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On the spectrum of magnetic Schr\"odinger
operators with Aharonov-Bohm field

京都大学理学部 峯拓矢 (Takuya MINE)
Faculty of Science, Department of Mathematics, Kyoto Univ.

1 Introduction
We consider the spectral problem for the Schr\"odinger operators in a plane
with a non-zero uniform magnetic field in addition to $\delta$-like magnetic fields.
The operator of this type is studied by Nambu ([Nam]) and Exner, $\check{\mathrm{S}}\mathrm{t}’ \mathrm{O}\mathrm{V}\acute{\mathrm{l}}\check{\mathrm{c}}\mathrm{e}\mathrm{k}$

and Vytfas ([Ex-St-Vy]).
Let $N=1,2,3$, .. 1 or $N=\infty$ . Let $\{z_{j}\}_{j=1}^{N}$ be points in $R^{2}$ and put

$S_{N}= \bigcup_{j=1}^{N}\{z_{j}\}$ . We assume that

$R= \inf_{j\neq k}|z_{\mathrm{j}}$ $-z_{k}|>0.$ (1.1)

This assumption is satisfied if $N$ is finite. Define a differential operator $\mathcal{L}_{N}$

on $R^{2}$ ’ $S_{N}$ by
$\mathcal{L}_{N}=\mathrm{p}_{N}^{2}$ , $\mathrm{p}_{N}=\frac{1}{i}\nabla+a_{N}$ ,

where $i=\sqrt{-1}$ and $\nabla=(\partial_{x},\partial_{y})$ is the gradient vector with respect to the
coordinate $z=(x, y)\in R^{2}$ . We assume that the magnetic vector potential
$a_{N}=(a_{N,x}, a_{N,y})$ belongs to $C^{\infty}(R^{2}\backslash S_{N};R^{2})\cap L_{lo\mathrm{c}}^{1}(R^{2};R^{2})$ . The function
rot $a_{N}(z)=(\partial_{x}a_{N,y}-\partial_{y}a_{N,x})(z)$ represents the intensity of the magnetic field
perpendicular to the plane. We assume that

$N$

rot $a_{N}(z)=B+5$ $2\pi\alpha_{j}\delta(z-z_{j})$ (1.2)
$j=1$

in $\mathrm{P}’(R^{2})$ (the Schwartz distribution space), where $B$ , $\alpha_{j}$ are constants sat-
isfying $B>0$ and

$0<\alpha_{j}<1$ for every $j=1$ , $\ldots$ , N. (1.3)

The constant $B$ represents the intensity of a uniform magnetic field. The
constant $2\pi\alpha_{j}$ represents the magnetic flux of an infinitesimally thin solenoid
placed at $z_{j}$ . We can show that the difference of integer magnetic fluxes can
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be gauged out by a suitable unitary gauge transform. Since we consider
only the spectral problem, the assumption (1.3) loses no generality. We find
a proof of the existence of the vector potential with $\delta$-like singularities in
Arai’s paper (see [Arl] and [Ar2]). When $N=1$ and $\alpha_{1}=\alpha$ , we always
assume that $z_{1}=0$ and take the circular gauge, that is,

$a_{1}(z)=(- \frac{B}{2}/-\frac{\alpha}{|z|^{2}}\mathrm{J},$ $\frac{B}{2}x+\frac{\alpha}{|z|^{2}}x)$ (1.4)

When we need to indicate the value $\alpha$ explicitly, we denote $\mathcal{L}_{1}^{\alpha}$ for $\mathcal{L}_{1}$ (this
notation is used for the operator $L_{1}$ defined below).

Define a linear operator $L_{N}$ on $L^{2}(R^{2})$ by

$L_{N}u=$ LNu $u\in D(L_{N})=C_{0}^{\infty}(R^{2}\mathrm{z}S_{N})$ ,

where $D(L)$ is the operator domain of a linear operator $L$ and $C_{0}^{\infty}.(U)$ is the
space of compactly supported smooth functions in an open set $U$ . The oper-
ator $L_{N}$ is symmetric, positive and has the deficiency indices $(2N, 2N)$ (see
(i) of Lemma 3.3 below). Thus the operator $L_{N}$ has self-adjoint extensions
parameterized by $(2N\mathrm{x} 2N)$-unitary matrices (see $[{\rm Re}$-Si, Theorem X.2]).
We denote one of self-adjoint extensions of $L_{N}$ by $H_{N}$ . In particular, we
denote the Priedrichs extension of $L_{N}$ (the self-adjoint operator associated
with the form closure of $D(L_{N})$ , see [${\rm Re}$-Si, Theorem X.23] $)$ by $H_{N}^{AB}$ , which
is called the standard Aharonov-Bohm Hamiltonian (this name is used in
[Ex-St-Vy], when $N=1$ ).

The Schrodinger operator with constant magnetic field is given by

$\mathcal{L}_{0}=(\frac{1}{i}\nabla+a_{0})^{2}$ , $a_{0}=(- \frac{B}{2}y,$ $\frac{B}{2}x)$ (1.5)

It is well-known that the linear operator defined by

$L_{0}u=$ Cou, $D(L_{0})=C_{0}^{\infty}(R^{2})$ (1.5)

is essentially self-adjoint and the spectrum of the unique self-adjoint exten-
sion $H_{0}$ of $L_{0}$ satisfies

$\sigma(H_{0})=\{(2n-1)B;n=1,2, \ldots\}$ .

The set $\sigma(H_{0})$ is called the Landau levels.
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When solenoids exist, the spectrum in a gap of the Landau levels appears.
Our aim is to give an estimate for the number of eigenvalues between two
Landau levels or below the lowest Landau level.

We recall known results in the case $N=1.$ Nambu ([Nam]) treats the
standard Aharonov-Bohm Hamiltonian $H_{1}^{AB}$ and gives an explicit represen-
tation of all eigenvalues and eigenfunctions using complex integration (he
treats also the case $B=0$). Exner, $\check{\mathrm{S}}\mathrm{t}’ \mathrm{o}\mathrm{v}\acute{\mathrm{l}}\check{\mathrm{c}}\mathrm{e}\mathrm{k}$ and $\mathrm{V}\mathrm{y}\mathrm{t}\check{\mathrm{r}}\mathrm{a}\mathrm{s}$ ([Ex-St-Vy]) give
a detailed analysis for every self-adjoint extension $H_{1}$ . We summarize a part
of their results as follows.

Theorem 1.1 (Nambu, $\mathrm{E}\mathrm{x}\mathrm{n}\mathrm{e}\mathrm{r}-\check{\mathrm{S}}\mathrm{t}’ \mathrm{o}\mathrm{v}\acute{\mathrm{l}}\check{\mathrm{c}}\mathrm{e}\mathrm{k}-\mathrm{V}\mathrm{y}\mathrm{t}\check{\mathrm{r}}\mathrm{a}\mathrm{s}$ ) $(i)$ The spectrum
of the standard Aharonov-Bohm Hamiltonian $H_{1}^{AB}$ is given by

$\sigma(H_{1}^{AB})=\{(2n-1)B;n=1,2, \ldots\}\cup\{(2n+2\alpha-1)B;n=1,2, \ldots\}$ .

The multiplicity of each eigenvalue is given by

mult((2n-1)B; $H_{1}^{AB}$ ) $=$ $\infty$ , $n=1,2$ , $\ldots$ ,

mult$((2n+2\alpha-1)B;H_{1}^{AB})$ $=n$, $n=1,2$, $\ldots$ ,

where mult(A; $H$) is the multiplicity of an eigenvalue A of a self-adjoint op-
erator $H$ .

(ii) $L^{2}(R^{2})$ is decomposed into the direct sum of two closed subspaces ??,

and $7t_{\mathrm{c}}$ , called the stable subspace and critical subspace, respectively. The
spaces $it_{\mathit{8}}$ and $?$? are invariant subspaces for any self-adjoint extension $H_{1}$

of $L_{1}$ . The restricted operator $H_{1}|_{\mathcal{H}_{s}}$ is independent of the choice of $H_{1}$ and
the spectmm of $H_{1}|_{\mathcal{H}\rho}$ is given by

$\sigma(H_{1}|_{\mathcal{H}_{\epsilon}})=\{(2n-1)B;n=1,2, \ldots\}$ $\cup$ {(2n $+2\alpha-1)B;n=2,3,$ $\ldots$ }.

The multiplicity of each eigenvalue is given by

mult((2n -1)B; $H_{1}|_{\mathcal{H}_{s}}$ ) $=$ $\infty$ , $n=1,2$ , $\ldots$ ,
mult$((2n+2\alpha-1)B;H_{1}|_{74},)$ $=$ $n-1,$ $n=2,3$ , $\ldots 1$

The restricted operator $H_{1}|_{H_{\mathrm{C}}}$ depends on the choice of self-adjoint extension
$H_{1}$ . However, the following estimates hold independently of the choice of $H_{1}$ .

$\dim$ Ran $P$(-p,(2a-1)B) $(H_{1}|_{\mathcal{H}_{\mathrm{c}}})$ $\leq$ $2$ ,
$\dim$ Ran $P${(2n$+2\alpha-1$ )$B,(2n+1)$B) $(H_{1}|_{\mathcal{H}\mathrm{c}})$ $\leq$ $2$ , $n=0,1,2$, . .
$\dim$ Ran $P_{((2n-1)B,(2n+2\alpha-1)B)}(H_{1}|_{\mathcal{H}_{\mathrm{C}}})$ $\leq$ $2$ , $n=1,2$, $\ldots$
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where $P_{I}(H)$ denotes the spectral projection of a self-adjoint operator $H$ cor-
responding to an interval I. The left-hand side of each of three inequalities
above takes the values 0, 1, 2 if we take an appropr iate self-adjoint extension
$H_{1}$ .
From Theorem 1.1, it follows that

$n-1\leq\dim$ Ran $P_{((2n-1)B,(2n+1)B)}(H_{1})\leq n+3$ (1.7)

for $n=1,2$, $\ldots$ , if $(2n+2\alpha-1)B$ is not an eigenvalue of $H_{1}|_{H}$. (this condition
holds for generic self-adjoint extension $H_{1}$ ). Later we show that the upper
bound can be sharpened (see (1.11) below).

According to (i) of Theorem 1.1, there are $n$ eigenstates of the Hamil-
Landau $H_{1}^{AB}$ with the energy between $n$ th Landau level and the $(n+1)$

st Landau level. We shall try to give a physical interpretation of this phe-
nomenon.

In classical mechanics, an electron in a uniform magnetic field moves
along a circle (cyclotron motion). The energy of an electron is quantized by
the condition that the phase variation of the electron wave in one cyclotron
rotation is $2\pi$ times an integer. Thus the energy of an electron takes one of
the values in the Landau levels.

If some solenoids are contained in the circle of the cyclotron motion, then
the phase of the electron wave is shifted by $e/\hslash$ times the magnetic flux of
solenoids in the circle (the Aharonov-Bohm phase shift). Thus the energy
of the electron is obliged to change, to correct the phase shift caused by
the magnetic flux of solenoids. Hence the spectrum between Landau levels
appears.

For this reason, the number of eigenstates with an energy between $n$ th
and $(n+1)$ st Landau level is roughly estimated by the possible number
of electrons with the $n$ th Landau level energy, in the circle of the Larmor
radius centered at the position of solenoid. This number is calculated as
follows. If we normalize physical constants as the mass $m=1/2,$ the Planck
constant (divided by $2\pi$) A $=1$ and the charge of an electron $e=1,$ then
the cyclotron radius $r$ of an electron with $n$ th Landau level energy $(2n-$

$1)B$ equals to $\sqrt{(2n-1)/B}$ . It is known that the density of states (the

number of eigenstates per unit area) for each Landau level is $\mathrm{B}/2\mathrm{t}\mathrm{t}$ (see
[Nak, Proposition 15] $)$ . Thus, the number of possible eigenstates in the circle
is

$\pi r^{2}\mathrm{x}\frac{B}{2\pi}=n-\frac{1}{2}$ .
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The difference between this estimate and the rigorous result ((i) of Theorem
1.1) is only 1/2.

When $N\geq 2,$ Nambu ([Nam]) gives a representation of eigenfunctions
for the Landau levels by the multiple integral in the complex plane. But
no information about the eigenvalues between the Landau levels are known.
However, the physical explanation above gives us a conjecture about the
number of eigenvalues in a gap of Landau levels, when $N\geq 2.$ This number
is roughly estimated by the number of eigenstates with the $n$ th Landau
energy in the union set, with respect to $j=1$ , . . . , $N$ , of the disks of Larmor
radius centered at $z_{j}$ . Each disk contains $n$ eigenstates with $n$ th Landau
energy. These disks may intersect in general, but they are disjoint if solenoids
are far from each other. Thus we reach the following conjecture.

Conjecture (I) The number of eigenvalues be tween $n$ th and $(n+1)st$
Landau levels is bounded by $nN$ .

(II) If solenoids are far from each other compared with the cyclotron ra-
dius, the number of eigenvalues between $n$ th and $(n+1)st$ Landau levels
equals to $nN$ .

Our aim is to give an answer to these conjectures. Our answer to the
conjecture (I) is the following.

Theorem 1.2 Let $1\leq N<\infty$ . Then, the following holds.
(i) For any self-adjoint extension $H_{N}$ of $L_{N}$ , we have that $(2n-1)B$ is

an infinitely degenerated eigenvalue for every $n=1,2$, 3, $\ldots$ .
(ii) For the standard Aharonov-Bohm Hamiltonian $H_{N}^{AB}$ , we have

$\dim$ Ran $P$( $-\infty$ ,B) $(H_{N}^{AB})$ $=$ $0$ ,
$\dim$ Ran $P_{((2n-1)B,(2n+1)B)}(H_{N}^{AB})$ $\leq$ $nN$, for $n=1,2,3$, $\ldots$ . (1.8)

(i) For any self-adjoint extension $H_{N}$ of $L_{N}$ , we have

$\dim$ Ran $P$( $-\infty$,B) $(H_{N})$ $\leq$ $2N$, (1.8)
$\dim$ Ran 7’((2n-l)7|l,(2n+l)B) (Hi) $\leq$ $(n+1)$N, for $n=1,2,$ 3, . . . (1.10)

In the case $N=1,$ our result and (1.7) imply that

$n-1\leq\dim$Ran $P_{((2n-1)B,(2n+1)B)}(H_{1})\leq n+1$ (1.11)
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for $n=1,2$ , $\ldots$ . The upper bound of (1.11) is sharper than that of (1.7)
(however, [Ex-St-Vy, Fig 1,2] seems to indicate that there are at most two
eigenvalues of $H_{1}|_{\mathcal{H}_{\mathrm{C}}}$ in each gap of Landau levels).

Next, we shall exhibit our answer to the conjecture (II). We shall consider
the special case where the physical situations around every $z_{j}$ are the same.
To represent this situation rigorously, we shall prepare an operator which
intertwines two magnetic Schr\"odinger operators.

Definition 1.1 Let $w\in R^{2}$ . Let $U$ be a simply connected open set, and
$V=U+w$ $=\{z+w;z\in U\}$ . Let $S$ be an at most countable subset of $U$

with no accumulation points in $U$ and $T=S+w.$ Let $a\in C^{\infty}(U\backslash 5;R^{2})\cap$

$L_{lo\mathrm{c}}^{1}(U;R^{2})$ and $b\in C^{\infty}(V\backslash T;R^{2})\cap L_{loc}^{1}(V;R^{2})$ be two vector potentials
satisfying

rot $a(z)$ $=$ rot $b(z+w)$

in $\mathrm{P}’(U)$ . Then, there eists an operator $t_{-w}$ from $U(V\backslash T)$ to $D’(U ’ S)$

satisfying the following (i) and (ii):
(i) There exists a complex-valued smooth function $\Phi(z)\in C^{\infty}(U\backslash S)$ with

$|$ ! $(z)|=1$ for every $z\in U\backslash S,$ such that

$t_{-w}v(\mathrm{z}|)$ $=$ \Phi (z)tt(z $+w$), $v\in D’(V\mathrm{Z}T)$ .

(ii) The following distributional equality holds:

$\mathrm{p}(a)t_{-w}v=t_{-w}\mathrm{p}(6)$ $C(a).-wv=t_{-w}$L$(b)v$ (1.12)

for $v\in D’(V\backslash T)$ , where

$\mathrm{p}(a)=\frac{1}{i}7$ $+a,$ $\mathrm{p}(b)=\frac{1}{i}7$ $+b,$

$\mathcal{L}(a)=\mathrm{p}(a)_{:}^{2}$ $\mathcal{L}(b)=\mathrm{p}(a)^{2}$ .

We call the operator $t_{-w}$ the magnetic translation operator from $V$ to $U$

intertwining $\mathcal{L}(b)$ with $\mathcal{L}(a)$ . We denote the inverse operator of $t_{-w}$ by $t_{w}$ ,
that is,

$t_{w}u(z)=\Phi(z-w)u(z-w)$

for $u\in D’(U^{\mathrm{Z}}5)$ .
We call the equality (1.12) the intertwining property of $t_{-w}$ . The existence
of the function $\Phi$ can be proved by a little modified form of the Poincare
lemma.



47

Definition 1.2 Let $H_{N}$ be a self-adjoint extension of $L_{N}$ . We say the
operator $H_{N}$ has the same boundary condition at every $z_{j}$ , if the following
two conditions hold:

(i) There exists a constant $\alpha$ with $0<\alpha<1$ such that $\alpha_{j}=\alpha$ for every
$j=1$ , . . . $,$

/.

(ii) Let $t_{-z_{j}}$ be the magnetic translation operator from $\{|z- zj[<\frac{R}{2}\}$

to $\{|z|<\frac{R}{2}\}$ intertining $\mathcal{L}_{N}$ with $\mathcal{L}_{1}^{\alpha_{j}}$ . Let $\chi\in C_{0}^{\infty}(R^{2})$ be a $fi\mathit{4}nction$

satisfying $0\leq\chi\leq 1$ on $R^{2}$ , $\chi=0$ in $|z|> \frac{R}{2}$ and $\chi=1$ in $|z|< \frac{R}{3}$ . Put
$\chi_{j}(z)=\chi(z-z_{j})$ . There exists a self-adjoint extension $H_{1}$ of $L_{1}$ independent
of $j$ such that

$D(H_{N})=\{u\in D(L_{N}^{*})$ ; $t_{-z_{\mathrm{j}}}(\chi_{j}u)\in D(H_{1})$ for every $j=1$ , $\ldots$ , $N\}$ (1.13)

Here, $L_{N}^{*}$ is the adjoint operator of $L_{N}$ .
Remark 1. The right hand side of (1.13) is independent of the choice of
the function $\chi$ ; the condition $t_{-z_{j}}$ $0(,\cdot u)$ $\in D(H_{1})$ rules only the asymptotic
behavior at $z_{j}$ of the function $u$ .
Remark 2. There exists a self-adjoint extension $H_{N}$ of $L_{N}$ satisfying (1.13)
for any given self-adjoint extension $H_{1}$ of $L_{1}$ .

Our (partial) answer to the conjecture (II) is the following.

Theorem 1.3 Let $1\leq N<$ oo or $N=\infty$ . Let $H_{N}$ be a self-adjoint
extension of $L_{N}$ which has the same boundar$ry$ condition at every Zj, Let
$I=[c, d]$ be a closed interval satisfying that $I\cap\{(2n-1)B;n=1,2, \ldots\}=\emptyset$ ,
that $c$ , $d$ ( $\sigma(H_{1})$ and that $\sigma(H_{1})\cap I=\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\}\mathrm{y}$

$\emptyset$ .
Then, there exist constants $u>0$ and $R_{0}>0$ dependent on $B$ , $\alpha,$

$I$ , $H_{1}$

(independent of $N$, $R$) satisfying the following:
(i) If $R\geq R_{0}$ , ate have

$\sigma(H_{N})\cap I\subset\cup[\lambda_{l}-\delta, \lambda_{l}+\delta]l=1k$,

where $\delta$ $=e^{-uR^{2}}$

(ii) If $R\geq R_{0}$ , we have

$\dim$ Ran $P_{I}(H_{N})=N\dim$ Ran $P_{I}(H_{1})$ .

Note that $\sigma(H_{1})\cap I$ is a finite set by (iii) of Theorem 1.2.
Combining (ii) of Theorem 1.3 with Theorem 1.1, we have the following

corollary.
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Corollary 1.4 Let $1\leq N<$ oo and let $\alpha_{1}=$ a2 $=$ .. . $=\alpha_{N}=\alpha$ . Then,
for every $n_{0}=1,2$ , $\ldots$ , there exists a constant $R_{0}>0$ dependent on $B,$ $\alpha$ , $n_{0}$

(independent of $N$ , $R$) satisfying the following: If $R\geq R_{0}$ , then there eist
self-adjoint extensions $H_{N}^{0}$ , $H_{N}^{1}$ , ..., $H_{N^{\mathrm{O}}}^{n}$ of $L_{N}$ such that

$\dim$ Ran $P_{((2n-1)B,(2n+1)B)}(H_{N}^{AB})$ $=nN$,
$\dim$ Ran $P$( $-\infty$ ,B) $(H_{N}^{0})$ $=2N$,

$\dim$ Ran $P((2n-1)B,(2n+1)B)(H_{N}^{n})$ $=$ $(n+1)N$

for $n=1,2$, $\ldots$ , $n_{0}$ .
We make some remarks about the proofs of our results.
In the proof of Theorem 1.2, the canonical commutation relation (CCR)

of the annihilation operator $A_{N}$ and the creation operator $A_{N}^{1}$ plays a crucial
role (the definitions of the operators $A_{N}$ and $A_{N}^{\uparrow}$ are given in section 2 below).
It is well-known that the spectrum of the Schrodinger operators with constant
magnetic fields are completely determined by CCR. In our case, CCR holds
with a perturbation by $\delta$-like magnetic fields. This perturbation makes two
self-adjoint operators $(A_{N}^{1})^{*}\overline{A_{N}^{\mathrm{t}}}-B$ and $\overline{A_{N}^{1}}(A_{N}^{\mathrm{t}})^{*}+B$ different (the overline
denotes the operator closure; notice that the note * denotes the operator
adjoint, while the note \dagger denotes only the formal adjoint). Comparing the
spectrum of these two operators, we can reach the conclusion of Theorem
1.2. Note that Iwatsuka ([Iw]) uses the argument of this type, to determine
the essential spectrum of the Schrodinger operators on $R^{2}$ with the magnetic
fields converging to a non-zero constant at infinity.

Theorem 1.3 is an analogy of the result of Cornean and Nenciu ([Co Ne,
Theorem III. $\mathrm{I}$ , Corollary III. $\mathrm{I}$]). They treat the case

rot $a_{N}(z)$ $=$ $B+ \sum_{j=1}^{N}$ rot $a_{0}(z - zj)$ , $a_{0}\in C_{0}^{\infty}(\{|z|<1\};R^{2})$ ,

$V\mathrm{V}(z)$ $= \sum_{j=1}^{N}V$0(z-z,), $V_{0}\in C_{0}^{\infty}(\{|z|<1\};R)$ ,

and obtain the same conclusion as that of Theorem 1.3, for the operator
$( \frac{1}{i}\nabla-a_{N})^{2}\mathit{1}$ $V_{N}$ . The proof of Theorem 1.3 is similar to that of their re-
sult. The main difference is that our operators $H_{N}(N<\infty)$ and $H_{\infty}$ do
not have the same core in general, while $C_{0}^{\infty}(R^{2})$ is the common core for the
Schr\"odinger operators with smooth vector potentials (see [Ik-Ka, Theorem
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1] or [Le-Si, Theorem 2] $)$ . Thus we do not use the approximating argument
$Narrow\infty$ , which is used in their paper. We prove the statement of TheO-
rem 1.3 directly even when $N=\infty$ , using the argument of approximating
eigenfunctions.

In the sequel, we shall exhibit the outline of the proof of Theorem 1.2,
which contains our main new ideas. For the proof of Theorem 1.3, see our
preprint ([Mi]).

2 Outline of the Proof of Theorem 1.2
Define differential operators An, $A_{N}^{\mathfrak{j}}$ by

$A_{N}=i\Pi_{N,x}+\Pi_{N,y}$ , $A_{N}^{\mathrm{t}}=-i$ $I_{N,x}+\Pi_{N,y}$ ,

where $\Pi_{N,x}=\frac{1}{i}\partial_{x}+a_{N,x}$ and $\Pi_{N,y}=\frac{1}{i}\partial_{y}+a_{N,y}$ . When $N=1$ and $\alpha_{1}=\alpha$ ,
we can describe the operators $A_{1}$ , $A_{1}^{\uparrow}$ explicitly as

$A_{1}=A_{1}^{\alpha}$ $=$ $2 \partial_{z}+\frac{B}{2}\overline{z}+\frac{\alpha}{z}$, (2.1)

$A_{1}^{1}=A_{1}^{\uparrow,\alpha}$ $=$ $-2 \partial_{\overline{z}}+\frac{B}{2}zI\frac{\alpha}{\overline{z}}$ , (2.2)

where
$\partial_{z}=\frac{1}{2}(\partial_{x}-i\partial_{y})$ , $\partial_{\overline{z}}=\frac{1}{2}(\partial_{x}’+i\partial_{y})$ .

In the above, we identify an element $z=(x,y)$ in $R^{2}$ with the element
$z=x+iy$ in $C$ . A formal computation shows that

$A_{N}A_{N}^{1}+A_{N}^{\dagger}A_{N}$ $=$ $2\mathcal{L}_{N}$ ,

$A_{N}A_{N}^{\dagger}-A_{N}^{\dagger}A_{N}$ $=2(B+ \sum_{j=1}^{N}2\pi\alpha_{j}\delta(z-zj))$

Define linear operators An, $A_{N}^{\mathrm{t}}$ on $L^{2}(R^{2})$ by

$A_{N}u=A_{N}u$ , $D(A_{N})=C_{0}^{\infty}(R^{2}\backslash S_{N})$ ,
$A_{N}^{\mathrm{t}}u=$ $Nu$ , $D(A_{N}^{\uparrow})=C_{0}^{\infty}(R^{2}\backslash S_{N})$ .

Then, the following holds in the operator sense:
$\overline{A_{N}^{\mathrm{t}}}(A_{N}^{\dagger})^{*}$

$\mathrm{p}$ $A_{N}^{1}A_{N}$ $=L_{N}-B,$ (2.3)
$(A_{N}^{\mathrm{t}})^{*}\overline{A_{N}^{\mathrm{t}}}\supset A_{N}A_{N}^{1}$ $=L_{N}+B,$ (2.4)
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where the overline denotes the operator closure.
It is known that the following lemma holds.

Lemma 2.1 Let $X$ be a densely defined closed operator on a Hilbert space
??. Then, the following holds.

(i) The operators $X^{*}X$ and $XX^{*}$ are self-adjoint.
(ii) The operator $(XX^{*})|_{(\mathrm{K}\mathrm{e}\mathrm{r}XX^{\wedge})}[perp] is$ unitarily equivalent to the operator

$(X^{*}X)|_{(\mathrm{K}\mathrm{e}\mathrm{r}XX)^{[perp]}}$. $.$

Proof, (i) See [${\rm Re}$-Si, Theorem X.25].
(ii) See [De, Theorem 3]. $[]$

By (2.3), (2.4) and (i) of Lemma 2.1, we have that there exist self-adjoint
extension $H_{N}^{-}$ , $H_{N}^{0}$ such that

$\overline{A_{N}^{\dagger}}(A_{N}^{\uparrow})^{*}=H_{N}^{-}-B$ , $(A_{N}^{1})^{*}\overline{A_{N}^{\uparrow}}=H_{N}^{0}+B.$

In section 3, we shall prove the following lemma.

Lemma 2.2 The following assertions hold.
(i) $H_{N}^{0}=H_{N}^{AB}$ .
(ii) $H_{N}^{AB}\geq B$ in the form sense.
(iii) $\dim D(H_{N}^{-})/(D(H_{N}^{AB})\cap D(H_{N}^{-}))=N.$

As a result, we have the following.

Lemma 2.3 The following holds.
(i) The operator $H_{N}^{-}|_{(\mathrm{K}\mathrm{e}\mathrm{r}(H_{N}^{-}-B))^{[perp]}}is$ unitarily equivalent to the operator

$H_{N}^{AB}+2B.$

(ii) For any $n=0,1,2$ , . . ., we have

$\dim$ Ran $P_{((2n-1)B}$ , $(27!+1)B)(H_{N}^{AB})=$ dimRan $P_{((2n+1)B,(2n+3)B)}(H_{N}^{-})$ .

Proof (i) By (ii) of Lemma 2.1 and (i) of Lemma 2.2, we have that the
operator $(H_{N}^{-}-B)|_{(\mathrm{K}\mathrm{e}\mathrm{r}(H_{N}^{-}-B))}[perp]$ and the operator $(H_{N}^{AB}+B)|_{(\mathrm{K}\mathrm{e}\mathrm{r}(H_{N}^{AB}+B))}[perp] \mathrm{a}\mathrm{r}\mathrm{e}$

unitarily equivalent. Moreover, (ii) of Lemma 2.2 implies that $\mathrm{K}\mathrm{e}\mathrm{r}(H_{N}^{AB}+$

$B)=\{0\}$ . Thus the assertion holds.
(ii) By (i), we have that the spectral projection operators $P_{I}(H_{N}^{AB})$ and

$P_{I+2B}(H_{N}^{-})$ are unitarily equivalent for any interval I in $R$ which does not
contain $B$ . Putting $I=((2n-1)B, (2n+1)B)$ and taking the trace of the
operators $P_{I}(H_{N}^{AB})$ and $P_{I+2B}(H_{N}^{-})$ , we obtain the assertion. $\square$



51

The following lemma enables us to compare the spectrum of two self-
adjoint extensions.

Lemma 2.4 Let $L$ be a symmetric operators on a Hilberi space ??. Sup-
pose that the deficiency indices of $L$ are $(n, n)$ and $n$ is finite. Let $X$ and $\mathrm{Y}$

be tuyo self-adjoint extensions of L. Then, the following holds.
(i) We have $\sigma_{\mathrm{e}\epsilon s}(X)$ $=\sigma_{e\epsilon s}(\mathrm{Y})$ .
(ii) For any open interval I in $R$ satisfying $\dim$ Ran $P_{I}(X)<\infty$ , we have

$\dim$ Ran $P_{I}(\mathrm{Y})<\mathrm{o}\mathrm{o}$ and

$|$ $\dim$ Ran $P_{I}(X)-\dim$ Ran $P_{I}(\mathrm{Y})|\leq d,$

where

$d=\dim D(X)/(D(X)\cap D(\mathrm{Y}))=\dim D(\mathrm{Y})/(D(X)\cap D(\mathrm{Y}))$ .

Proof, (i) See [We, Theorem 8.17].
(ii) This assertion is an immediate corollary of [We, Exercise 8.8]. $\square$

Proof of Theorem 1.2. First we prove

$\sigma_{\mathrm{e}\mathrm{s}\mathrm{s}}(H_{N})=\{(2n-1)B ; n= 1, 2, \ldots\}$ (2.5)

for any self-adjoint extension $H_{N}$ of $L_{N}$ , by an argument similar to the ar-
gument used in the paper of Iwatsuka ([Iw]). Since the deficiency indices of
$L_{N}$ are $(2N, 2N)$ and $N$ is finite, we see by (i) of Lemma 2.4 that the set
$S=\sigma_{\mathrm{e}\mathrm{s}\mathrm{s}}(H_{N})$ is independent of the choice of the self-adjoint extension $H_{N}$ .
This fact and (i) of Lemma 2.3 imply that

$S\backslash \{B\}=S+2B.$ (2.6)

Moreover we can show that $S$ contains a real number $B$ , by constructing a
Weyl sequence for the value $B$ . In particular, $S$ is not empty. We can easily
prove that a non-empty set satisfying (2.6) coincides with the right hand side
of (2.5).

Put

$a_{0}$ $=$ $\dim$ Ran $P_{(-\infty}$ ,B) $(H_{N}^{AB})$ ,
$b_{0}$ $=$ $\dim$ Ran $P(-\infty,B)(H_{N}^{-})$
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and

$a_{n}$ $=\dim$Ran $P_{((2n-1)B,(2n+1)B)}(H_{N}^{AB})$ ,
$b_{n}$ $=\dim$ Ran $P_{((2n-1)B,(2n+1)B)}(H_{N}^{-})$

for $n=1,2$, $\ldots$ . By (ii) of Lemma 2.2 and (i) of Lemma 2.3, we have

$a_{0}=b_{0}=0.$ (2.7)

By (ii) of lemma 2.3, we have

$a_{n-1}=b_{n}$ (2.8)

for any $n=1,2$ , $\ldots$ . By (iii) of Lemma 2.2 and (ii) of Lemma 2.4, we have

$a_{n}\leq b_{n}+N$ (2.9)

for any $n=1,2$, $\ldots$ . By (2.7), (2.8), (2.9) and an inductive argument, we
have

$a_{n}\leq nN$ : $n=0,1,2$ , $\ldots$ ,
$b_{0}=b_{1}=0$ , $b_{n}\leq$ $(n-1)N$ , $n=2,3,4$ , $\ldots 1$ (2.10)

Thus (ii) of Theorem 1.2 holds.
Since the deficiency indices of $L_{N}$ are $(2N, 2N)$ , we have

$\dim D(H_{N})/(D(H_{N})\cap D(H_{N}^{-}))\leq 2N$

for any self-adjoint extension $H_{N}$ of $L_{N}$ . By (ii) of Lemma 2.4, we have

$\dim$ Ran $P_{I}(H_{N})\leq\dim$ Ran $P_{I}(H_{N}^{-})+$ $27\mathrm{V}$

for any open interval I which does not intersect with the set {$(2n-1)B$ ; $n=$

$1,2$ , .. .}. Applying this inequality with $I=(-\infty, B)$ or $I=((2n-1)B,$ $(2n+$

$1)B)$ , we have that (iii) of Theorem 1.2 holds.
The equality (2.5) and (iii) of Theorem 1.2 imply the assertion (i) of

Theorem 1.2. $[]$
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3 Operator domain of the self-adjoint exten-
sions

Define four functions $6_{-1}^{\alpha}$ , $1_{1}^{\alpha}$ , $/\mathrm{Q}$ , $\psi_{0}^{\alpha}$ by

$\phi_{-1}^{\alpha}(z)=|z|’ z^{-1}e_{:}^{-\frac{B}{4}1^{z}1^{2}}$ $\psi_{1}^{\alpha}(z)=|z|^{-\alpha}\overline{z}eA|n^{2}$ ,

$5_{0}^{\alpha}(z)$ $=|z|^{\alpha}e^{-\frac{B}{4}1}z|^{2}$ , $4_{0}^{\alpha}(z)$
$=|z|^{-\alpha}e^{-\frac{B}{4}1}z|^{2}$

In the definition above, we identify an element $z=(x, y)$ in $R^{2}$ with the
element $z=x- l$ $iy$ in $C$ . The functions above have the following asymptotics
as $zarrow 0:$

$\phi_{-1}^{\alpha}(z)\sim r^{\alpha-1}e^{-\dot{\cdot}\theta}$ , $\psi_{1}^{\alpha}(z)\sim r^{1-\alpha}e^{-*\theta}$
.,

$6_{0}^{\alpha}(z)$ $\sim r^{\alpha}$ , $\psi_{0}^{\alpha}(z)\sim r^{-\alpha}$ ,

where $(r, \theta)$ is the polar coordinate given by $z=re^{\theta}\dot{.}$ , $r\geq 0$ and $\theta\in R.$ The
result of Exner, St’ovfcek and Vytfas ([Ex-St-Vy]) implies that

$D((L_{1}^{\alpha})^{*})=D(\overline{L_{1}^{\alpha}})\oplus \mathrm{L}.\mathrm{h}.\{\phi_{-1}^{\alpha},\psi_{1}^{\alpha}, \phi_{0}^{\alpha}, \psi_{0}^{\alpha}\}$. (3.1)

We shall determine the operator domain $D(L_{N}^{*})$ when $N\geq 2.$ The fol-
lowing lemma gives fundamental properties of $D(L_{N}^{*})$ and $D(\overline{L_{N}})$ .

Lemma 3.1 Let $N=1,$ 2, . . , , or $N=\infty$ . Then, the following holds.
(i) The operator domain of $D(L_{N}^{*})$ is given by

$D(L_{N}^{*})=\{u\in L^{2}(R^{2})\cap H_{lo\mathrm{c}}^{2}(R^{2}\backslash 5_{N});\mathcal{L}_{N}u\in L^{2}(R^{2})\}$ .

(ii) Let $u\in D(L_{N}^{*})$ . Suppose that there exists a constant $R_{1}$ with $0<$

$R_{1}<R$ such that svpp $\mathrm{u}\subset R^{2}\backslash U(R_{1})$ , where

$U(r)= \bigcup_{j=1}^{N}\{z\in R^{2};|z-z_{j}|<r\}$ .

Then, $u\in D(\overline{L_{N}})$ .
Proof, (i) This assertion folows from the definition of the adjoint operator.
(ii) Take a function $u\in D(L_{N}^{*})$ which satisfies the assumption. Then the

function $a_{N}$ is smooth on the support of $u$ . Since the magnetic Schr\"odinger
operators on $R^{2}$ with smooth magnetic potentials are essentially self-adjoint
on $C_{0}^{\infty}(R^{2})$ (see [Ik-Ka]), we can approximate $u$ with respect to the graph
norm of $L_{N}^{*}$ by smooth functions supported on a neighborhood of $\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}$ u.
This implies that $u\in D(\overline{L_{N}})$ . $[]$
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Lemma 3.2 Let $1\leq N\leq\infty$ . Let $\chi$ be an element of $C_{0}^{\infty}(\{|z|< \mathrm{y}\})$

satisfying $\chi(z)=1$ in $\{|z|<\frac{R}{3}\}$ . Let $t_{-z_{\mathrm{j}}}$ be the magnetic translation from
$\{|z-z_{\mathrm{j}}|<\frac{R}{2}\}$ to $\{|z|<\frac{R}{2}\}$ intertwining $\mathcal{L}_{N}$ with $\mathcal{L}_{1}^{\alpha_{j}}$ . Put $\chi_{j}(z)=\chi$(z-z$j$ ).
Let $T$ be a linear operator, from the quotient Hilbert space $D(L_{N}^{*})/D(\overline{L_{N}})$ to
the direct sum of the quotient Hilber$n$ spaces $\oplus_{j=1}^{N}D((L_{1}^{\alpha_{j}})^{*})/D(\overline{L_{1}^{\alpha_{\mathrm{j}}}})$ , defined
by

$T[u]=([t_{-z_{1}}(\chi_{1}u)], \ldots, [t_{-z_{N}}(\chi_{N}u)])$,

where the bracket denotes the equivalence class in a quotient space. Then, $T$

is a bijective bicontinuous linear operator.

Proof. We show this lemma only in the case $N<\infty$ , for simplicity. In this
case, the vector space $\oplus_{j=1}^{N}D((L_{1}^{\alpha_{j}})^{*})/D(\overline{L_{1}^{\alpha_{j}}})$ is finite dimensional. Thus the
continuity statement automatically holds.

Define a linear operator $\tilde{T}$ ffom $D(L_{N}^{*})$ to $\oplus_{j=1}^{N}D((L_{1}^{\alpha_{j}})^{*})/D(\overline{L_{1}^{\alpha_{\mathrm{j}}}})$ by

$Tu=$ $([t_{-z_{1}}(\chi_{1}u)], \ldots, [t_{-z_{N}}(\chi_{N}u)])$ .

The well-definedness of the operator $\overline{T}$ follows from the intertwining property

$t_{-z_{j}}\mathcal{L}_{N}u=\mathcal{L}_{1}^{\alpha_{j}}t_{-z_{j}}lt$

and (i) of Lemma 3.1. We see that $\tilde{T}$ is surjective by the equality

$[u]=[t_{-z_{j}}\chi_{j}t_{z_{j}}\chi u]$ , for $u\in D((L_{1}^{\alpha_{\mathrm{j}}})^{*})$ ,

which follows from (ii) of Lemma 3.1.
We shall show that $\mathrm{K}\mathrm{e}\mathrm{r}\tilde{T}=D(\overline{L_{N}})$ . The inclusion $\mathrm{K}\mathrm{e}\mathrm{r}\tilde{T}\supset D(\overline{L_{N}})$

follows from the inclusion relation

$t_{-z_{\mathrm{j}}}X$: $C_{0}^{\infty}(R^{2}\backslash S_{N})\subset C_{0}^{\infty}(R^{2}\backslash \{0\})$ $=D(L_{1}^{\alpha_{j}})$

and an approximating argument. We shall show the contrary inclusion. Take
$u\in \mathrm{K}\mathrm{e}\mathrm{r}\tilde{T}$. Then $t_{-z_{j}}$ )($j^{u}\in D(\overline{L_{1}^{\alpha_{\mathrm{J}}}})$ for $j=1$ , $\ldots$ , $N$ . Decompose the
function $u$ as

$u=$ $(u- \sum_{j=1}^{N} \chi_{\mathrm{i}}u)$ $+ \sum_{j=1}^{N}t_{z_{\mathrm{j}}}(t_{-z_{\mathrm{j}}}(j^{u)}\cdot$

Since $n$ $-\mathrm{E}3=1\chi_{j}uE$ $D(\overline{L_{N}})$ by (ii) of Lemma 3.1, it is sufficient to show
that

$t_{z_{j}}v\in D(\overline{L_{N}})$ for $v\in D(\overline{L_{1}^{\alpha_{j}}})$ , $\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}v\subset\{|z|<\frac{R}{2}\}$.
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This assertion follows from the inclusion

$t_{z_{j}}C_{0}^{\infty}( \{0<|z|<\frac{R}{2}\})$ $\subset C_{0}^{\infty}(R^{2} \backslash \mathrm{S}_{N})$

and an approximating argument.
Thus the assertion of this lemma follows from the homomorphism $\mathrm{t}\mathrm{h}\infty-$

$\mathrm{r}\mathrm{e}\mathrm{m}$. $\square$

Remark. When $N=$ $\mathrm{o}\mathrm{o}$ , we need to prove the convergence of the sum
$\sum_{j=1}^{\infty}\chi_{j}u$ . For the detailed argument, see our preprint ([Mi]).

By the previous lemma, we can determine the structure of the operator
domain of $L_{N}^{*}$ .

Lemma 3,3 Assume that all the assumption of Lemma 3.2 hold. Then,
the folloing assertions hold.

(i) The deficiency indices of $L_{N}$ are $(2\mathrm{i}\mathrm{V}, 2N)$ .
(ii) Assume moreover that there exist constants $\alpha_{-}$ , $\alpha_{+}$ such that

$0<\alpha_{-}\leq\alpha_{j}\leq\alpha_{+}<1$ (3.2)

for every $j=1$ , $\ldots$ , N. Put

/2$1)_{=t_{z_{\mathrm{j}}}(\chi\phi_{-1}^{\alpha_{j}})}$ , I$1(j)=t_{z_{j}}(\chi\psi_{1}^{\alpha_{\mathrm{j}}})$ ,
$f_{0}^{(j)}=t_{z_{\mathrm{j}}}(\chi\phi_{0}^{\alpha_{j}})$ , $j_{0}^{(j)}=t_{z_{J}}(\chi\psi_{0}^{\alpha_{j}})$,

for $j=1$ , $\ldots$ , N. Then, the operator domain $D(L_{N}^{*})$ is decomposed into $a$

direct sum

$D(L_{N}^{*})=D( \overline{L_{N}})\oplus_{alg}\bigoplus_{j=1}^{N}\mathrm{L}.\mathrm{h}.\{\phi_{-1}^{(j)}, )(^{j)}, \phi_{0}^{(j)}, \psi"\}$,

where $\oplus_{alg}$ denotes the algebraic direct sum $and\oplus_{j=1}^{N}$ denotes the orthogonal
direct sum of mutually orthogonal closed subspaces.

Remark. The assumption of (ii) holds if $N$ is finite.

Proof, (i) Since the operator $L_{N}$ is symmetric and positive, the deficiency
indices $m_{\pm}=\dim \mathrm{K}\mathrm{e}\mathrm{r}(L_{N}^{*}\mp i)$ are equal (see [ ${\rm Re}$-Si, Corollary of Theorem
X. $\mathrm{I}$ ]). Since $D(L_{N}^{*})=D(\overline{L_{N}})$ c33 $\mathrm{K}\mathrm{e}\mathrm{r}(L_{N}^{*}-i)\oplus \mathrm{K}\mathrm{e}\mathrm{r}(L_{N}^{*}+i)$ (see $[{\rm Re}- \mathrm{S}\mathrm{i},$ $(\mathrm{b})$

of Lemma in page 138]), it is sufficient to show that

$\dim D(L_{N}^{*})/D(\overline{L_{N}})=4N.$
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This equality follows from from Lemma 3.2 and (3.1).
(ii) It is easy to see that the operator $T^{-1}$ defined by

$T^{-1}([u_{1}], \ldots, [u_{N}])=[\sum_{j=1}^{N}t_{z_{j}}\chi u_{j}]$

is the inverse operator of the operator $T$ defined in Lemma 3.2. By (3.1), we
see that the functions

$\bigcup_{j=1}^{N}\{([0], \ldots,[\phi], \ldots, [0]) ;\check{j-\mathrm{t}\mathrm{h}} \phi=l_{-}^{\alpha}\mathit{1}, \mathrm{A}_{1}^{\alpha_{j}},\phi_{0}^{\alpha_{j}},\psi_{0}^{\alpha_{\mathrm{j}}}\}$

form a basis of $\oplus_{j=1}^{N}D((L_{1}^{\alpha_{\mathrm{j}}})^{*})/D(\overline{L_{1}^{\alpha_{\mathrm{j}}}})$. When $N$ is finite, we have that the
image of the above basis by the operator $T^{-1}$ is a basis of $D(L_{N}^{*})/D(\overline{L_{N}})$ .
This implies the assertion.

When $N=$ oo we have to show the convergence of the sum

$u=u_{0}+ \sum_{j=1}^{\infty}(c_{4j-3}\phi_{-1}^{(j)}+c_{4j-}2\mathrm{t}7\mathrm{P})$ $+c_{4j-}$ lCl)lj) $+c_{4j}\psi_{0}^{(j)}$ ),

where $u_{0}\in D(\overline{L_{N}})$ and the coefficients $c_{4j-3}$ , $c_{4j-2}$ , $c_{4j-1}$ , $c_{4j}$ are determined
by the asymptotic behavior as $zarrow z_{j}$ of the function $u$ . The assumption
(3.2) guarantees the convergence of the sum (for the detail, see our preprint
[Mi] $)$ . $\square$

By using above basis, we can describe $D(H_{N}^{AB})$ and $D(H_{N}^{-})$ as follows:

Lemma 3.4 The following equalities hold.
(i) $D(H_{N}^{AB})=D(\overline{L_{N}})\oplus_{alg}\oplus_{j=1}^{N}\mathrm{L}.\mathrm{h}.\{\psi_{1}^{(j)}, \phi_{0}^{(j)}\}$ .
(ii) $D(H_{N}^{-})=D(\overline{L_{N}})\oplus_{a1g}\oplus_{j=1}^{N}\mathrm{L}.\mathrm{h}.\{\psi_{1}^{(j)},\psi_{0}^{U)}\}$ .

Proof, (i) Let $D_{1}$ be the right hand side of the equality (i). Since $D(H_{N}^{AB})$

is included in the form domain $C_{0}^{\infty}\overline{(R^{2}\backslash S_{N})}$ , we have that any element
$u\in D(H_{N}^{AB})$ satisfies

$A_{N}u\in L^{2}(R^{2})$ , $A_{N}^{\uparrow}u\in L^{2}(R^{2})$ . (3.3)

By Lemma 3.3, we have that an element $u\in D(L_{N}^{*})$ is written as
the sum of a vector $u_{0}$ in $D(\overline{L_{N}})$ and a linear combination of $4N$ vectors
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$\{\phi_{-1}^{(j)},\psi_{1}^{(j)}, \phi_{0}^{(j)}, \psi_{0}^{(j)}\}_{j=1}^{N}$ . An explicit calculation using (2.1) and (2.2) shows
that

$A_{1}^{\alpha}\phi_{0}^{\alpha}$
$=2\alpha|z|^{\alpha}z^{-1}e^{-\frac{B}{4}|z|^{2}}\in L^{2}(R^{2})$ ,

$A_{1}^{\uparrow,\alpha}\phi_{0}^{\alpha}$ $=B|z|^{\alpha}ze^{-\frac{B}{4}|z|^{2}}\in L^{2}(R^{2})$ ,
$A_{1}^{\alpha}\psi_{1}^{\alpha}$ $=0\in L^{2}(R^{2})$ ,

$A_{1}^{\uparrow,\alpha}\psi_{1}^{\alpha}$ $=$ $|z|^{-\alpha}(2(\alpha-1)+B|z|^{2})e^{-^{B}}\tau^{|z\}^{2}}\in L^{2}(R^{2})$ ,

and that
$A_{1}^{\alpha}\phi_{-1}^{\alpha}$ $=$ $2(\alpha-1)|z|^{\alpha}z^{-2}e^{-\frac{B}{4}|z|^{2}}\not\in L^{2}(R^{2})$,

$A_{1}^{|,\alpha}\psi_{0}^{\alpha}$ $=$ $|z|^{-\alpha}(2\alpha\overline{z}+B1z)e$
$- \frac{B}{4}|z|^{2}$

$($ $L^{2}(R^{2})$ .

By the intertwining property of $t_{-z_{j}}$ , we have that the vectors $A_{N}\phi_{0}^{(j)}$ , $A_{N}^{\mathrm{t}}\phi_{0}^{(j)}$ ,
$A_{N}\psi_{1}^{(j)}$ , $1_{N}^{\dagger}\psi \mathrm{C}^{\mathrm{j})}$ belong to $L^{2}(R^{2})$ and that the vectors $A_{N}\phi_{-1}^{(j)}$ , 4! $\mathrm{p}_{0}^{(\mathrm{j})}$ do not
belong to $L^{2}(R^{2})$ , for $j=1$ , . . . $,$

/. Thus, an element $u$ in $D(L_{N}^{*})$ satisfying
(3.3) is contained in $D_{1}$ . Therefore we have $D(H_{N}^{AB})\subset D_{1}$ . Moreover, we can
prove that the operator $\mathcal{L}_{N}|_{D_{1}}$ is self-adjoint. Thus we have $D(H_{N}^{AB})=D_{1}$ .

(ii) By definition, an element $u$ in $D(H_{N}^{-})=D(\overline{A_{N}^{\mathrm{t}}}(A_{N}^{\mathrm{t}})^{*})$ satisfies

$A_{N}u$ $\in D(\overline{A_{N}^{\uparrow}})=\overline{C_{0}^{\infty}(R^{2}\backslash S_{N})}$, (3.4)

where the overline denotes the closure with respect to the graph norm of $A_{N}$ .
By the operator equality

$A_{N}^{1}A_{N}=A_{N}A_{N}^{\dagger}-2B,$

we have that the graph norm of $A_{N}$ and that of $A_{N}^{\dagger}$ are equivlent. Thus we
have $D(\overline{A_{N}})=D(\overline{A_{N}^{\uparrow}})$ . By (3.4), we have

$A_{N}u\in L^{2}(R^{2})$ , $A_{N}^{\mathrm{t}}A_{N}u\in L^{2}(R^{2})$ , $A_{N}A_{N}u\in L^{2}(R^{2})$ . (3.5)

Again an explicit computation using (2.1) and (2.2) shows that
$A_{1}^{\alpha}\psi_{0}^{\alpha}$ $=A_{1}^{|,\alpha}A_{1}^{\alpha}\psi_{0}^{\alpha}=A_{1}^{\alpha}A_{1}^{\alpha}\psi_{0}^{\alpha}=0\in L^{2}(R^{2})$ ,
$A_{1}^{\alpha}\psi_{1}^{\alpha}$ $=A_{1}^{\dagger,\alpha}A_{1}^{\alpha}\psi_{1}^{\alpha}=A_{1}^{\alpha}A_{1}^{\alpha}\psi_{1}^{\alpha}=0\in L^{2}(R^{2})$ ,

and
$A_{1}^{\alpha}\phi_{-1}^{\alpha}$

$=2(\alpha-1)|z|^{\alpha}z^{-2}e^{-\frac{B}{4}|z|^{2}}\not\in L^{2}(R^{2})$ ,
$A_{1}^{\alpha}A_{1}^{\alpha}\phi_{0}^{\alpha}=4\alpha(\alpha-1)|z|^{\alpha}z^{-2}e^{-\frac{B}{4}|z|^{2}}\not\in L^{2}(R^{2})$ .

The rest of the proof is similar to the last part of the proof of (i). $\square$
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We shall give a proof of Lemma 2.2 in section 2.

Proof of Lemma 2.2. (i) By the definition of the self-adjoint operator
$H_{N}^{0}=(A_{N}^{\mathrm{t}})^{*}\overline{A_{N}^{\mathrm{t}}}-B$ and the Priedrichs extension $H_{N}^{AB}$ , we can show that $H_{N}^{0}$

and $H_{N}^{AB}$ have the same form core $C_{0}^{\infty}(R^{2}\backslash S_{N})$ . Moreover the values of the
form $(H_{N}^{0}u,u)$ and $(H_{N}^{AB}u, u)$ coincide for $u$ in the form core $C_{0}^{\infty}(R^{2}\backslash S_{N})$ .
These facts imply that two self-adjoint operators $H_{N}^{0}$ and $H_{N}^{AB}$ coincide.

(ii) For $u$ in the form core $C_{0}^{\infty}(R^{2} \backslash S_{N})$ , we have

$(H_{N}^{AB}u,u)$ $=$ $((A_{N}^{\mathrm{T}}A_{N}+B)u,u)$

$=$ $||\mathrm{A}_{N}u||^{2}+B||u||^{2}\geq B||u||^{2}$ .

Thus the assertion holds.
(iii) This assertion immediately follows from Lemma 3.4. $\square$
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