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ON POSITIVITY OF TAYLOR COEFFICIENTS OF CONFORMAL
MAPS

TOSHIYUKI SUGAWA )
HIROSHIMA UNIVERSITY ERKZEARFRELHAR

ABSTRACT. We provide an approach to the proof of positivity of the Taylor coefficients
for a given conformal map of the unit disk onto a plane domain. This short note is a
summary of the joint work [2] with Stanislawa Kanas.

1. INTRODUCTION

If a univalent function f(z) = ap+a,2+az2?+--- in the unit disk D = {2 € C; 2] < 1}
has non-negative Taylor coefficients about the origin, namely, ax > 0 for all k¥ > 0, various
sharp estimates can easily be deduced. For example, one can show the sharp inequalities

|f(2) - a0 — @1z — - - — agz®| < f(|2]) — a0 — as|2| — -+ — ax|2[*

and
If®(2)| < F¥(|2))

for k =0,1,2,.... Note that this sort of inequalities are, in general, not easy to establish.

As one immediately sees, a necessary condition for a univalent function f to have non-
negative Taylor coefficients is that the image domain 2 = f(D) is symmetric in the real
axis. Under the assumption of this symmetric property, however, it seems to be difficult
to give a sufficient condition for non-negativity of the coefficients in terms of the shape
of . For instance, the convexity of Q is not sufficient. In fact, for a constant 0 <¢ < 1,
the function

f(2)= 1-:cz =z-c+EB - A+
maps D univalently onto a disk but has a negative coefficient. (In general, when f (2) has
non-negative Taylor coefficients, the function f(z) = —f(—z) has a negative coefficient
unless f is an odd function.)

In this note, we will explain one approach to show positivity of the Taylor coefficients
of a specific conformal map of the interior of a conic section.

2. CONFORMAL MAPPINGS ONTO DOMAINS BOUNDED BY CONIC SECTIONS
For k € [0, 00), we set
O = {u+iv € C;u? > k*(u — 1)% + k%%, u > 0}.
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Note that 1 € £ for all k. § is nothing but the right half plane. When 0 < k£ < 1, . is
the unbounded domain enclosed by the right half of the hyperbola

u+k?/(1—k?)\* v,
( k/(1-k?) )_1/(1—k2)_

with focus at 1. £; becomes the unbounded domain enclosed by the parabola

2=9u-1

with focus at 1. When k > 1, the domain ), is the interior of the ellipse

k(K2 — 1) k2 1)

with focus at 1. For every k, the domain ) is convex and symmetric in the real axis.
Note also that , D O, if 0 < k1 < k.

Kanas and Wisniowska [3] treated the family ) in their study of k-uniformly convex
functions and gave the explicit formulae for the conformal homeomorphisms pi : D — Q
determined by px(0) = 1 and p/,(0) > 0. Here, an analytic function f(2) in the unit disk
with f(0) = 0, f/(0) = 1 is called k-uniformly convex if the function 1 + zf"(2)/f'(2)
maps the unit disk analytically into Q. A function is 1-uniformly convex precisely when
it is uniformly convex (see [4]).

In order to state their result, we prepare some notation. Let X(z,t) and K(t) be the
normal and complete elliptic integrals, respectively, i.e.,

% dz
K:(z, t) = A \/(71__ 372)(1 — t2.’l?2)
and K(t) = K(1,¢). The quantity

_ wK(V1—1?)
w(t) = ECTORE

is known as the modulus of the Groetszch ring D\ [0,%] for 0 < t < 1. Note that u(t) is a
strictly decreasing smooth function. For details, see [1].

Proposition 1 (Kanas-Wigniowska [3]). The conformal map.px : D — 4 with p(0) =1
and pi(0) > 0 is given by

1+2)/(1-=2) ifk=0,
(2) = (1 = k%) cosh[Cr log(1 + v/Z) /(1 — v/Z)] — k*/(1 — k?) ifo<k<l1,
PREI= N 1+ @/n0)log(1 + v2)/(1 - VE)? ifk=1,

(k2 — 1)~ 1sin[Cek((2/VE — 1) /(1 — Vi), t)] + KB/ (K> — 1)  if1 <k,

where Cy, = (2/7) arccosk for 0 < k < 1 and C, = n/2K(t) and t € (0,1) is chosen so
that k = cosh(u(t)/2) for k> 1.
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3. MAIN RESULTS

For each k € [0,00), we write
pr(2) = 1+ As(k)z + Ag(k)2* + -

for the conformal mapping px of D onto (% with px(0) = 1 and p}(0) > 0. Since Q. lies in
the right half-plane, Carathéodory’s theorem yields that |An(k)| < 2 holds for each n > 1
and k € [0, 00). Our main result is the following. ‘

Theorem 2. An(k) >0 for all n > 1 and k € [0, +00).
Since po(z) = 1+ 2z + 222+ 22° + -+ and

2 2 B 2
p1(2)=1+;'r—2'(z+'3—+'5‘+"') s

the assertion of the theorem is trivial for k = 0 and k = 1. When 0 < k < 1, the assertion
is also trivial because the function cosh has the non-negative Taylor coefficients.
In what follows, we consider the cases when k > 1. Due to complexity of the represen-
tation of py given above for k > 1, we try to simplify it.
We now consider the conformal mapping J of D onto C \ [-1, 1] defined by f(z) =
(z + 271)/2. Since
J(e~**®) = cosh scost — isinh ssint,

the circle |z| = e~ is mapped by J onto the ellipse E, given by

() + )

for s > 0 and the radial segment (0,e®) is mapped by J into the component H, of the
hyperbola given by

u \2 v \2
(5557) —(;'i—n-i) -—-1, UCOSt>0,
for t € R with (2/7)t ¢ Z.
Let T, be the Chebyshev polynomial of degree n, i.e., T(cos 8) = cos(nf). Then it is
well known that the n-fold mapping z — 2" is conjugate under J to Ty, in other words,

J(2") = Tu(J ()

holds in |2| < 1. In particular, one can see that the ellipse E, is mapped by T, onto Ey,
and that the hyperbola H, is mapped by T, onto Hp:.
Applying the above argument to Tp(w) = 2w? — 1, we obtain the following.

Lemma 3. The Chebyshev polynomial To(w) = 2w? — 1 maps the domain. bounded by
H, and H,_, onto the connected component of C\ Ha; containing —1. Also, Tz maps the
domain bounded by the ellipse E,; onto the domain bounded by Eq,.

On the basis of the above lemma, we can obtain another representation of py.



TOSHIYUKI SUGAWA

Theorem 4. For k > 0, the function py is written by pr(2z) = 1 + Qi(+/2)?, where

\/ l—zkf sinh(Cy arctanhz) if 0<k<1,
Qr(2) = { 1/ 5 arctanhz if k=1,

/w2 sin (CiK(z/v/5,8) i 1<k

Here, Cy, = (2/7) arccos k when 0 < k < 1, and s € (0,1) is chosen so that k = cosh u(s)
and Cy, = (n/2)/K(s) when k > 1.

Furthermore, the function Qy is odd and maps the unit disk conformally onto the domain
Dy ={z+iy: (k—-1z?+ (k+1)y® < 1}.

Note that Dy is the inside of a hyperbola when k < 1 and Dy is the interior of an ellipse
when k£ > 1. When k& = 1, the domain Dy becomes the parallel strip —1/\/— 2<Imz <
1/4/2. Also note that Dy is invariant under the involution z — —z.

4. ROUGH IDEA OF THE PROOF

We indicate here how to deduce Theorem 2. A detailed exposition will appear in [2].

In order to prove positivity of the Taylor coefficients of py, it is enough to show that of
Qi thanks to Theorem 4. Though the assertion is trivial in the case when 0 < k < 1, we
first treat this case in order to highlight an idea of the present method. When 0 < k < 1,
one can check that w = Q(2) satisfies the linear differential equation

(1) (1-2)%" —22(1 = 220w — Ciw =0
in D.
Lemma 5. Let Q(z) be an analytic solution of (1) in D with Q(0) = 0 and Q'(0) > 0.

Then Q has Taylor expansion in the form Q(z) = Yoo, Bn2®™*! and the coeﬁ‘iczents
satisfy the inequalities

(2) 2n+1)B,—(2n—-1)B,-1 >0 and B,>0
for eachn > 1.

Proof. By the linear differential equation (1), one obtains the recursive formula for coef-
ficients

(2n +2)(2n + 3)Bnt1 — {2(2n + 1)2 + C}} Br + 2n(2n — 1)B,1 = 0

for n > 0, here we have set B_; = 0. We now suppose that the assertion is true up to n.
Then, by the above formula, we get

(2n +2){(2n + 3)Bny1 — (2n + 1)Bp}
={2@2n+1)> - 2n +2)(2n+ 1) + Ci} B, — 2n(2n — 1) By,
(3) >{2(2n+1)? = (2n +2)(2n + 1)} Ba — 2n(2n ~ 1) B,y
=2n{(2n+1)B, — (2n —1)Bn_1} >0
Therefore, the assertion is also true for n + 1. By induction, the proof is done. O

128



130

ON POSITIVITY OF TAYLOR COEFFICIENTS OF CONFORMAL MAPS

In the case when k > 1, the function w = Q(2) satisfies the similar differential equation
12
(1 — s22)(1 - 22/s)w" — 22((s + s71)/2 — 2°)w' + g:—w =0
in D, where s € (0,1) is chosen so that k = cosh y(s) and Cj, = 7/2K(s). Note that Qx(2)
satisfies Qz(0) = 0 and Q}(0) > 0.
The above two differential equations can also be unified into the form

(4) (1-2M2 + 24" — 22(M — %)’ — cw =0,

where M = land c=C2 for0 <k <land M = (s+57%)/2 > 1 and c = —C}*/s =
—n2/4sK(s)? for k > 1. Let w = Q(2) be the solution of the equation with the initial
condition Q(0) = 0 and Q’(0) = 1. In the same way as above, one obtains the relations

for the coefficients of Q(z) = :;0 Bpz¥t1;

(5) (2n + 2)(2n + 3)Bay1 — {2M(2n+ 1% + ¢} B+ 2n(2n — 1)Bp1 =0

for n > 0, where we also have set B_; = 0.

In the case when k > 1, however, the above argument breaks down at the inequality
(3) because now ¢ < 0. In fact, the coefficients B,, tend rapidly to 0 as n — oo, therefore,
some renormalization techniques are required in this case. See [2] for the details.
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