher $q$

’
$\mathrm{s}$ . From (9) and (10) we have

$R=\mathrm{O}(h^{f+1})$ , $R_{i}=\mathrm{O}(h^{\rho+1})$ , (12)

where
$\rho^{=\mathrm{m}_{l}}!^{\mathrm{n}\{r\dot,\}}..$ , $r=r_{s+)}$ .

Next we consider the relation between the residuals and local errors of the FRK method.
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Let $y(t)$ be the solution of $y’(t)=f(y(t))$ , then the errors at the stages are given by

$e_{i} \equiv \mathrm{Y}_{i}-y(c_{i}h)=y_{0}+h\sum_{j}a_{i,j}f(\mathrm{Y}_{j})-(y_{0}+h\sum_{j}a_{i,j}y’(c_{j}h)-R_{i})$

$=hf_{y} \sum_{j}a_{i}$ ,j $(e_{j}+\mathrm{O}(e_{j}^{2}))+R_{i}$ ,

therefore

$e_{i}=(1-a_{\dot{\iota},:}h7_{y})^{-1}((hf_{y}) \sum_{j\neq i}a_{i}$,j
$(e_{j}+\mathrm{O}(e_{j}^{2}))+R_{:})=\mathrm{O}(h^{\rho+1})$ .

For the error at the step, we have

$E \equiv y_{1}-y(h)=y_{0}+h\sum_{i}b_{i}f(\mathrm{Y}_{i})-(y_{0}+h\sum_{i}b\dot,y’(c_{i}h)-R)$

(13)
$=hf_{y}L$ $b_{i}$ $(\mathrm{Y}_{\dot{1}} -y(c_{\dot{2}}h)+\mathrm{O}(e_{\dot{l}}^{2}))+R.$

$i$

Before evaluating $E$ , we must evaluate the two quantities

$\sum_{\dot{l}}b_{i}\mathrm{Y}_{\mathrm{t}}=\sum_{i}b_{t}y_{0}+h\sum_{i,j}b_{i}a_{i}$ , $jf(\mathrm{Y}_{j})$ ,

$\sum_{i}b_{\dot{l}}y(c_{\dot{l}}h)=\sum_{i}b_{i}y_{0}+h\sum_{i,j}b_{j}a_{i,j}y’(c_{j}h)-T_{:}$

where we put

$T= \sum_{i}b_{\dot{\iota}}R_{i}=\sum_{q\geq 1}\frac{h^{q}D(q)}{(q-1)!}(y’(0))^{(q-1)}$ . (14)

For the order of $T$ , if we assume
$T=\mathrm{O}(h^{\tau+1})$ , (15)

then from (12) we have
$\mathcal{T}\geq\rho=\mathrm{m}_{l}!^{\mathrm{n}\{r_{i}\}}$

. .

Thus

$E=(hf_{y}) \sum_{i,j}b_{i}a_{i,j}(f(\mathrm{Y}_{j})-y’(c_{j}h))+(hf_{y})$
$T+R+\mathrm{O}(h^{2p+3})$

$=(hf_{y})^{2} \sum_{\dot{\iota},j}b_{:}a_{\dot{\mathrm{a}},j}e_{j}+(hf_{y})T+R+\mathrm{O}(h^{2\rho+3})$
.

If the order of $\sum_{:,j}b,\cdot$ $a_{i,j}e_{\mathrm{j}}$ is that of the minimum of $e_{j}$ ’s, then we have

$E=\mathrm{O}(h^{p+1})$ ,

where
$p= \min\{\rho+2, \tau+1, r\}$ . (16)

Thus the order of accuracy of the method is given by (16).
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4 Th$\mathrm{r}\mathrm{e}\mathrm{e}$-stage FESDIRK method

Let us consider the three-stage Runge-Kutta method given by the Butcher array

00
$c_{2}$ $a_{2}$ , 1

$\alpha$

( 17)
$c_{3}$ $a_{3,1}$ $a_{3,2}$

$\alpha$

$b_{1}$ $b_{2}$ $b_{3}$

Usually the methods of this type are called explicit SDIRK(ESDIRK) method when the coefficients
are constant, and we shall call it fwictionally fitted ESDIRK(FESDITIK) method, if the method
is FRK.

For the FESDIRK given by (17), we set

$A_{1}=\{1,2,3\}$ , $A_{2}=\{3\}$ , $A_{3}=\{3\}$ , $A_{4}=$ $\mathrm{E}$ ,
$F_{1}=\phi$ , $\mathrm{F}_{2}=\{1,2\}$ , 2 $=$$3\{1,2\}$ , $\mathrm{F}_{4}=\{1,2,3\}$ .

Note that the $\alpha$ in the third row of the array is just the value that has been obtained in the second
row so that $|$ ’a $|=2.$ The simultaneous equations to be solved for these coefficients are

$a_{2,1} \varphi_{m}(0)+\alpha\varphi_{m}(c_{2}h)=\frac{\Phi_{m}(c_{2}h)-\Phi_{m}(0)}{h}$ , $m\in F2’$

$a_{3,1\mathrm{J}m}’(0)+a_{3,2}$ $/_{m}$’ $($’ $h)= \frac{\Phi_{m}(c_{3}h)-\Phi_{m}(0)}{h}-\alpha\varphi_{m}(c_{3}h)$ , $m\in F_{3}$ , (18)

$b_{1} \varphi_{m}(0)+b_{2}\varphi_{m}(c_{2}h)+b_{3}\mathrm{p}_{m}(c_{3}h)=\frac{\Phi_{m}(h)-\Phi_{m}(0)}{h}$ , $m\in$ $F_{4}$ ,

where we assume that the Wronskian matrix

$W(t)=(_{\varphi_{1}^{(2)}(t)}^{\varphi_{1}(t)}\varphi_{1}^{(1)}(t)$ $\varphi_{2}^{(1)}(t)\varphi_{2}^{(2)}(t)\varphi_{2}(t)$ $\varphi_{3}^{(1)}(t))\varphi_{3}^{(2)}(t)\varphi_{3}(t)$ (19)

is nonsingular at $t=0.$ From the construction, it follows that the method is exact when the
solution satisfies $y(t)\in$ span $\{\Phi_{1}(t), \Phi_{2}(t)\}$ . For this case, we have

$r_{2}=r_{3}=2,$ $r_{4}=3,$ $\rho=2,$ $\tau\geq 2,$

and

$B(q)= \sum_{=\dot{l}1,3’}^{3}b_{:}c^{q-1},\cdot-\frac{1}{q}=\mathrm{O}(h^{4-q})$ , $q=1,2,3$,
(20)

$C_{\dot{l}}(q)= \sum_{j=1}a_{i,j}c_{j}^{q-1}-\frac{c_{t}^{q}}{q}$

.
$=\mathrm{O}(h^{3-q})$ , $q=1,2$ ,

which leads to $p=3$ from (16).
When $harrow 0,$ FESDIRK approaches a constant coefficient method, which has a key role in

later considerations. Let $a_{i,j}^{(0)}$ and $b_{i}^{(0)}$ be the constant terms of the power series expansions of $a_{\mathrm{j}}j$
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and $b_{i}$ , respectively. Then relation (20) means that

$\sum_{i=1}^{3}b_{i}^{(0)}c_{i}^{q-1}=\frac{1}{q}$ , $q=1,2,3$ , (21)

$\sum_{j=1}^{i}a_{i,j}^{(0)}c_{j}^{q-1}=\frac{c_{i}^{q}}{q}$ , $q=1,2$ . (22)

The relations (21) and (22), which are the s0-called simplifying assumptions [1], determine $a_{i,j}^{(0)}$

and $b_{i}^{(0)}$ uniquely as functions of $c_{2}$ . The results are:

$\{\begin{array}{l}a_{2,1}^{(0)}=\frac{c_{2}}{2},a_{2,2}^{(0)}=\frac{c_{2}}{2}(=\alpha)a_{3,1}^{(0)}=-\frac{36c_{2}^{4}-120c_{2}^{3}+134c_{2}^{2}-60c_{2}+9}{8c_{2}(3c_{2}-2)^{2}}a_{3,2}^{(0)}=-\frac{24c_{2}^{3}-50c_{2}^{2}+36c_{2}-9}{8c_{2}(3c_{2}-2)^{2}}\sim,a_{3,3}^{(0)}=\alpha b_{1}^{(0)}=\frac{6c_{2}^{2}-6c_{2}+1}{6\mathrm{c}_{2}(4c_{2}-3)}b_{2}^{(0)}=\frac{1}{6c_{2}(6c_{2}^{2}-8c_{2}+3)}b_{3}^{(0)}=\frac{2(3c_{2}-2)^{2}}{3(4c_{2}-3)(6c_{2}^{2}-8c_{2}+3)}\end{array}$

Note that $a_{i,j}^{(0)}$ and $b_{i}^{(0)}$ are independent of the choice of $\Phi_{m}(t)$ .

5 Fourth order FESDIRK method

We have obtained a three-stage FESDIRK method and have shown that the method is of order
3. To raise the order of the method up to 4 we assume two conditions.

The first condition is

$\int_{0}^{1}t^{q-1}t(t-c_{2})(t-c_{3})\mathrm{d}t\{$
$=0,$ $q=1,$

$\neq 0,$ $q\geq 2.$

In [14], the case that the integral equals to 0 even for $q\geq 2$ is considered. From this assumption
we have

$c_{3}= \frac{4c_{2}-3}{2(3c_{2}-2)}$ . (23)

By assuming (23), we have from [11]

$B(q)= \sum_{\dot{l}=1}^{3}b_{i}c_{}^{q-1}-\frac{1}{q}=\mathrm{O}(h^{\max\{5-q,2\}})$ , $q=1$ , $\ldots$ , 4, (24)
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so that $r=4$ in (12), and we have, instead of (21),

$\sum_{i=1}^{3}b_{i}^{(0)}c\mathit{7}^{-1}=\frac{1}{q}$ , $q=1,$ . . . , 4, (25)

which is the constant term of $B(q)$ .
The second assumption is

$\sum_{i}b_{i}^{(0)}a!_{j}^{0)}.,=b_{j}^{(0)}(1-c_{j})$ , $7=1,2,3$ . (26)

It has been shown that this condition together with (22) and (25) is a sufficient condition for the
method $(a_{i,j}^{(0)}, b_{i}^{(0)}, c_{\dot{l}})$ to be of order 4 (see [1], [6]).

Next lemma shows that conditions (22), (25) and (26) guarantee $\tau=3$ in (15).

LEMMA 2 If conditions (22), (25) and (26) hold, then

$D(q)=\mathrm{O}(h^{4-q})$ , $q=1,2,3$ ,

so that $\tau=3$ in (15).

Proof. The detail of the proof is shown in [14]. 1

Since $r=4$ has already been established, and $\tau=3$ has been proved by the above lemma, it
is clear from (16) that $p=4.$ Thus we have the following theorem:

THEOREM 1 If the abscissae $c_{2}$ and $c_{3}$ satisfy the two conditions (23) and (26), then FESDIRK
with the coefficients given by (2) is of order 4.

Hereafter we call the $(\mathrm{F})\mathrm{E}\mathrm{S}\mathrm{D}\mathrm{I}\mathrm{R}\mathrm{K}$ obtained now $(\mathrm{F})\mathrm{E}\mathrm{S}\mathrm{D}\mathrm{I}\mathrm{R}\mathrm{K}4$ . Next we must obtain the values of
$c_{2}$ for which condition (26) is valid. Let $d_{j}$

$\mathrm{b}\mathrm{e}$

$d_{j}= \sum_{\dot{l}}b_{\dot{1}}^{(0)}a!^{0}$, $\mathit{3}-/\mathrm{S}^{0)}$ $(1-c_{j})$ , $\mathrm{y}$ $=1,2,3$ ,

then from (21) and (22) we have

$\sum_{j}d_{j}c_{j}^{q-1}=\sum_{i,j}b_{\dot{\iota}}^{(0)}a:\mathrm{o})$ $c_{j}^{q-1}- \sum_{j}b_{j}^{(0)}(1-c_{j})c_{j}^{q-1}$

$= \frac{1}{q}\sum_{}b!^{0)}.c_{\dot{1}}^{q}-\frac{1}{q}+\frac{1}{q+1}=0,$ for $q=1,2$ ,

that is,
$d_{1}+$ $d_{2}+$ $d_{3}=0,$

$c_{2}d_{2}+$ $c_{3}d_{3}=0.$
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This means that if we force one of $d_{i}$ ’s to be 0, then the remainders become 0, provided that
$0<c_{2}\neq c_{i3}$ . Thus we put, for example,

$d_{1}=- \frac{(3c_{2}-1)(3c_{2}-2)(c_{2}-1)}{6c_{2}(4c_{2}-3)}=0,$

which leads to
$c_{2}= \frac{1}{3}$ , $\frac{2}{3}$ , 1.

Among these solutions, $c_{2}=2/3$ is not allowed because of (23), so that we consider the remaining
two solutions. Comparing the stability regions of the ESDIRK4’s with $c_{2}=1/3$ and $c_{2}=1,$ and
the classical Runge-Kutta method (RK4), we find that the ESDIRK4 with $c_{2}=1/3$ is preferable
to the ESDIRK4 with $c_{2}=1$ (see [14]). Therefore we take $c_{2}=1/3$ also for FESDIRK4, since it
is expected that FESDIRK has approximately the same properties as those of ESDIRK, when $h$

is small. Hereafter, we simply denote the methods ESDIRK4 and FESDIRK4 with $c_{2}=1/3,$ by
ESDIRK4 and FESDIRK4, respectively.

6 Numerical example

To see how well FESDIRK4 is fitted to the special problems for which we can find the basis
functions successfully, and whether or not the global error of the method behaves like $\mathrm{O}(h^{4})$ for
general problems, we shall present some numerical examples. Here we solve the following three
problems:

Airy equation

Constant coefficient linear equation

The solution of the Airy equation oscillates with varying “frequency.” The solution of the linear
equation consists of the two components: rapidly damped oscillatory component and decaying
exponential component. To generate the coefficients of FESDIRK4, we use sinusoidal bases for the
Airy equation, and exponential bases for the linear equation. In these experiments, we measure
the errors by the Euclidean norms. All the computations are performed by the IEEE double
precision arithmetic.

Airy equation

Consider the Airy equation
$y’(t)-ty(t)=0,$ (27)

with the initial condition

$y(-50)=$ Ai (-50)+0.5 Bi (-50) $=-2.304564997\cdot$ . . $\mathrm{x}10^{-1}$ ,
$y’(-50)=\mathrm{A}\mathrm{i}’(-50)$ $+0.5\mathrm{B}\mathrm{i}’(-50)$ $=$ 3.963089871 $\cdots\cross 10^{-1}$ ,

where Ai (t) and Bi (t) are Airy’s Ai and Bi functions, which are linearly independent solutions of
Eq. (27) (see [8]). The exact solution of the problem is

$y(t)=\mathrm{A}\mathrm{i}(t)+0.5$ Bi (t)
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For this problem, the basis functions

$\Phi_{1}(t)=t,$ $\Phi_{2}(t)=\cos(\omega t)$ , $\Phi_{3}(t)=\sin(\omega t)$ , (28)

will be appropriate. For this choice of functions, Wronskian matrix (19) is nonsingular if $\omega$ $\neq 0.$

In [14], the coefficients derived by using the functions are shown together with their power series
expansions in $h$ ; when $h$ is small, it is advantageous to use the expansions rather than the closed
forms to avoid the cancellations. We integrate the equation from $t=-50$ to 0, by changing the
angular frequency $\omega$ by the $\mathrm{f}_{01}\cdot \mathrm{m}\mathrm{u}1\mathrm{a}$

$\omega$
$=\sqrt{-t}$ ,

at every integer point $t=-50,$ -49, . . .. Although the two methods are of the same order, the
error of FESDIRK4 is compared favourably with that of ESDIRK4 in Fig. 1.
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Fig. 1. Errors $E$ of FESDIRK4 (solid) and ESDIRK4 (dashed)
versus step-size $h$ for Airy equation (27).

Constant coefficient linear equation

The third problem to be considered is the linear homogeneous equation

$y’(t)-Py(t)=0,$ $y(0)=(1,0,0,0)^{\mathrm{T}}$ , (29)

where

$P=(\begin{array}{llll}00 1 101-96-\mathrm{l} -97 6-98 0 -99 -96-1 0 -1 -\mathrm{l}02\end{array})$

The exact solution of the problem is given by

$y(t)=(\begin{array}{l}\mathrm{e}^{-t}+\mathrm{e}^{-100t}\mathrm{s}\mathrm{i}\mathrm{n}t\mathrm{e}^{-t}(-\mathrm{l}+t)+\mathrm{e}^{-100t}(\mathrm{c}\mathrm{o}\mathrm{s}t+2\mathrm{s}\mathrm{i}\mathrm{n}t)-\mathrm{e}^{-t}+\mathrm{e}^{-100t}(\mathrm{c}\mathrm{o}\mathrm{s}t+\mathrm{s}\mathrm{i}\mathrm{n}t)-\mathrm{e}^{-100t}\mathrm{s}\mathrm{i}\mathrm{n}t\end{array})$
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This solution consists of fast and slow modes. If a small step-size which damps out the fast
mode is used, then sooner or later the slow mode will dominate the entire solution. Hence) it is
advantageous to fit the method to the slow mode rather than the fast mode, when the method is
stable. For this reason, we use moderately small step-size and choose the following basis functions:

$\mathrm{I}_{1}(t)=t,$ $\Phi_{2}(t)=$ $\exp(-t)$ , $\Phi_{3}(t)=t\exp(-t)$ . (30)

The coefficients derived from the functions (30) are shown in [14]. We integrate the equation
from $t=0$ to 2 by the FESDIRK4, and compare the error with those of the three fourth-0rder
Runge-Kutta methods: ESDIRK4, the tw0-stage Gauss (Gauss2) and the classical Runge-Kutta
(RK4) methods. The results are shown in Table 1.

Table 1. Errors of various methods for linear equation (29).

$\ovalbox{\tt\small REJECT}^{\mathrm{R}\mathrm{K}\mathrm{R}\mathrm{K}}$

$t$

It can been seen that, although FESDIRK4 is less stable than the tw0-stage Gauss Runge-
Kutta method for larger step-sizes, this method is fitted to the solution completely for moderately
small step-sizes; the values of order $-5.0\mathrm{e}+01$ or less in the second column of Table 1 are due
to the accumulations of round-0ff errors, since the machine epsilon of the arithmetic is $2^{-53}$ . On
the other hand, although the other methods are not fitted to this problem completely, the errors
decrease steadily at the rate of $\mathrm{O}(h^{4})$ , as expected.
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