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Abstract

Let A be the class of normalized analytic functions in the unit disk A and define
the class

P(B)={f € A:Jp € R such that Re[e"?(f'(z) - B)] > 0, z € A}.

In this paper we find conditions on the number 8 and the nonnegative weight function
A(t) such that the integral transform

B = [ a0l e

is convex of order v (0 < ¥ < 1/2) when f € P(8). Some mterestmg further conse-
quences are also considered.
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1. Introduction and Preliminaries

Let A denote the class of functions of the form f(z) = z + Y52, an2™ which are analytic in
the open unit disk A = {z € C: |z| < 1}. Also let S, $*(v) and K(y) denote the subclasses
of A consisting of functions which are univalent, starlike of order 4 and convex of order 7 in
A, respectively. In particular, the classes $*(0) = $* and K(0) = K are the familiar ones of
sta.rhke and convex functions in A, respectively. We note that for 0 < v < 1,

f(z) € K(y) <= 2f(2) € 5*(v)
and f € §*(v) if and only if Re (2f(2)/f(z)) > v for z € A.
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Let a, b and ¢ be complex numbers with ¢ # 0, —1,~2,.... Then the Gaussian/classical
hypergeometric function 2 Fy(a,b;c; 2) = F(a,b;¢;2) is defined by

o) = X2 (@)n(B)n 2"
F(a,b;c;2) —Z-::O (©n 7l
where (), is the Pochhammer symbol defined, in terms of the Gamma function, by

_T(A+n) _[1 (n=0)
(A = INGY —{z\(/\+1)---()\+n——1) (neN).

The hypergeometric function F(a,b; c; z) is analytic in A and if a or b is a negative integer,
then it reduces to a polynomial. For functions f;(z) (j = 1,2) of the forms

Fi(2):= > ajn 2" (aj1:=13=1,2),

n=1

let (fi * f2)(z) denote the Hadamard product or convolution of fi(z) and fa(z), defined by

ik fo)(2) = 3 G aam 2 (a0 5= 135 = 1,2).

n=1

For f € A, the following special case gives rise to a natural convolution operator Hgp.c

defined by
Hapo(f)(2) := 2F(a,b;c; 2) * f(2).

Note that this is a three-parameter family of operators and contains as special cases several
of the known linear integral or differential operators studied by a number of authors. In
fact, this operator was considered first time in this form by Hoholov [7] and has been studied
extensively by Ponnusamy [11], Ponnusamy and Rgnning [14] and many others (2, 8, 5].
For example, by letting Hyso(f) = L(b,c)(f), we get the operator L(b,c)(f) discussed by
Carlson and Shaffer [4]. Clearly, £(b,c) maps A onto itself, and L(c,b) is the inverse of
L(b,c), provided that b # 0,—1,—2,.... Furthermore, L(b,b) is the unit operator and

(1.1) L(b,c) = L(b,e)L(e,c) = L(e,c)L(b,e) (c,e# O,‘~—1, -2,...).
Also, we note that £(b,b)f(2) = f(2), £(2,1)f(2) = 2f'(2),
K(y) =£(1,2)5*(7) (0<v< 1),

(1.2) S*(1)=L(2,1)K(7) (0<y<1)
and the Ruscheweyh derivatives [16] of f(z) are L(n +1,1)f(2), n € NU {0}. For f < 1, we
define ‘

P(B)={f € A: 3p €R such that Re[e*(f'(2) - B)] >0, z € A}
Throughout this paper we let A : [0,1] — R be a nonnegative function with the normaliza-
tion JI A(#)dt = 1. For certain specific subclasses of f € A, many authors considered the
geometric properties of the integral transform of the form

wn@ = [ A
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More recently, starlikeness of this general operator Vj(f) was discussed by Fournier and
Ruscheweyh [6] by assuming that f € P(8). The method of proof is the duality princi-
ple developed mainly by Ruscheweyh [17]. This result was later extended by Ponnusamy
and Rgnning [15] by means of finding conditions such that VA(f) carries P(f) into starlike
functions of order v, 0 < v < 1/2 and was further generalized in [3].

In this paper, we find conditions on 3, ¥ and the function A() such that V(f) carries P()
into K(7). As a consequence of this investigation, a number of new results are established.
The following lemma is the key for the proof of our main results.

1.3. Lemma. Let A(t) be a real valued monotone decreasing function on [0, 1] satisfying
A(1) =0, tA(t) = 0 for t — 0 and

tA'(t) _ A(t)
TATHI -0 T @+ -t

is decreasing on (0,1) where

A@t) = /t LOFN

s
If B = B(),7) is given by

™»

-3 n 1—~(1+1)
- _./(; MT T+ @

then VA(Pg) C K(v), 0 < v < }, where VA(f) is defined above.

[y

)

Proof. Proof of this lemma quickly follows from the work of Ponnusamy and Rgnning
[15] and therefore, we omit the details. O

2. Main Results

In order to apply Lemma 1.3 with v € [0, ;] it suffices to show that

tA(2)

) = ~T3pa - nen

is decreasing on the interval (0,1) where A(t) = [} 22} ds. Taking the logarithmic derivative
of u(t) and using the fact that A’(t) = —2, we have

wi(t) X)) 20+ (+ )
u(t) ~ A®) 1—12

and therefore, u(t) is decreasing on (0,1) if and only if

(2.1) (L= V@) +2(y+ L+ A <0
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From now on, we define

(2.2) e(l—t) =1+ Z b,.(l - t)" (b 2 0)
and
(2.3) At) = Ct* (1 — 1) bp(1 — 1)

where C is a normalized constant so that fi A(t)dt = 1. For f € A, Balasubramanian et al.
[2] defined the operator P, 3. by

tz
Puc)(e) = [ 20 e,
where A(t) is given by (2.3). Special choices of ¢(1 —t) led to various interesting geomet-

ric properties concerning certain well-known operators. Observe that A(t) = [, ! —U- ds is
monotone decreasing on [0, 1], lims—o4+ tA(¢) = 0 and (2.1) is equivalent to

(c—a—3-27)t"+(c—a—b-2y7)t+1-b2 t(1-t2)‘°(1“t)

e(1-1)
and this inequality may be rewritten in a convenient form as
(24) D& +)+ (1 =01 =) + (1 - 1) > (1 - ') =r—7 ((1 :))

where D =c¢—a—b—1— 2. In view of (2.2), ¢(1 —t) > 0 and ¢'(1 —¢) > 0 on (0,1), so
that the right hand side of the inequality (2.4) is nonpositive for all ¢ € (0,1). If we assume
that 0<7<1/2,6>0,0<b<1and ¢c>a+b+2y+1, then the left hand side of the
inequality (2.4) clearly is nonnegative for all ¢ € (0,1). Thus, the inequality (2.4) holds for
all £ € (0,1). In conclusion, from Lemma 1.3, we have the following theorem and techniques
as in the proofs of [5, Theorem 1] and [13, 15, 8] show that the value B in Theorem 2.5 is

sharp.

2.5. Theorem. Let 0<7<1/2,a>0,0<b<1andc>a+b+2y+1,and let A(?)
be given by (2.3). Define 8 = 3(a,b,c,v) by

—y(1+¢)
f ()(1 YA+

If f(z) € P(B), then P,p(f)(2) € IC('y). The value of 3 is sharp.

2.6. Corollary. Let0<y<1/2,0<a<1,0<b<landc2a+b+2y+1.
Suppose that ¢(1 —t) and C are defined by

(2.7 p(l-t)=F(c—a,1 —a;c—a—b+1;1-1)
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and

(2.8) C = [(c)

F@)(b)T(c—a—b+1)’
respectively. Define # = ((a,b,c,v) by

'3_%__ 1 _ pyemabyb-1 1—-7(1+t) -
(=0 [ (g e -va

If f(2) € P(B), then H,p.(f)(2) defined by
Hopol £)(2) 1= C [ (1= ) *~42p(1 1) f(t2) dt.
belongs to K(v). The value of B is sharp.

(2.9)

Proof. The integral representation for H,.(f)(2) has been obtained in (2, 8]. By (2.7)
and (2.8), it follows that the corresponding operator P, (f)(2) equals Hupo(f)(2). Note
that the assumption implies that 0 <a <l and c—a >0and c—a—b+1 > 0 from which
the nonnegativity of ¢(1 —t) on (0,1) is clear. Now, the desired result follows from Theorem
2.5. .

Setting a = 1 in Corollary 2.6, we obtain

2.10. Corollary. Let0<y<1/2,0<b<1andc2>b+2y+2. Also let

(2.11) AL bey)=1- 21 — F(2,b;¢,—1) — vy (1 — F(1,b;¢;,—1))]°

I 3(1,,¢,7) < B <1 and f(2) € P(B), then L(b,c)f(z) € K(v)-

Proof. Putting a = 1 in (2.9) it follows that

B-3 _ TC) [ aar sess 1=71+1)
= _F(b)l‘(c—b)[otb -0 Ty
L(e)

1 -1 c—b-1 Y 1
- ok - e m)

1
= 1= 5 [VF(1,b5;¢;—1) — F(2,b;¢;—1)]

where the last step follows from the Euler inf.egra.l representation. Solving the last equation
gives the number (1, b, c,7) given by (2.11). The desired conclusion follows from Corollary
2.6. O

2.12. Theorem. Let -1 < ¢ < 2,0 <v<1/2 and p > 2(1 + 7). Suppose that
B = B(a,p,) is given by

2 __ (1+a)p 1 a p-1 1—7(1+t)
T =g b s T
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Then, for f € P(B), the Hadamard product function ®,(a; z) * f(z) defined by

®,(a;2) * f(2) = (?;1 E:;:Z))i ) * f(z) = (1 +a) / (log 1/¢)P~ 1>~ f(¢2)dt

belongs to K(v). The value of 3 is sharp.

Proof. To obtain this theorem, we choose ¢(1 —t) and A(¢) in Theorem 2.5 as

$(1~1) = (bg(l/ t))”_ (—log(l o t)))”'1 |

t 1-1
and (1 4 )
At = S — 401~ )
respectively. The desired concluSmn follows from Theorem 2.5 and the hypotheses. ~ [1

Our final application concerns the integral operator studied by Ponnusamy [12], Pon-

nusamy and Rgnning [13] and later by Balasubramanian, Ponnusamy and Vuorinen [2].
Define

(2.13) At) = { (a+1)(d+ 1)( forb#£a,a>~-1,b0>—1,
(a + 1)*t*log(1/t) forb=a,a> —1.
With this A(t), we have an integral transform

(L +a)(1+D) _ [ty S(t2)
Gy(a,b; )_(Z(n+a)(n+b)z)*‘f(z)_/o)‘(t) y dt.

#9(1 - 14-2)
—a

In view of symmetry between a and b, without loss of generality, we assume that b > 4 in the
case b # a. Note that in the limiting case b — oo (b # a), G(a, b; z) reduces to a well-known
Bernadi operator given by

G (a,00;2) i= (i 1+a “) * f(2) = 1+“/ #-1f(8) dt = L{a + 1,0+ 2)f(2).

n=17 +a
2.14. Theorem. Let b> —1, a > —1 be such that any one of the following conditions
holds:
(i) -1<a<0anda=b
(i) -1<e<0andb>awith—-1<b<2.

Suppose that A(t) is defined by (2.13) and B is given by
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If f € P(B), then the function G4(a,b; z) is convex in A. The value of § is sharp.

Proof. Clearly, as in the proof of Theorem 2.5, it suffices to verify the inequality (2.1)
for the A(t) defined by (2.13). Now, for the A(t) given by (2.13), we have

1H(b+1
N(t) = { @—+b—-)é—;t—)-t“‘l (a - bt""“) forb>a> -1,

(a+1)*(~1+alog(1/t))t*! forb=a > -1.

Case (i): Let b=a > -1. If we substitute the A(t) and the t)'(t) expression in (2.1), the
inequality (2.1) is seen to be equivalent to

(2.15) ~a (1 - %) log(1/t) + 1 — t* — 2t*log(1/t) 20, t € (0,1).

Clearly, as ~1 < a < 0, this inequality holds if it holds for a = 0. Substituting a = 0, this
becomes '
1—12—2%log(1/t) 20, te(0,1),

which, for £ = €77, is equivalent to
e®>142z, z>0.

Since this inequality holds for all z > 0, the inequality (2.15) holds for all ¢ € (0,1) and the

desired conclusion holds in this case.
Case (ii): Let b > a > —1. If we substitute the A(¢) given by (2.13) and the correspond-
ing tA'(t) expression in (2.1), the inequality (2.1) is seen to be equivalent to

(2.16) (1) (at*! —bt1) 2 (¢4 — 1) <0
which may be rewritten as

"pf(a) - ¢t(b) S 01 1AS (0: 1))

where
i(a) = a (1 — %) 12 4 262+,

For each fixed t € (0,1), we first claim that 1;(a) is an increasing function of a. Differentiating
¥t(a) with respect to a, we find that

¥i(a) =t [1 — % — 2% log(1/t) — a (1 — #*) log(1/2)] .

Using the previous case, namely the inequality (2.15), it follows that i(a) > 0 for all
a € (—1,0) and for t € (0,1). In particular, for b > a with b € (—1,0) and a € (—1,0), the
inequality (2.16) holds.

When b > a with 0 < b < 2 and a € (—1,0], we have

Pi(a) < ¥:(0) =2t for t € (0,1).
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Now, we claim that for 5> a with0 <b<2anda € (—1,0}, the inequality
2t < u(b) = b (1 — 7)1 + 2°H
holds for all ¢ € (0,1). To verify this inequality, we rewrite it as
2(t—1) <b(t?-1) forte(0,1)
which, for ¢ = 1 — z, is equivalent to the inequality
(2.17) 2((1-2)*-1) <b(l-2)" - 1) forze(0,1).

Since
2(b)p < b(2)p, foralln>1,
a comparison of the coefficients of z® on both sides of the inequality (2.17) implies that
(2.17) clearly holds. Thus, for 0 < b < 2 and a € (—1,0] with b > a, we have
wi(a) < 2 < u(b) fort e (0,1)

and the proof is now complete. v | a

3. The Fractional Integral Operator

There are a number of definitions for fractional calculus operators in the literature. We use
here the following definition due to Saigo [18] (see also [10, 19]).
For A > 0, g, v € R, the fractional integral operator Z* is defined by

P

T f(s) = S [ = O E O+ i L - Y100,

where f(z) is taken to be an analytic function in a simply-connected region of the z-plane
containing the origin with the order

f(z) = 0(lz) (—0)

for € > max{0,u — v} — 1, and the multivaluedness of (z — ¢)*! is removed by requiring
that log(z — ¢) to be real when z — ( > 0.

In [10], Owa et al. considered the normalized fractional integral operator by defining
J O NN by

L@ —pLE+A+Y) upruw .
fe—pty) - ° fz) m‘n{””’-#f% u}>‘-2.

Clearly, J*** maps A onto itself and for f € A

(3.1) T (2) = £(2,2 - B)LE — p+ 1,2+ A+ 0)f(2)

T 1) =
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A function f(z) € A is said to be in the class R(e, %) if
(f*sa)(2)€S*'(7) 0La<]; 08y<1).

Here s4(2) = z/(1 — z)~%'~%) (0 < a < 1) denotes the well-known extremal function for the
class $*(a). Note that
(3.2) R(a,v) = £(1,2 — 2a)S*(7)

and R{a,a) = R(«) is the subclass of A consisting of prestarlike functions of order a which
was introduced by Suffridge [21]. In [20], it is shown that R(«) C S if and only if a < 1/2.
Our result in this section is to obtain a univalence criterion for the operator J*#,

3.3, Theorem. Let 0<y<1/2,0<pu<2,12>22(1+9)—pandp—-2<v<pu—1.
Define 8 = B(A, u,v,7) by

_ ) e
A=l 2 -F2,2-p+v;2+A+v;-1)—7(1-F(1,2-p+v;2+ A +v;-1))]

If £(2) € P(B), then T f(z) € R(/2,7).

Proof. Making use of (1.1) and (3.1), we note that

(3.4) TWf(s) = L£22-WLE@—p+02+A+1)f(2)
= L(1L,2-WLEDLE - p+u2+A+0)f(2)

By using Corollary 2.10, we obtain
LR-p+v,24+X+v)f(2) € K(7).

Since 0 < p < 2, from (1.2), (3.2) and (3.4), we have J*#* f(z) € R(u/2,v) and we complete
the proof. : O

Taking x4 = 27 in Theorem 3.3, we get

3.5. Corollary. Let 0 < y<1/2, A > 2and 2(y—-1) < v £ 2y —1. Define
B = B(Xv,7) by

1—-9 |
A=1- oM - F(2,2 -2y + 24+ A +v;-1)—v(1 - F(1,2=2v+v;2+ A+ v;-1))]

If f(z) € P(B), then Jo2™ f(2) € R(y) C S.

Proof. If we put £ = 2y in Theorem 3.3, then

Tl f(2) € R(7,7) = R(¥).

Since v < 1/2, we have R(y) C S and therefore, the proof is completed. o



30

Jae Ho Choi, Yong Chan Kim and S. Ponnusamy

3.6. Remark. In [2], Balasubramanian et al. found the conditions on the number 3
and the function A(t) such that Pac(f)(2) € 8*(7) (0 £ 7 £ 1/2). Since

T f(2) = Prpap-vi2(F)(2)
with
¢(1 —t) = F(A +p,~v; A1 - 1)

and
0= I2—-pl2+A+v)
T TO)@2—-p+v) ’

it is easy to find that the condition on 3 and A(t) such that J*** f(z) € §*(7).

Finally, by using Lemma 1.3 again, we investigate convexity of the operator Tk,

3.7. Theorem. Let 0 < v<1/2,0<A<142y,2<pu<3aidv >pu—2. Define
ﬂ=ﬁ()\,y,y,~/) by
—3_ T@-pwl@+A+vy) fl H(1 =1 (1 —y(1+1))
1-p AT —pu+v) Jo 1 -1 +1)?

If £(2) € P(B), then T ¥ f(z) € K(v). The value of § is sharp.

F(XA + p,—v; ;1 —t) dt.

Proof. Let 0<y<1/2,0<A<14+2y,2<u<3,v>u—2 and let

_PR-w@+A+v)

(3.8) M) = DRCEYE) t(1 =t TF(\ + p,—v; ;1 —2).

Then we can easily see that [> A()dt = 1, A(t) = J;' A(s)ds/s is monotone decreasing on
[0,1] and limy_,04 tA(t) = 0. Also we find that the function u(t) = A(t)/(1 +£)(1 - 1)1 s
decreasing on (0,1), where A(t) is given by (3.8). Hence, tA'()/(1+1t)(1 —¢)'+?" = —u(t) is
increasing on (0,1). From Lemma 1.3, we obtain the desired result. O
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