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On the spectrum of magnetic Schrodinger
operators with Aharonov-Bohm field

HESKFREH % #K (Takuya MINE)
Faculty of Science, Department of Mathematics, Kyoto Univ.

1 Introduction

We consider the spectral problem for the Schrodinger operators in a plane
with a non-zero uniform magnetic field in addition to d-like magnetic fields.
The operator of this type is studied by Nambu ([Nam]) and Exner, St’ovicek
and Vytfas ([Ex-St-Vy]).

Let N = 1,2,3,... or N = oo. Let {2}, be points in R? and put
Sy =UX,{z}. We assume that

R = ;g{ |Zj - Zkl > 0. (11)

This assumption is satisfied if N is finite. Define a differential operator Ly
on R*\ Sy by

1
Ly=p% prv= §V+GN,

where i = /—1 and V = (8,,8,) is the gradient vector with respect to the
coordinate z = (z,y) € R?. We assume that the magnetic vector potential
an = (ay s any) belongs to C°(R?\ Sy; R?) N LL,.(R? R?). The function
rot ay(2) = (8:an,—8,an,)(2) represents the intensity of the magnetic field
perpendicular to the plane. We assume that

N
rotan(z) = B+ ) 21a;0(z — 2;) (1.2)
=1

in D'(R?) (the Schwartz distribution space), where B, a; are constants sat-
isfying B > 0 and

0<aj<1forevery j=1,...,N. (1.3)

The constant B represents the intensity of a uniform magnetic field. The
constant 2ma; represents the magnetic flux of an infinitesimally thin solenoid
placed at z;. We can show that the difference of integer magnetic fluxes can
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be gauged out by a suitable unitary gauge transform. Since we consider
only the spectral problem, the assurmption (1.3) loses no generality. We find
a proof of the existence of the vector potential with d-like singularities in
Arai’s paper (see [Arl] and [Ar2]). When N =1 and a; = a, we always
assume that 2; = 0 and take the circular gauge, that is,

B a B a) (14)

a]_(Z) = (——2—y - W'y, -5-(27 + '|'"z'|'2'.'E

When we need to indicate the value a explicitly, we denote £ for £, (this
notation is used for the operator L, defined below).
Define a linear operator Ly on L*(R?) by

Lyu= Lyu, u € D(Ly) = CP(R?\ Sn),

where D(L) is the operator domain of a linear operator L and C$°(U) is the
space of compactly supported smooth functions in an open set U. The oper-
ator Ly is symmetric, positive and has the deficiency indices (2N, 2N) (see
(i) of Lemma 3.3 below). Thus the operator Ly has self-adjoint extensions
parameterized by (2N x 2N)-unitary matrices (see [Re-Si, Theorem X.2]).
We denote one of self-adjoint extensions of Ly by Hy. In particular, we
denote the Friedrichs extension of Ly (the self-adjoint operator associated
with the form closure of D(Ly), see [Re-Si, Theorem X.23]) by H4?2, which
is called the standard Aharonov-Bohm Hamiltonian (this name is used in
[Ex-St-Vy], when N = 1).
The Schrédinger operator with constant magnetic field is given by

1 2 B B
Eo = (;V + ao) , g = (——51/, Ew) . (15)

It is well-known that the linear operator defined by
Lou = Lou, D(Lo) = CSO(R2) (16)

is essentially self-adjoint and the spectrum of the unique self-adjoint exten-
sion Hy of L, satisfies

o(Hp) = {(2n — l)B;n =1,2,...}.

The set o(Hy) is called the Landau levels.



When solenoids exist, the spectrum in a gap of the Landau levels appears.
Our aim is to give an estimate for the number of eigenvalues between two
Landau levels or below the lowest Landau level.

We recall known results in the case N = 1. Nambu ([Nam)]) treats the
standard Aharonov-Bohm Hamiltonian H#Z and gives an explicit represen-
tation of all eigenvalues and eigenfunctions using complex integration (he
treats also the case B = 0). Exner, St’ovicek and Vytfas ([Ex-St-Vy]) give
a detailed analysis for every self-adjoint extension H;. We summarize a part
of their results as follows.

Theorem 1.1 (Nambu, Exner-St’oviéek-Vytfas) (i) The spectrum
of the standard Aharonov-Bohm Hamiltonian H{B is given by

o(HfB) = {(2n—-1)B;n=1,2,..}U{(2n+2a - 1)B;n=1,2,...}.
The multiplicity of each eigenvalue is given by

mult((2n — 1)B; H{*®) = oo, n=1,2,...,
mult((2n + 2a — 1)B; Hf) = n, n=1,2,...,
where mult(\; H) is the multiplicity of an eigenvalue A of a self-adjoint op-
erator H.
(i) L*(R?) is decomposed into the direct sum of two closed subspaces H,
and H,, called the stable subspace and critical subspace, respectively. The
spaces H, and H. are invariant subspaces for any self-adjoint extension H,

of L. The restricted operator Hi|y, is independent of the choice of Hy and
the spectrum of Hily, is given by

o(Hils,)={(@n-1)B;n=1,2,..}U{(2n+2a - 1)B;n=2,3,...}.
The multiplicity of each eigenvalue is given by
mult((2n — 1)B; Hy|y,) = oo, n=12,...,
mult((2n + 20 — 1)B; Hyly,) = n—1,n=2.3,....

The restricted operator Hy|y, depends on the choice of self-adjoint extension
H,. Houwever, the following estimates hold independently of the choice of H;.
dim Ran P_o,2a-1y8)(H1l2,) £ 2,
dim Ran P(an+2a-1)B,2n+1)8)(Hiln,) £ 2, n=0,1,2,..
dim Ran Pan-1)B,@2n+2e-1)B)(Hiln,) < 2, n=12,...
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where P;(H) denotes the spectral projection of a self-adjoint operator H cor-
responding to an interval I. The left-hand side of each of three inequalities
above takes the values 0,1,2 if we take an appropriate self-adjoint extension
H,.

From Theorem 1.1, it follows that
n—-1< dimRa.nP((zn_l)g,(2n+1)3)(H1) <n+3 1.7

forn=1,2,...,if (2n+2a—1)B is not an eigenvalue of H |3, (this condition
holds for generic self-adjoint extension H;). Later we show that the upper
bound can be sharpened (see (1.11) below).

According to (i) of Theorem 1.1, there are n eigenstates of the Hamil-
tonian HAP with the energy between n th Landau level and the (n + 1)
st Landau level. We shall try to give a physical interpretation of this phe-
nomenon. .

In classical mechanics, an electron in a uniform magnetic field moves
along a circle (cyclotron motion). The energy of an electron is quantized by
the condition that the phase variation of the electron wave in one cyclotron
rotation is 27 times an integer. Thus the energy of an electron takes one of
the values in the Landau levels.

If some solenoids are contained in the circle of the cyclotron motion, then
the phase of the electron wave is shifted by e/h times the magnetic flux of
solenoids in the circle (the Aharonov-Bohm phase shift). Thus the energy
of the electron is obliged to change, to correct the phase shift caused by
the magnetic flux of solenoids. Hence the spectrum between Landau levels
appears. '

For this reason, the number of eigenstates with an energy between n th
and (n + 1) st Landau level is roughly estimated by the possible number
of electrons with the n th Landau level energy, in the circle of the Larmor
radius centered at the position of solenoid. This number is calculated as
follows. If we normalize physical constants as the mass m = 1/2, the Planck
constant (divided by 27) £ = 1 and the charge of an electron e = 1, then
the cyclotron radius r of an electron with n th Landau level energy (2n —

1)B equals to /(2n —1)/B. It is known that the density of states (the

number of eigenstates per unit area) for each Landau level is B/2m (see

[Nak, Proposition 15]). Thus, the number of possible eigenstates in the circle
is

At X —=n-— L

o 2’



The difference between this estimate and the rigorous result ((i) of Theorem
1.1) is only 1/2.

When N > 2, Nambu ([Nam]) gives a representation of eigenfunctions
for the Landau levels by the multiple integral in the complex plane. But
no information about the eigenvalues between the Landau levels are known.
However, the physical explanation above gives us a conjecture about the
number of eigenvalues in a gap of Landau levels, when N > 2. This number
is roughly estimated by the number of eigenstates with the n th Landau
energy in the union set, with respect to 7 = 1,..., N, of the disks of Larmor
radius centered at z;. Each disk contains n eigenstates with n th Landau
energy. These disks may intersect in general, but they are disjoint if solenoids
are far from each other. Thus we reach the following conjecture.

Conjecture (I) The number of eigenvalues between n th and (n+1) st
Landau levels is bounded by nN.

(I1) If solenoids are far from each other compared with the cyclotron ra-
dius, the number of eigenvalues between n th and (n + 1) st Landau levels
equals to nN.

Our aim is to give an answer to these conjectures. Our answer to the
conjecture (I) is the following.

Theorem 1.2 Let 1 < N < oo. Then, the following holds.

(i) For any self-adjoint ertension Hy of Ly, we have that (2n — 1)B is
an infinitely degenerated eigenvalue for everyn =1,2,3,....

(ii) For the standard Aharonov-Bohm Hamiltonian H#E, we have

dim Ran P(—oo,B)(HN ) =
dimRanP((zn_1)B,(2n+1)B)(H ) S TZN for n = 1 2 3 .- (18)

(iii) For any self-adjoint extension Hy of Ly, we have

dim Ran P(—oo,B)(HN) < 2N, (19)
dim Ran P(2n-1)B,2n+1)B)(HN) < (n+1)N, forn=1,2,3,... (1.10)

In the case N = 1, our result and (1.7) imply that

n—1 < d.imRanP((gn_l)B,(z,,H)B)(Hl) S n+1 (111)
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for n = 1,2,.... The upper bound of (1.11) is sharper than that of (1.7)
(however, [Ex-St-Vy, Fig 1,2] seems to indicate that there are at most two
eigenvalues of H; |y, in each gap of Landau levels).

Next, we shall exhibit our answer to the conjecture (II). We shall consider
the special case where the physical situations around every z; are the same.

. To represent this situation rigorously, we shall prepare an operator which

intertwines two magnetic Schrédinger operators.

Definition 1.1 Let w € R%. Let U be a simply connected open set, and
V=U+w={z+w;z € U}. Let S be an at most countable subset of U
with no accumulation points in U and T = S +w. Let a € C°({U\ S; R*) N
LL (U;R?) and b € C=(V\ T; R*) N L, (V; R?) be two vector potentials
satisfying

rot a(z) = rot b(z + w)

in D'(U). Then, there ezists an operator t_,, from D'(V\T) to D'(U \ S)
satisfying the following (i) and (ii):

(i) There ezists a complez-valued smooth function ®(z) € C*(U\ S) with
|®(2)| =1 for every z € U\ S, such that

t_w¥(2) = ®(2)v(z + w), v € D'(V\T).
(ii) The following distributional equality holds:
p(a)t_v = t_p(b)y, L(a)t_,v =1t_,L(b)v (1.12)
forve D'(V\T), where

p(a) = —}V +a, pb)= -:TV +b,
L(a)=p(a)’, L(b)=p(a)*

We call the operator t_,, the magnetic translation operator from V to U
intertwining L£(b) with L(a). We denote the inverse operator of t_,, by t.,
that is,

tyu(z) = (2 — w)u(z — w)

forue D'(U\S).
We call the equality (1.12) the intertwining property of ¢_,,. The existence

of the function ® can be proved by a little modified form of the Poincaré
lemma.



Definition 1.2 Let Hy be a self-adjoint extension of Ly. We say the
operator Hy has the same boundary condition at every z;, if the following
two conditions hold:

(i) There ezists a constant o with 0 < a < 1 such that a; = a for every
j=1,...,N.

(zz) Let t_., be the magnetic translation operator from {|z — z;| < 21
to {|z| < &} intertwining Ly with L;”. Let x € CP(R?) be a function
satzsfyzngO<x<1onR2 =0inlz| >Z andx=11n|z| < £ Put
xi(2) = x(z—2;). There ezzsts a self-adjoint emtension H, of L, independent
of j such that

D(Hy) = {u € D(Ly);t_s,(xju) € D(Hy) for every j =1,...,N}. (1.13)
Here, Ly is the adjoint operator of Ly.

Remark 1. The right hand side of (1.13) is independent of the choice of
the function x; the condition t_,,(x;u) € D(H,) rules only the asymptotlc
behavior at 2; of the function u.
Remark 2. There exists a self-adjoint extension Hy of Ly satlsfymg (1.13)
for any given self-adjoint extension H, of L;.

Our (partial) answer to the conjecture (II) is the following.

Theorem 1.3 Let 1 < N < oo or N = co. Let Hy be a self-adjoint
extension of Ly which has the same boundary condition at every z;. Let
I = [c,d] be a closed interval satisfying that IN{(2n—1)B;n=1,2,...} =0,
that c,d ¢ o(H;) and that o(H{) NI = {\,Aa,..., A} # 0.

Then, there exist constants u > 0 and Ry > 0 dependent on B, «, I, Hy
(independent of N, R) satisfying the following:

(i) If R > Ry, we have

k
o(Hy)NIC YN —8,N+4),
1=1
where § = e*F*.
(i1) If R > Ry, we have

dim Ran P;(Hy) = N dim Ran P(H,).

Note that o(H;) N I is a finite set by (iii) of Theorem 1.2.
Combining (ii) of Theorem 1.3 with Theorem 1.1, we have the following
corollary.
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Corollary 1.4 Let 1< N < oo and let @y =y = --- = ay = a. Then,
for every ng = 1,2, ..., there exists a constant Ry > 0 dependent on B, a, ng
(independent of N R) satzsfymg the following: If R > Ry, then there e:mst
self-adjoint extensions HY, Hy, ..., Hy* of Ly such that

dim Ran P, ((2n—1)B,(2n+1)B) (H}?rB) = nN,
dim Ran P(—oo,B) (Hg,) = 2N, .
dim Ran P(on-1)8,en+18) (HY) = (n+1)N

forn=1,2,...,m

We make some remarks about the proofs of our results.

In the proof of Theorem 1.2, the canonical commutatlon relation (CCR)
of the annihilation operator Ay and the creatlon operator A} ~ Dlays a crucial
role (the definitions of the operators Ay and A}, are given in section 2 below).
It is well-known that the spectrum of the Schrédinger operators with constant
magnetic fields are completely determined by CCR. In our case, CCR holds
with a perturbation by 4-like magnetic fields. This perturbation makes two
self-adjoint operators (A}‘V)*A" — B and Al 1.(Al)* + B different (the overline
denotes the operator closure; notice that the note * denotes the operator
adjoint, while the note ' denotes only the formal adjoint). Comparing the
spectrum of these two operators, we can reach the conclusion of Theorem
1.2. Note that Iwatsuka ([Iw]) uses the argument of this type, to determine
the essential spectrum of the Schrodinger operators on R? with the magnetic
fields converging to a non-zero constant at infinity.

Theorem 1.3 is an analogy of the result of Cornean and Nenciu ({[Co-Ne,
Theorem III.1, Corollary III.1}). They treat the case

N
rotay(z) = B+ Y rotag(z— z), ap € CF({|2| < 1}; R?),

=1

W(z) = ;Vb(z - 2), Vo € C5°({l2| < 1}; R),

and obtain the same conclusion as that of Theorem 1.3, for the operator
(3V - an)? + V. The proof of Theorem 1.3 is similar to that of their re-
sult. The main difference is that our operators Hy (N < oo) and H,, do
not have the same core in general, while C$°(R?) is the common core for the
Schrédinger operators with smooth vector potentials (see [Ik-Ka, Theorem



1] or [Le-Si, Theorem 2]). Thus we do not use the approximating argument
N — oo, which is used in their paper. We prove the statement of Theo-
rem 1.3 directly even when N = oo, using the argument of approximating
eigenfunctions.

In the sequel, we shall exhibit the outline of the proof of Theorem 1.2,
which contains our main new ideas. For the proof of Theorem 1.3, see our
preprint ([Mi]).

2 Outline of the Proof of Theorem 1.2

Define differential operators Ay, A}v by
AN = iHN,z + HN,y, -AfN = —iHN,:c + HN,y)

where Iy, = 19, + an, and Iy, = 18, + any. When N=1and oy = q,
we can describe the operators A4, A{ explicitly as

B
Ap=AF = 20,+ 2+ % (2.1)
A=A = 25+ D2+, 2.2)
where ] I
0, = 5(61 —i8,), 0; = 5(6” +i6,).

In the above, we identify an element z = (z,y) in R? with the element
z=z+ 1y in C. A formal computation shows that

AvAl + ALVAN = 2Ly,
N
AvAly —AVAy = 2 (B + Y 2ra;6(z - zj)) :
j=1
Define linear operators Ay, Al on L2(R?) by
ANu = ANU, D(AN) = C‘é’o(.R2 \ SN),
Alu = Alu, D(AY) =CP(RE\ Sn).
Then, the following holds in the operator sense:
A(A > AVAy = Ly-B, (2.3)
(Ay) A\ > AvAy = Ly +B, (2.4)
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where the overline denotes the operator closure.
It is known that the following lemma holds.

Lemma 2.1 Let X be a densely defined closed operator on a Hilbert space
‘H. Then, the following holds.

(i) The operators X*X and XX* are self-adjoint.

(ii) The operator (X X*)|ker xx+)+ 15 unitarily equivalent to the operator

(X*X)I(KerX"X)L-

Proof. (i) See [Re-Si, Theorem X.25].
(ii) See [De, Theorem 3]. ]

By (2.3), (2.4) and (i) of Lemma 2.1, we have that there exist self-adjoint
extension Hy, HY such that

AL (L) = Hy - B, (A}) A} = H} +B.
In section 3, we shall prove the following lemma.

Lemma 2.2 The following assertions hold.
(i) HY = H{B.

(i) H{? > B in the form sense.

(iii) dim D(Hy)/(D(H#B)N D(Hy)) = N.

As a result, we have the following.

Lemma 2.3 The following holds.

(i) The operator Hy|ex(n~-py+ 18 unitarily equivalent to the operator
H{2 +2B.

(ii) For anyn =0,1,2,..., we have

dim Ran Py(an—1)8,n+1)8) (HN") = dim Ran P(zn41)5,2n+3)8) (Hy)-

Proof. (i) By (ii) of Lemma 2.1 and (i) of Lemma 2.2, we have that the
operator (Hy — B)|(ker(sr; —my)+ a0d the operator (H{? +B)|(ker(145 +.8))- e
unitarily equivalent. Moreover, (i) of Lemma 2.2 implies that Ker(Ha® +
B) = {0}. Thus the assertion holds.

(ii) By (i), we have that the spectral projection operators P;(H4?) and
Pr.op(Hy) are unitarily equivalent for any interval I in R which does not
contain B. Putting I = ((2n — 1)B, (2n + 1)B) and taking the trace of the
operators P;(H#A?) and Priop(Hy), we obtain the assertion. []



The following lemma enables us to compare the spectrum of two self-
adjoint extensions.

Lemma 2.4 Let L be a symmetric operators on a Hilbert space H. Sup-
pose that the deficiency indices of L are (n,n) and n is finite. Let X andY
be two self-adjoint extensions of L. Then, the following holds.

(i) We have 0ess(X) = Oess(Y).

(i1) For any open interval I in R satisfying dim Ran P;(X) < oo, we have
dimRan P((Y) < oo and

| dim Ran P;(X) — dim Ran P(Y)| < d,
where
d = dim D(X)/ (D(X) N D(Y)) = dim D(Y)/ (D(X) N D(Y)).

Proof. (i) See [We, Theorem 8.17].
(ii) This assertion is an immediate corollary of [We, Exercise 8.8]. []

Proof of Theorem 1.2. First we prove
Oess(An)={(2n-1)B; n=1,2,...} (2.5)

for any self-adjoint extension Hy of Ly, by an argument similar to the ar-
gument used in the paper of Iwatsuka ([Iw]). Since the deficiency indices of
Ly are (2N,2N) and N is finite, we see by (i) of Lemma 2.4 that the set
S = 0ess(Hpy) is independent of the choice of the self-adjoint extension Hy.
This fact and (i) of Lemma 2.3 imply that

S\ {B} =S +2B. (2.6)

Moreover, we can show that S contains a real number B, by constructing a
Weyl sequence for the value B. In particular, S is not empty. We can easily
prove that a non-empty set satisfying (2.6) coincides with the right hand side
of (2.5).

Put

ag = dimRan P, 5)(HR?),
bo = dimRan P,z (Hy)
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and

A = dimRanP((gn_1)3 (2n+1) B)(H;\QIB);
b, = dimRan Pyan-1)5,2n+1)8)(HN)

forn=1,2,.... By (ii) of Lemma 2.2 and (i) of Lemma 2.3, we have

ag = by = 0. (2.7)
By (ii) of lemma 2.3, we have
Gn—1 = bn (2.8)
for any n = 1,2,.... By (iii) of Lemma 2.2 and (ii) of Lemma 2.4, we have
an < by + N (2.9)

for any n = 1,2,.... By (2.7), (2.8), (2.9) and an inductive argument, we
have
a, <nN, n=012,...,
b0=b1=0, bnS(n—l)N, 'n,=2,3,4,.... (210)

Thus (ii) of Theorem 1.2 holds.
Since the deficiency indices of Ly are (2N,2N), we have

dim D(Hy)/(D(Hy) N D(Hy)) < 2N
for any self-adjoint extension Hy of Ly. By (ii) of Lemma 2.4, we have
dim Ran Py(Hy) < dim Ran P;(Hy) + 2N

for any open interval I which does not intersect with the set {(2n—1)B; n =
..}. Applying this inequality with I = (oo, B) or I = ((2n—1)B, (2n+
l)B), we have that (iii) of Theorem 1.2 holds.
The equality (2.5) and (iii) of Theorem 1.2 imply the assertion (i) of
Theorem 1.2. []



3 Operator domain of the self-adjoint exten-
sions

Define four functions ¢%,,9¢, ¢§,¥§ by

62,(2) = |al*2 e T, yi(z) = |2| o 2e T,
o a, —z :z2 —a,—7 z2
83(2) = |2|e= <" Y5(2) = |o| e~ %M
In the definition above, we identify an element z = (z,y) in R? with the

element z = z+1y in C. The functions above have the following a.symptotlcs
as z—0:

#a(2) o, () ~ e,
B~ U~

where (r,6) is the polar coordinate given by z =re, r > 0 and 6 € R. The
result of Exner, St’ovicek and Vytfas ([Ex-St-Vy]) implies that

D((L?)") = D(LS) ®© L.h.{¢2,, 97, 65, ¥5 }- (3.1)

We shall determine the operator domain D(Ly) when N > 2. The fol-
lowing lemma gives fundamental properties of D(L};) and D(Ly).

Lemma 3.1 Let N =1,2,..., or N = co. Then, the following holds.
(i) The operator domain of D(LY,) is given by

D(LY) = {u € LA(R?) N H2 (R?\ Sn); Lwu € LA(R?)}.

(it) Let u € D(LY). Suppose that there exists a constant R, with 0 <
Ry < R such that suppu C R?\ U(R;), where
N
Ur)=J{z € R%|z—z]| <r}.

i=1
Then, u € D(Ly).

Proof. (i) This assertion follows from the definition of the adjoint operator.

(ii) Take a function u € D(L%) which satisfies the assumption. Then the
function ay is smooth on the support of u. Since the magnetic Schrodinger
operators on R? with smooth magnetic potentials are essentially self-adjoint
on C°(R?) (see [Ik-Ka]), we can approximate u with respect to the graph
norm of L) by smooth functions supported on a neighborhood of supp u.
This implies that u € D(Ly). []
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Lemma 3.2 Let 1 < N < oco. Let x be an element of C*({|2] < £})
satisfying x(z) = 1 in {|2| < R} Let t_,; be the magnetic translation from
{lz—2z;| < £} to {|z| < £} intertwining EN with £37. Put x;(z) = x(z—z;).
Let T be a linear operator, from the quotient Hilbert space D(L})/ D(Ly) to
the direct sum of the quotient Hilbert spaces &, D((L77)*)/ D(LT), defined

by
Tlu) = ([t-z (xaw)); - - -, [f-an (xvur)]),

where the bracket denotes the equivalence class in a quotient space. Then, T
is a bijective bicontinuous linear operator.

Proof. We show this lemma only in the case N < oo, for simplicity. In this
case, the vector space @i, D((Ly?)*)/ D(LY) is finite dlmensmnal Thus the
continuity statement automatically holds.

Define a linear operator T from D(L%) to &, D((L{*)*)/ D(LF) by

Tu= ([t (at)); - - -, [f-an (X))
The well-definedness of the operator T follows from the intertwining property
t_,,.[,Nu = C'f’t_,ju
and (i) of Lemma 3.1. We see that T is surjective by the equality
[u] = [t—zx5ts;xu), foru € D((LY)*),

which follows from (ii) of Lemma 3.1.
We shall show that KerT = D(Iy). The inclusion KerT > D(Iy)
follows from the inclusion relation

t—,x;Co° (R*\ Snv) € C3°(R*\ {0}) = D(Ly")

and an approximating argument. We shall show the contrary inclusion. Take
u € KerT. Then tzXju € D(Ll’) for j = 1,...,N. Decompose the
function u as

N N
u=(u~— Z X;u) + Z ta, (t—z;x5u)-
=1 =t

Since u — ¥V, xju € D(In) by (ii) of Lemma 3.1, it is sufficient to show
that

t,v € D(Ly) forve D(L_‘f’), suppv C {|z| < g}
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This assertion follows from the inclusion
R v
t,C({0 < |2 < 5}) € CP(R*\ Sy)

and an approximating argument.
Thus the assertion of this lemma follows from the homomorphism theo-
rem. []

Remark. When N = oo, we need to prove the convergence of the sum
1 Xju. For the detailed argument, see our preprint ([Mi]).
By the previous lemma, we can determine the structure of the operator
domain of LY.

Lemma 3.3 Assume that all the assumption of Lemma 3.2 hold. Then,
the following assertions hold.
(i) The deficiency indices of Ly are (2N,2N).
(ii) Assume moreover that there exist constants a_, a such that
0<a-<aj<ay<l1 (3.2)

for everyj=1,...,N. Put

69 =t (x6™), D =t (xw?),
9 =t (xe5?), 9 = b, Geg?),

for j = 1,...,N. Then, the operator domain D(LY) is decomposed into a
direct sum

_ N . . , .

D(Ly) = D(T) @ay © Lh{6%, 0, 65", 5},
where ®q1y denotes the algebraic direct sum and EB;Y__I denotes the orthogonal
direct sum of mutually orthogonal closed subspaces.

Remark. The assumption of (ii) holds if NV is finite.

Proof. (i) Since the operator Ly is symmetric and positive, the deficiency
indices my = dim Ker(L% 7 ¢) are equal (see [Re-Si, Corollary of Theorem
X.1]). Since D(L%) = D(In) ® Ker(L% — 1) ® Ker(L} + i) (see [Re-Si, (b)
of Lemma in page 138)), it is sufficient to show that

dim D(L%,)/D(Iw) = 4N.
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This equality follows from from Lemma 3.2 and (3.1).
(i) It is easy to see that the operator 7! defined by

T ([w), ..., [un]) = [Z iy XUJ]

is the inverse operator of the operator T defined in Lemma 3.2. By (3.1), we
see that the functions

U{([O] 19, 10D 5 6= 671,97, 6", 40"}

-—th

form a basis of ®_; D((Ly")*)/ D(LT). When N is finite, we have that the
image of the a.bove basis by the operator T-! is a basis of D(L%)/D(Ly).
This implies the assertion.

When N = oo, we have to show the convergence of the sum

00 . Iy . .
+ 2(043'—3(}5(_]% + C4j~21/)](.1) + C4j—~1¢(()1) + C4j'¢’(()1)),
=1

where uyp € D(Ly) and the coefficients cy;_3, c45—2, Caj—1, C4; are determined
by the asymptotic behavior as z — z; of the function u. The assumption
(3.2) guarantees the convergence of the sum (for the detail, see our preprint

Mil). [

By using above basis, we can describe D(H#?) and D(Hpy) as follows:

Lemma 3.4 The following equalztzes hold.
(i) D(HAB) D(LN) Baig @J= L.h. {w(J) ¢(J)}
(ii) D(Hy) = D(In) ®ay &1, Lh{p{", y{}.

Proof. (i) Let D, be the right hand side of the equality (i). Since D(H#?)
is included in the form domain C§°(R?\ Sy), we have that any element
u € D(H#P) satisfies

Ayu € L*(R?), A\u e L*(R?). (3.3)

By Lemma 3.3, we have that an element u € D(L}y) is written as
the sum of a vector up in D(Ly) and a linear combination of 4N vectors
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{¢(_j) G) ((,j ), ((,j ) X1+ An explicit calculation using (2.1) and (2.2) shows

1 %1 »
that
A%ge = 2a|z*z7le T € LA(RY),
Al?gs = Blz|*ze TH’ € L}(RY),
Ay = 0e L(RY),
Abeys = |2]m%(2(a - 1) + Blz)e T+ € L}(R?),
and that

A39% = 2a - 1)z %k ¢ INRY),
AlYg = 2|20z + B2)e € ¢ L2(R?).

By the intertwining property of f_,,, we have that the vectors ANd’(()j ), A}v@()j),

Am/)ﬁj ), A}nggj ) belong to L?( R?) and that the vectors .AN¢(_’2, A}‘th(,j ) do not
belong to L?(R?), for j = 1,..., N. Thus, an element u in D(L%) satisfying
(3.3) is contained in D;. Therefore we have D(H#4?) C D,. Moreover, we can
prove that the operator Ly/|p, is self-adjoint. Thus we have D(H#?) = D;.

(i) By definition, an element u in D(Hy) = D(AL(44)*) satisfies
Awu € D(AY) = C&(R?\ Sw), (3.4)

where the overline denotes the closure with respect to the graph norm of Ay.
By the operator equality

Al Ay = ANAl, — 2B,
we have that the graph norm of Ay and that of Al, are equivlent. Thus we
have D(Ay) = D(AL). By (3.4), we have
Anu € L*(R?), Al Anu € L*(R?), AxAnu € LY(R?). (3.5)

Again an explicit computation using (2.1) and (2.2) shows that

AE = ALATYE = ATATYE =0 € INRY),

Ay = AP"ATYY = ATATYT =0 € L(RY),
and

767 = 2Aa—1)le|"z e < ¢ (R,

ACAGE = dafa - 1)|2|°2 2 T4 ¢ L2(R?).

The rest of the proof is similar to the last part of the proof of (i). []
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We shall give a proof of Lemma 2.2 in section 2.

Proof of Lemma 2.2. (i) By the definition of the self-adjoint operator

HY = (Al,)* A}, — B and the Friedrichs extension H4?, we can show that HY,

and H{8 have the same form core C°(R?\ Sy). Moreover, the values of the

form (HYu,u) and (H#Pu,u) coincide for u in the form core C§°(R? \ Sw).

These facts imply that two self-adjoint operators HY and H#? coincide.
(ii) For u in the form core C°(R? \ Sy), we have

(HfPu,u) = ((AjAn + B)u,u)
= || Awull® + Bllull* > Bllull*.

Thus the assertion holds.
(iii) This assertion immediately follows from Lemma 3.4. []
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