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Abstract

The main object of this paper is to investigate several geometric properties of
the solutions of the second-order linear differential equation:

w (2)+a(2)w () +b(z)w(z) =0,
where the functions a (z) and b(2) arc analytic in the open unit disk U. Rele-
vant connections of the results presented in this paper with those given earlier

by (for example) M.S. Robertson, S.S. Miller, and H. Saitoh are also consid-
ered.
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1. Introduction

Let A denote the class of functions f normalized by -

F@ =43 02 L
n=2

which are analytic in the open unit disk |
U:i={z:2€C and |z|<1}.
Alsolet S, S*; and 8* () denote the subclasses of A consisting of functions which are, respec-

tively, univalent, starlike with respect to the origin, and starlike of order ainU (0 S a < 1).
Thus, by definition, we have (see, for details, (2] and [8]; see also [7] and [11])

S*(a)::{f:feA and m(z_ff_’((;?)‘>a (zeU;O_S_a<1)} (1.2)
and
8* =8 (a)|pee =8"(0). (1.3)
For functions f € A with f' (z) # 0 (z € U), we define the Schwarzian derivative of f (2) by
_ (@Y _1 (@Y
sia=(5G) -3 (76) a4

(feA f(2)#£0 (ze D).
We begin by recalling the following result of Miller [4].
Theorem A (Miller [4]). Let the function p(z) be analytic in U with

lzp(z)| < 1 (zeU).
Also let v (z) denote the unigque solution of the following initial-value problem:

v (2)+p(2)v(2) =0 (v(0)=0; v'(0)=1) (1.5)
in U. Then ,
z: (S) ~1<1 (z€U | (1.6)

and v (2) is a starlike conformal map of the unit disk U.

Theorem A is related rather closely to some earlier results of Robertson [9] and Nehari
[6], which we recall here as Theorem B and Theorem C below.

Theorem B (Robertson [9]). Let zp(2) be analytic in U and
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Then the unique solution W = W (z) of the following initial-value problem:
W'(z) +p()W(z)=0 (W(0)=0; W (0)=1) (1.8)

is untvalent and starlike in U. The constant E} in the inequality (1.7) is the best possible.

Theorem C (Nehari [6]). If f € A satisfies the following inequality involving its Schwarzian
derivative defined by (1.4):

2
m
SUHals 5 (zel), (1.9)
then f € 8. The result is sharp for the function f (z) given by

f@)= ee«;r— L G=vAD). (1.10)
Remark 1. By setting
p(z) = %S(f, z) (z€el) | (1.11)

and using (1.9), we obtain the inequality (1.7). Obviously, therefore, the hypothesis in
Theorem C is stronger than that in Theorem B.

In the present paper, we aim at investigating several geometric properties of the solutions
of the following initial-value problem which involves a general family of second-order linear
differential equations:

w" (2) +a(2)w' (2) +b(2)w(z) =0 (1.12)
(w(0) =0; w'(0) =1),
where the functions a (z) and b (z) are analytic in U (see [3]). We also show how our results
are related to those of (for example) Robertson [9], Miller [4], and Saitoh [10].

2. A Class of Bounded Functions

Let B; denote the class of bounded functions

o0
w(2) =) e 2" (2.1)
n=1
analytic in U, for which ‘
lw(z)]<d (z€U; J>0). : (2-2)

If g(z) € By, then we can show (by using the Schwarz lemma [1]) that the function w (z)
defined by

w(z) =2~} / Tt dt 2.3)
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is also in the class B;. Thus, in terms of derivatives, we have

-;-w (2) + 2w’ (2)

<J (zeU) = |w(z)|<J (z€l). (2.4)

Furthermore, by letting
h(u,v) := %u + v, (2.5)
we can rewrite (2.4) in the form:
lh(w(z),2w' (2)|<J (zeU) =>|w(2)|<J (z€D). (2.6)
In this section, we show that the implication (2.6) holds true for functions h (u,v) in the

class H 7 given by Definition 1 below (see also [5]).

Definition 1. Lect Ay be the class of compler functions h (u,v) satisfying each of the
following conditions:

(i) h(u,v) is continuous in a domain D C C x G;
(i) (0,0) € D and |k (0,0)| <J (J>0);
(iii) |h (Je?, Ke®)| 2 J whenever

(Je®,Ke®)eD (BeR K2J>0).

Example 1. It is easily seen that the function .
h{u,v)=acu+v (R(@)20; D=CxC) (2.7)
is in the class H;.
Definition 2. Let h € H; with the corresponding domain D. We denote by B; (h)

the class of functions w (z) given by (2.1), which are analytic in U and satisfy each of the
following conditions:

(i) (w(2), 2w (2)) €Dy
(ii) |h(w(2), 2w’ (2))|<J (2€U; J>0).
The function class By (h) is not empty. Indeed, for any given function h € H,;, we have

w(z) =c1z € By (h) _ (2.8)
for sufficiently small |c;| depending on h.

Theorem D (Saitoh {10]). For any h € H,,
B;(h) C By (heHs; J>0).
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Remark 2. Theorem D shows that, if h € H; (with the corresponding domain D) and if
w (z), given by (2.1), is analytic in U and

(w(z), 2w’ (2)) € D,
then the implication (2.4) holds true.

Theorem D leads us immediately to the féllowing result, which was also given by Saitoh
[10].

Theorem E (Saitoh [10]). Let h € H; and let the function b(2) be analytic in U with
[b(2)| < J (z€e U, J>0).
If the initial-value problem:
h(w(z),2u'(2)) =b(2)  (w(0)=0) (29
has a solution w(z) analytic in U, then
lw (2)| < J (z€U; J>0).

3. Main Results and Their Consequences

One of our main results is contained in the following theorem.

Theorem 1. Let the functions a(z) and b(2) be analytic in U with

2 {b(z) - -;-a’ (2) - 7} la (z)]z} <J (z€U J>0) (3.1)
and
R{za(z)} > -2J (zeU; J>0). (3.2)
Also let w (2) denote the solution of the initial-value problem (1.12) in U. Then
1 2w’ (2) 1
1-J 2ﬂi{za ()} < 9%( w () ) <1+4+J 291{za (2)} (3.3)
(z€eU; J>0).

Proof. First of all, by means of the transformation:

w (z) = exp (-—% f a(t) dt) -v(2), (3.4)
0
we can rewrite the initial-value problem (1.12) in the normal form: |
v (2) + {b (2) — %a’ (2) — -i— [a (z)]z} v(z)=0 (3.5)

(v(0)=0; v' (0) =1).
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If we now put
2v' (2)

u@=3 -1 Gev, (36)
then u (2) is analytic in U with u (0) = 0, and (3.5) becomes

Al +u) + o () = -2 (b0 - 3¢ @ - LEF}  @O=0 @2

or, equivalently,

hue) @) =2 (b0 - 3@ - e} wO=0, @9

where, for convenience,
h(€n) =& +E+n. (3.9)

It is easily observed from (3.1), (3.2), and (3.8) that h(£,n) € #Hs, that is, that
(i) h(&,mn) is continuous in D = C x C;
(ii) (0,0) € D and |h(0,0)|=0< J (J>0);
(iii) For (Je?,Ke®) eD (feR, K2 J>0),
|h (Je, Ke)| = | %™ + Je + Ke|
=|Pe?+J+ K| 2 J
Thus, by applying Theorem E, we find from the hypothesis (3.1) of Theorem 1 that
lu(z)|<J (z€U; J>0),
which, in view of the relationship (3.6), yields

1—J<m(z:'(g)) <1+J (z€U; J>0). (3.10)

Next, by logarithmically differentiating (3.4) in its equivalent form:

v(z):exp(%/o‘za(t)dt) cw (2),

we have '(2) (@)
2v'(z) 2u'(z
() = ) + = za (2), (3.11)
so that (3.10) becomes
-J<R (Et—”-((—;)) + m{za ()} <1+J (3.12)
(zeU; J>0),

which obviously yields the assertion (3.3) of Theorem 1.
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Remark 3. If, in Theorem 1, we have
R{za(z)} 201 -J) (zelU; J>0),
so that
0<1- J-%ﬂ‘t{za(z)} <1 (zeU J>0),

then the assertion (3.3) immediately yields

w(z) € 8* (1 —J- %ﬂ‘t{za (z)})
in conjunction with the definition (1.2).

Example 2. If we let
a(z) =—-2Jz and b(z) = J222 (J>0)
in Theorem 1, then the solution of the initial-value problem:
w” (2) — 2Jz2w' (2) + 222w (z) = 0
(w(0)=0; w'(0)=1)
is given by
w(z) = \—/1-—jexp (%Jzz) - sin (Z\/j) .

In this case, if we further assume that

0<JE

El

2o =

then

w(2) €S (1 - 2J) (0<q§%),

so that, in particular, we have

1 w (2) = V2exp (%22) .sin (

€ S*,

: 7)
J= % : w(2) = V3exp (%zz) -sin (—%) €S (é—) :
J= % ¢ w(z2) = 2exp (%zz) - sin (-g—) es (%) ,

and so on.

Example 3. For
a(z)=-2Jz and b(z)=Xx (J>0;,A€C),

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)
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the initial-value problem (1.12) becomes
w” (2) — 2Jz2w' (2) + dw (2) =0 (3.19)
(w(0) =0; w'(0)=1),
which, under the transformation:
w(2) = exp (—;—Jﬁ) v (2), (3.20)
assumes the normal form:
V' (2)+ (A+J - 22 v(2) =0 (3.21)
(v(0) =0; v'(0) =1).

Remark 4. In their special case when J = 1, the differential equations in (3.19) and
(3.21) can be identified with such classical differential equations as Hermite’s equation and
Weber's equation, respectively (cf., e.g., [1] and [12]).

Next we prove the following result for the solution of the initial-value problem (3.21).

Theorem 2. If

A+J -T2 <T (2€VU; J,T>0), (3.22)
then the solution v (z) of the initial-value problem (3.21) satisfies the inegquality:
2v' (2) .
e -1!<T (zeU; T>0). (3.23)

Proof. Just as in our demonstration of Theorem 1, the function u (z), given by (3.6), is
analytic in U, » (0) = 0, and [¢f. Equation (3.7)]
h(u(2),2u (2)) =-22 (A+JT-J%2%)  (u(0)=0), (3.24)
where h (£,7) is defined, as before, by (3.9).
Now it is easily seen from (3.22) and (3.24) that h (£,7) € Hr, that is, that

(i) h(£,n) is continuous in D = C x C;
(i) (0,0) e Dand |h(0,0)|=0<T (T > 0);
(iii) For (Te¥,Ke?) e D (eR, K 2T >0),

|h (Te®, Ke®)| 2 T.
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By applying Theorem E, we thus find from the hypothesis (3.22) of Theorem 2 that
lu(z)|<T (2€U; T>0),

which, in view of the relationship (3.6) again, leads us at once to the assertion (3.23) of
Theorem 2.

Remark 5. If 0 < T £ 1, then Theorem 2 yields the following geometric property:
v(z) €S*(1-T) (0<TZg1)
for the solution v (2) of the initial-value problem (3.21).

By putting J = % and T =1 in Theorem 2, we obtain the following known result.

Corollary (Saitoh [10]). If

A+-;——;11-22 <1 (z€eD), (3.25)
then the solution v (z) of Weber’s differential equation:
v (2) + (A - —;— - %z"’) v(z)=0 ‘ (3.26)

(v(0)=0; v'(0)=1)
1s starlike in U.

Remark 6. The solutions of Weber’s differential equation in (3.26) are expressed as the
parabolic cylinder (or Weber’s) function D, (2) defined by (cf,, e.g., [1, p. 39 et seq.])

SRV S

_ z(\/_:) IFI(I"\ ;’ ; )} (3.27)

where 1 Fy (a;7; z) denotes the confluent hypergeometric function (see, for details, [1] and

[12]).
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