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An observation of approximate saddle points
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Abstract

The saddle point is a fundamental concept and in mathematics, eco-
nomics, and many fields of science. Especially it plays very important
roles in game theory, equilibrium theory, and mathematical program-
ming. However, we know that usual theorems of the existence of saddle
points, are required conditions with respect to compactness. In this
paper we define a notion of approximated saddle points and observe
existence of them without compactness.

1 Introduction and Preliminary

Let X and Y be complete metric spaces, f be a function from X x Y to R. If
(%o, %0) € X x Y is a saddle point of f if for all (z,y) € X x Y,

f(zo,y) < flzo,30) < Fz,v0).

This is a fundamental concept in many fields of science, and it plays important roles
in, especially, game theory, equilibrium theory, and mathematical programming.
We know the following existence theorem, see [1].

Theorem 1.1 Let X, and Y; be compact convex subsets of topological vector
spaces, and f be a real-valued function on X, x ;. Assume that f (-,y) is lower
semicontinuous quasiconvex for each y € Y and f (z,-) is upper semicontinuous
quasiconcave for each z € Xo. Then, there exists a saddle point of f.

However, we know examples in which functions do not have any saddle points
when its domain is not compact.
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Example 1.1 f:[1,00) X R — R defined by

1
fen = (2-1) 62+ D),
then there does not exist any saddle points of f.

In this paper, we define a notion of approximated saddle points and observe
existence of them without assumption of compactness. To the purpose, we start
to remember usual approximation ideas for a minimization problem in the next
chapter.

2 Approximate saddle points like Ekeland’s method

Let (Z,d) be a metric space. See the following minimization problem (P):

(P) minimize  g(2)
subject to 2z € Z
For this problem, we have two approximation ideas: for arbitrary € > 0,

e 2y € Z is (typical) e-approximate if

g(20) < glz)+€e, VzeZ

e 2y € Z is Ekeland’s g-approximate if

9(20) < g(2) +ed(z,20), Vz€Z.

Remember the following Ekeland’s theorem; the theorem requires completeness
of the metric, but does not require any compactness, see [2].

Theorem 2.1 Let g: Z — RU {+o0} be lower semicontinuous, and assume that
it is bounded from below. If metric d is complete, then for each € > 0, there exists
29 € Z such that

9(z) < 9(2) +ed(z,2), VzeZ

Under the theorem assumptions, function g(z)+ed(2, %) attains its minimum at
20, that is, there exists Ekeland’s approximate. Motivated the theorem, we define
the following approximate saddle point notion.
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Definition 2.1 Let ¢ > 0. (zp,3) € X x Y is said to be an Ekeland’s -
approximate saddle point of f if for all (z,y) € X x Y, two inequalities

f(@o,y) — £d(y0,y) < f(2o,30) and f(wo,90) < f(z,0) + ed(zo, 7)
are satisfied.

Remark 2.1 Obviously, if (o, yo) is a saddle point of f, then it is an Ekeland’s e-
approximate saddle point of f. Conversely, if (z, 7o) is an Ekeland’s g-approximate
saddle point of f, then it is a saddle point of the following modified function f.:

fe(xyy) = f(xa y) + Sd(xo,l‘) - Ed(yO) y)

Example 2.1 Consider the same function f of Example 1.1, see

fen) = (3 -1) 6+

then each element of the following set is an Ekeland’s é-approximate saddle point:

{(-’c, y)

Let € = ;. For modified function f. : [1,00] x R — R defined by

£ &

2
xz__?/_Z.l., |y|_<_.;_},

e = (3 -1) 07 +1) +elo 4~ el

has the exact minimax point (4, 0).

3 Existence of Ekeland’s approximate saddle points
In this secﬁon, we show existence results for our approximate saddle point.
Theorem 3.1 If function f is written by
fz,y) = g(z) — h(y), ¥(z,9) € X x,

where g : X — R is lower semicontinuous with bounded from below, and h: Y —
R is upper semicontinuous with bounded from above. Then for each &£ > 0, there
exists an Ekeland’s e-approximate saddle point of f.

Theorem 3.2 If function f is written by
f(z,y) = g(x)h(y), V(z,y) € X x,

where g : X — (0,00) is lower semicontinuous, and h : ¥ — (0, 00) is upper
semicontinuous and bounded from above. Then for each £ > 0, there exists an
Ekeland’s e-approximate saddle point of f.



The condition of f in Theorem 3.2 is replaced by fractional type as follows:

Corollary 3.1 If function f is written by

f(z,y) = g(z)/h(y), V(z,y) € X xY,

where g : X — (0,00) is lower semicontinuous, and h : Y — [c,00) is lower
semicontinuous and c¢ is a positive number. Then for each £ > 0, there exists an
Ekeland’s e-approximate saddle point of f.

Theorem 3.3 Assume that f has an Ekeland’s e-approximate saddle point for
each € > 0. If a function p : X X Y — R satisfies n-Lipschitz condition on metric
space (X x Y,8) where 6((z,y), (z', ) = d(z,z’) + d(y,y), and 7 < € for given
€ > 0, then there exists an Ekeland’s e-approximate saddle point of f 4+ p.

Corollary 3.2 If function f is written by

f(z,y) = g(z) — h(y) +p(z,y), V(z,9) € X XY,

where g and h satisfy the same condition in Theorem 3.1, and p satisfies the
same condition in Theorem 3.3 for given € > 0, then there exists an Ekeland’s
e-approximate saddle point of f.

By using Theorem 3.3, we can derive similar results concerned with Theorem 3.2
and Corollary 3.1, respectively.
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