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1. Introduction
This paper is concerned with a generalization of an existence theorem for the generalized
vector equilibrium problem in [1], in which Ansari and Yao proved an existence result
by using Fan-Browder type fixed point theorem. It is relative to a vector-valued Fan’s
inequality for set-valued maps in $[4, 5]$ .

In this paper, we consider the following two kinds of generalized vector equilibrium
problems:

find $\overline{x}\in K$ such that $F(\overline{x},y)\not\subset$ -int $C(\overline{x})$ for every $y\in K$ (1.1)

and
find $i\in K$ such that $F(\overline{x},y)$ rl (-int $C(\overline{x})$ ) $=\emptyset$ for every $y\in K$ (1.2)

where $E$ and $\mathrm{Y}$ are two topological vector spaces, $K$ is a nonempty convex subset of $E$ ,
$F:K\cross Karrow 2^{\mathrm{Y}}$ is a multifunction, $C$ : $Karrow 2^{\mathrm{Y}}$ $\mathrm{i}$ a multifunction such that for each
$x\in K$ , $C(x)$ is a closed convex cone with int $C(x)\neq\emptyset$ . We show existence theorems of
these problems by using Fan’s inequality. Our proofs of Theorems 3.1 and 3.2 are quite
different from that in [1] and in the proofs we use a result of Georgiev and Tanaka [4,
Theorem 2.3] which follows from a twO-function result of Simons [11, Theorem 1.2].

By applying the twO-function result for special scalarizing functions possessing qua-
siconvexity and semicontinuity, we establish the proofs of the main theorems. For such a
reason, it is necessary for those scalarizing functions to have such convexity and semicon-
tinuity. It is, therefore, important and useful to study what kind of scalarizing functions
can inherit properties of such kind of convexity and semicontinuity from multifunctions.
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To shows some results on the inherited properties, we consider certain generalizations
and modifications of convexity and semicontinuity for multifunctions in a topological
vector space with respect to a cone preorder in the target space, which have motivated
by $[6, 7]$ and studied in [4] for generalizing the classical Fan’s inequality. Convexity and
semicontinuity for multifunctions are inherited by the following scalarizing functions;

$\inf\{h_{C}(x,y;k) |y\in F(x)\}$ (1.3)

and
$\sup\{h_{C}(x,y;k)|y\in F(x)\}$ (1.4)

where $hc(x,y;k)= \inf\{t|y\in tk-C(x)\}$ , $F$ : $E” \mathrm{p}$ $2^{\mathrm{Y}}$ is a multifunction, $C(x)$ a closed
convex cone with int $C(x)\neq/)$ , $x$ and $y$ are vectors in two topological vector spaces $E$

and $\mathrm{Y}$ , respectively, and $k\in$ int $\mathrm{C}(\mathrm{x})$ . Note that $h_{C}(x, \cdot;k)$ is positively homogeneous
and subadditive for every fixed $x\in E$ and $k\in$ int $\mathrm{C}(\mathrm{x})$ , and that $h_{C}(x, y;k)\leq 0$

for $y\in-C(x)$ , remark that $-h_{C}(x, -y;k)= \sup\{t|y\in tk+C(x)\}$ . This function
$h_{C}(x,y;k)$ has been treated in some papers. Essentially, $h_{C}$ (X, $\mathrm{j};k$) is equivalent to the
smallest strictly monotonic function defined by Luc [8]. For each $y\in \mathrm{Y}$ , $hc\{x,$ $y;k)k$
corresponds the mimimum vector of upper bounds of $y$ with respect to the cone $C(x)$

restricted to the direction $k$ . Similarly, $-h\mathrm{C}(\mathrm{x})-y;k)$ $\cdot k$ corresponds the maximum vector
of lower bounds of $y$ with respect to the cone $C(x)$ restricted to the direction $k$ .

2. Inherited Properties of Set-Valued Maps

Further let $E$ and $\mathrm{Y}$ be topological vector spaces and $F$ and $C$ : $Earrow 2^{\mathrm{Y}}$ two multifunc-
tions. Denote $B(x)=$ co ((int $\mathrm{C}\{\mathrm{x})$ ) $\cap(2S ’ \overline{S}))$ (which plays a role of base for int $C(x)$

without uniqueness), where $S$ is a neighborhood of 0 in Y. We $\mathrm{o}\mathrm{b}\mathrm{s}\mathrm{e}_{l}\mathrm{r}\mathrm{v}\mathrm{e}$ the following four
types of scalarizing functions:

$\psi( (x;k):=\sup_{y\in F(x)}h_{C}(x,y;k)$ , $/’ \mathrm{G}(x;k):=\inf_{y\in F(x)}h_{C}(X, \mathrm{j};k)$ ;

$- \varphi_{\overline{C}}^{F}(x;k)=\sup_{y\in F(x)}$
-hc(x, $-y;k$), $-\psi_{\overline{C}}^{F}(x; k)$ $=y\in$

inf
$x$) $-h_{C}(x, -y;k)$

.

The first and fourth functions have symmetric properties and then results for the
fourth function $-\psi_{\overline{C}}^{F}(x; k)$ can be easily proved by those for the first function $\psi_{C}^{F}(x;k)$ .
Similarly, the results for the third function $-\varphi_{\overline{C}}^{F}(x;k)$ can be deduced by those for the
second function $\varphi_{C}^{F}(x;k)$ . By using these four functions we measure each image of mul-

function $F$ with respect to its 4-tuple of scalars, which can be regarded as standpoints
for the evaluation of the image. To avoid confusion for properties of convexity, we con-
sider the constant case of $C(x)=C$ (a convex cone) and $B(x)=B$ (a convex set), and
$hc(x,y;k)=h_{C}(y;k):= \inf\{t|y\in tk-$ (J.

To begin with, we recall some kinds of convexity for multifunctions.

Definition 2.1, A multifunction $F$ : $Earrow 2^{\mathrm{Y}}$ is called $C$ -quasiconvex, if the set
$\{x\in E|F(x)\cap(a-C)4\emptyset\}$ is convex or empty for every $a\in$ Y. If $-F$ is C-quasiconvex,
then $F$ is said to be $C$-quasiconcave, which is equivalent to a $(-C)$-quasiconvex mapping.
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Remark 2.1. The above definition is exactly that of Ferro type (-1)-quasiconvex map-
pin.g in [7, Definition 3.5].

Definition 2.2. A multifunction $F$ : $Earrow 2^{\mathrm{Y}}$ is called (in the sense of [7, Definition 3.7])

(a) type-(iii) $C$-naturally quasiconvex if for every two points $x_{1}$ , $x_{2}\in E$ and every
A $\in(0,1)$ , there exists $\mu\in[0,1]$ such that

$\mu F(x_{1})+(1-\mu)F(x_{2})\subset F(\lambda x_{1}+(1-\lambda)x_{2})+C;$

(b) type-(v) $C$-narurally quasiconvex, if for every two points $x_{1}$ , $x_{2}\in E$ and every
A $\in(0,1)$ , there exists $\mu\in[0,1]$ such that

$F$ ( $\lambda x_{1}+$ (1-X)x2) $\subset$ $\mathrm{F}(\mathrm{x})+(1-\mathrm{n})\mathrm{F}(\mathrm{x}2)-C$.

If $-F$ is type-(iii) [resp., type-(v)] $C$-naturally quasiconvex, then $F$ is said to be type-
(iii) [resp., type-(v)] $C$ -naturally quasiconcave, which is equivalent to a type-(iii) [resp.,
type (v)$]$ $(-C)$-naturally quasiconvex mapping.

However, there is no relationship between those for types (iii) and (v) in general.

Proposition 2.1. See [7, Theorem 3.1]. For a multifunction $F$ : $Earrow 2^{\mathrm{Y}}$ , type-(iii)
$C$-naturally quasiconvexity implies C-quasiconvexity.

Proposition 2.2. For each $x\in E$ and a multifunction $F:Earrow 2^{\mathrm{Y}}$ ,

(i) $\psi_{C}^{F}(x;k)$ is convex with respect to variable $k\in \mathrm{i}\mathrm{n}\mathrm{t}C$;

(ii) $f_{C}^{F}$ Cx; $k$ ) is convex with respect to variable $k\in$ int $C$, if $F(x)$ is a convex set.

Now, we show some inherited properties of convexity for multifunctions.

Lemma 2.1. If $F$ : $Earrow 2^{\mathrm{Y}}$ is $typearrow(\mathrm{v})C$ -narurally quasiconvex, then $\psi^{F}(x):=$

inf$k\in B\psi_{C}^{F}(x;k)$ is quasiconvex, and especially $\psi_{C}^{F}(x;k)$ is $quas\acute{\iota}convex$ with respect to vari-

able $x$ where $k\in$ int $C$ .

(ii) $\varphi_{C}^{F}(x;k)$ is convex with respect to variable $k\in \mathrm{i}\mathrm{n}\mathrm{t}C$ , if $F(x)$ is a convex set.

Now, we show some inherited properties of convexity for multifunctions.

Lemma 2.1. If $F$ : $Earrow 2^{\mathrm{Y}}$ is $typearrow(\mathrm{v})C$ -naturally quasiconvex, then $\psi^{F}(x):=$

$\inf_{k\in B}\psi_{C}^{F}(x;k)$ is quasiconvex, and especially $\psi_{C}^{F}(x;k)$ is $quas\acute{\iota}convex$ with respect to vari-
able $x$ where $k\in \mathrm{i}\mathrm{n}\mathrm{t}C$ .

Lemma 2.2. If $F$ : $Earrow 2^{\mathrm{Y}}$ is convex-valued and $C$ quasiconvex, then $\varphi^{F}(x):=$

$\inf_{k\in B\mathrm{j})}\mathrm{r}(x;k)$ is quasiconvex, and especially $\varphi_{C}^{F}(x;k)$ is quasiconvex with respect to vari-
able $x$ where $k\in$ int $C$ .

Remark 2.2. When we replace $F$ by $-F$ in the two lemmas above, it leads to the
quasiconcavity of scalarizing functions $-p^{-F}$ and $-\varphi^{-F}$ By Proposition 2.1, if $F$ : $Earrow$

$2^{\mathrm{Y}}$ is convex-valued and type-(iii) $C$-naturally quasiconvex, then $\varphi^{F}(x)$ is quasiconvex.

Next we show some inherited properties from some kinds of semicontinuity. We
introduce two types of cone-semicontinuity for multifunctions, which are regarded as
extensions of the ordinary lower semicontinuity for real-valued functions; see [6].
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Definition 2.3. Let $\hat{x}\in E.$ A multifunction $F$ is called $C(\hat{x})$ -upper semicontinuous at
$x_{0}$ , if for every $y\in C(\hat{x}> )\cup(-C(\hat{x}))$ satisfying with $F(x_{0})\subset y+$ int $C(\hat{x})$ , there exists an
open $U\ni x_{0}$ such that $F(x)\subset y+$ int $C(\hat{x})$ for every $x\in U.$

Definition 2.4. Let $\hat{x}\in E.$ A multifunction $F$ is called $C(\hat{x})$ -lorner semicontinuous at
$x_{0}$ , if for every open $V$ such that $F(x_{0})\cap V4$ $\emptyset$ , there exists an open $U\ni x_{0}$ such that
$F(x)\cap$ ( $V+$ int $C(\hat{x})$ ) $4$ $\emptyset$ for every $x\in U.$

Remark 2.3. In the two definitions above, the notions for single-valued functions are
equivalent to the ordinary notion of lower semicontinuity of real-valued ones, whenever
$\mathrm{Y}=\mathrm{R}$ and $C(x)=[0, \infty)$ . Usual upper semicontinuous multifunction is also (cone-
$)$ upper semicontinuous. When the cone $C(\hat{x})$ consists only of the zero of the space,
the notion in Definition 2.4 coincides with that of lower semicontinuous multifunction.
Moreover, it is equivalent to the cone-lower semicontinuity defined in [6], based on the
fact that $V+$ int $C(\hat{x})=V+C(\hat{x})$ ; see [13, Theorem 2.2].

Proposition 2.3. See [10, Proposition 2]. Assume that there exists a compact subset
$D\subset \mathrm{Y}$ satisfying (i) $A\subset$ cone/} where coneD $:=\{\lambda x|\lambda\geq 0,x\in D\}$ and (ii) $D\subset$

int $C(x_{0})$ for some $x_{0}\in E$ . If $W(\cdot):=\mathrm{Y}\backslash$ {int $C(\cdot)$ } has a closed graph, then there
exists an open set $U\ni x_{0}$ such that $A\subset C(x)$ for every $x\in U$ . In particular $C$ is lower
semicontinuous.

Lemma 2.3. Suppose that $W$ ; $Earrow 2^{\mathrm{Y}}$ defined as $W(x)=\mathrm{Y}\backslash$ int $C(x)$ has a closed
graph. If $F$ is $(-C(x))$ -upper semicontinuous at $x$ for each $x\in E$ and there exists $a$

compact-valued multifunction $D$ : $Earrow 2^{\mathrm{Y}}sat\dot{u}$fying for each $x_{0}\in E,$ (i) $D(x_{0})\subset$

int $C(x_{0})$ and (ii) for every $t\in \mathrm{R}$, $k\in B(x_{0})$ and $x\in E$ satisfying with $tk$ – $\mathrm{F}(\mathrm{x})\subset$

int $\mathrm{C}(\mathrm{x})$ , tk-F(x)\subset coneD(#o), then

$\psi^{F}(x):=$ inf $\sup h_{C}(x, y;k)$

$k\in B(x)_{y}\in F(x)$

is upper semicontinuous. If the mapping $C$ is constant-valued, then $p^{F}$ is upper semi-
continuous.

Lemma 2.4. Suppose that $W$ : $Earrow 2^{\mathrm{Y}}$ defined as $W(x)=\mathrm{Y}\backslash$ int $C(x)$ has a closed
graph. If $F$ is $(-C(x))$ lower semicontinuotts for each $x\in E$ and there eists a compact
valued multifunction $D:Earrow 2^{\mathrm{Y}}$ satisfying for each $x_{0}\in E,$ $(\mathrm{i})D(x_{0})\subset$ int $C(x_{0})$ and
(ii) for ever$ryt<t^{*}\in \mathrm{R}_{f}k\in E$ $\mathrm{B}(\mathrm{x}\mathrm{o})$ $x\in E$ and $y\in F(x_{0})$ satisfying with $F(x)\cap[y+$

$tk-$ int $\mathrm{C}(\mathrm{x}\mathrm{Q})]4$
$\emptyset$ , $\mathrm{F}(\mathrm{x})\cap[y+t^{*}k-\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{e}D(x_{0})]\neq$ $\emptyset_{f}$ then

$\varphi^{F}(x):=$ inf inf $h_{C}(x,y;k|$
$k\in B(x)y\in F(x)$

is upper semicontinuous. If the mapping $C$ is constant-valued, then $\varphi^{F}$ is upper semi-
continuous.

Remark 2.4. When we replace $F$ by $-F$ in the two lemmas above, it leads to the lower
semicontinuity of scalarizing functions $-p^{-F}$ and $-\varphi^{-F}$
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3. Existence Results
Firstly, we introduce our main tool, which is presented in [4, Theorem 2.3], for proving
the main results in this paper.

Lemma 3.1. See [4, Theorem 2.3]. Let $X$ be a nonempty compact convex subset of $a$

topological vector space, $a$ : $X\cross Xarrow \mathrm{R}$ lower semicontinuous in its second variable,
$b:X\cross Xarrow \mathrm{R}$ quasiconvex in its second variable, and

$x$ , $y\in X$ and $a(x,y)>0\Rightarrow b(y,x)<0.$

If $\inf_{x\in X}b(x, x)\geq 0,$ then there exists $z$ $\in X$ such that $a(x, z)\leq 0$ for every $x\in$ .X.

Now we present two existence results for generalized vector equilibrium problems.

If $\inf_{x\in X}b(x, x)\geq 0,$ then there exists $z$ $\in X$ such that $a(x, z)\leq 0$ for every $x\in X.$

Now we present two existence results for generalized vector equilibrium problems.

Theorem 3.1. Let $K$ be a nonempty convex subset of a topological vector space $E$, $\mathrm{Y}a$

topological vector space. Let $F:K\mathrm{x}Karrow 2^{\mathrm{Y}}$ be a multifunction. Assume that

(i) $C:Karrow 2^{\mathrm{Y}}$ is a multifunction such that for every $x\in K,$ $C(x)$ is a closed convex
cone in $\mathrm{Y}$ with int $C(x)\neq\emptyset$;

(ii) $W:K-2^{\mathrm{Y}}$ is a multifunction defined as $W(x)=\mathrm{Y}\backslash$ -int $\mathrm{C}(\mathrm{x}))$ , and the graph
of $W$ is closed in $K\mathrm{x}\mathrm{Y}$ ;

(iii) for every $x$ , $y\in K$ , $F(\cdot, y)$ is $(-C(x))$ -upper semicontinuous at $x$;

(iv) there eists a multifunction $G:K\mathrm{x}Karrow 2^{\mathrm{Y}}$ such that(iv) there exists a multifunction $G:K\mathrm{x}Karrow 2^{\mathrm{Y}}$ such that

(a) for every $x\in K$ , $G$(x, $x$ ) $\not\subset$ -int $\mathrm{C}(\mathrm{x})$ ,

(b) for every $x,y\in K$ , $F(x, y)\subset$ -int $C(x)$ implies $G(x, y)\subset$ -int $\mathrm{C}(\mathrm{x})$ ,
(c) $G(x, \cdot)$ is type-(v) $C(x)$ -naturally quasiconvex on $K$ for every $x\in K,$

(d) $G(x,y)$ is compact, if $G(x,y)\subset$ -int $C(x)$

(v) there eists a nonempty compact convex subset $P$ of $K$ such that for every $x\in K\backslash P$,
there eists $y\in P$ with $F(x,y)\subset$ -int $\mathrm{C}(\mathrm{x})$ ;

(vi) there exists a compact-valued multifunction $D$ : $Karrow 2^{\mathrm{Y}}$ such that for each $x_{0}\in E,$

(a) $D(x_{0})\subset$ int $C(x_{0})$ ,
(b) for every $t\in \mathrm{R}$ , $k\in B(x_{0})$ and $x\in E$ satisfying with tk-F(x)\subset int $C(x_{0})$ ,

tk-F(x)\subset coneD $(\mathrm{x}\mathrm{Q})$ .

Then, the solutions set

$S=$ {$x\in K|F(x,y)\not\subset$ -int $\mathrm{C}(\mathrm{x})$ , for every $y\in K$}

is a nonempty and compact subset of $P$ .

(b) for every $t\in \mathrm{R}$ , $k\in B(x_{0})$ and $x\in E$ satisfying with tk-F(x)\subset int $C(x_{0})$ ,
$tk-F(x)\subset \mathrm{c}\mathrm{o}\mathrm{n}\mathrm{e}D(x_{0})$ .

Then, the solutions set

$S=$ { $x\in K|F(x,y)\not\subset-\mathrm{i}\mathrm{n}\mathrm{t}C(x)$ , for every $y\in K$}

is a nonempty and compact subset of $P$ .
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Proof. Put

$a(x,y):=-$ inf $\sup$ $C(y)z;k)$ , $b(x, y):=$ inf $\sup$ $C(x)z;k)$ .
$k\in B(y)_{z}\in F(y,x)$ $k\in \mathrm{f}1(x)$

$z\mathrm{e}\mathrm{c}\mathrm{y}(x,y)$

It is easy to check that

$a(x,y)>0$ if and only if $F(y, x)\subset$ -int $C(y)$

by using condition (vi), and also

$b(y, x)<0$ if and only if $G(y, x)\subset$ -int $C(y)$

by using condition (vi), and also

$b(y, x)<0$ if and only if $G(y, x)\subset$ -int $C(y)$

by using (d) of the condition (iv), and then $a(x, x)\leq 0$ and $b(x, x)\geq 0.$

Denote

$S_{y}:=$ {$x\in P|F$ ($x$ , $y)\not\subset$ -int $C(x)$} $=\{x\in P|a(y, x)\leq 0\}$ . (3.1)

Since $a(y, \cdot)$ is lower semicontinuous (by Lemma 2.3), the set $S_{y}$ is closed. Let $\mathrm{Y}_{0}$ be a
finite subset of $K$ . Denote by $Z$ the closed convex hull of $\mathrm{Y}_{0}\cup P$ . Obviously $Z$ is compact
and convex. Lemmas 2.1, 2.3 and (b) of the condition (iv) show that the conditions of
Lemma 3.1 are satisfied.

Now we apply Lemma 3.1 and obtain a point $z\in Z$ such that $a(y, z)\leq 0$ for every
$y\in Z,$ which means

$F(z, y)\not\subset$ -int $C(z)$ for every $y\in Z$ . (3.2)

The conditions (v) and (3.2) imply that $z\in P.$ Relation (3.1) implies that

$\cap\{S_{y}|y\in \mathrm{Y}_{0}\}\neq\emptyset$ .

So we proved that the family $\{S_{y}|y\in K\}$ has finite intersection property. Since $P$ is
compact ,

$\cap\{S_{y}|y\in K\}$ ’ $\emptyset$ ,

which means that there exists $x_{0}\in K$ such that

$F(x_{0},y)\langle?-\mathrm{i}\mathrm{n}\mathrm{t}C(x_{0})$ for every $y\in K.$

So we proved that $S$ is nonempty, and since $S$ is a closed subset of $P$, the proof is
completed. I
So we proved that $S$ is nonempty, and since $S$ is aclosed subset of $P$, the proof is
completed. I
Remark 3.1. The above theorem is a generalization of the theorem that it is replaced
$F$ and $G$ in [4, Theorem 4.1] by $-F$ and $-G$, respectively. The main difference between
our result and [4, Theorem 4.1] is (c) of the condition (iv), which is more generalized
with respect to convexity.

Theorem 3.2. Let $K$ be a nonempty convex subset of a topological vector space $E$, $\mathrm{Y}a$

topological vector space. Let $F:K\mathrm{x}Karrow 2^{\mathrm{Y}}$ $be$ a multifunction. Assume that

(i) $C:Karrow 2^{\mathrm{Y}}$ is a multifunction such that for every $x\in K,$ $C(x)$ is a closed convex
cone in $\mathrm{Y}$ with int $C(x)\neq\emptyset$ ;
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(ii) $W$ : $Karrow 2^{\mathrm{Y}}$ is a multifunction defined as $W(x)=\mathrm{Y}\mathrm{z}$ (-int $\mathrm{W}(\mathrm{x})$ ), and the graph
of $W$ is closed in $K\cross \mathrm{Y}j$

(iii) for every $x,y\mathrm{E}$ $K$ , $\mathrm{F}\{\mathrm{x},$ $y$) is $\mathrm{C}(\mathrm{x}))$ -lorner semicontinuous at $x$;

(iv) there exists a multifunction $G:K\cross Karrow 2^{\mathrm{Y}}$ such that

(a) for every $x\in K,$ $\mathrm{G}(\mathrm{z}, x)\cap$ (-int $\mathrm{W}(\mathrm{x})$ ) $=\emptyset$ ,
(b) for every $x$ , $y\in K$ , $\mathrm{F}\{\mathrm{x},$ $y$) $\cap$ (-int $\mathrm{W}(\mathrm{x})$ ) $\mathit{1}$

$\emptyset$ implies $\mathrm{W}(\mathrm{x})y)\cap$ (-int $\mathrm{W}(\mathrm{x})$ ) $\neq\emptyset_{f}$

(c) $\mathrm{G}(\mathrm{z}, \cdot)$ is $C(x)$ -quasiconvet on $K$ for every $x\in K,$

(d) $G$ is convex-valued;

(v) there eists a nonempty compact convex subset $P$ of $K$ such that for every $x\in K\backslash P$,
there eists $y\in P$ with $F(x, y)$ rl (-int $C(x)$ ) $\neq\emptyset$ ;

(vi) there eists a compact-valued multifunction $D$ : $Karrow 2^{\mathrm{Y}}$ such that for each $x_{0}\in E,$

(a) $\mathrm{W}(\mathrm{x})\subset$ int $\mathrm{C}(\mathrm{x}0)]$

(b) for every $t<t^{*}\in \mathrm{R}$ , $k\in B(x_{0})$ , $x\in E$ and $y\in F(x_{0})$ satisfying $with$

$\mathrm{F}\{\mathrm{x}$) $\cap$ [$y$ $+tk-$ int $C(x_{0})$ ] $\neq\emptyset$ , $\mathrm{F}\{\mathrm{x}$) rl $[y+t^{*}k-\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{e}D(x_{0})]\neq\emptyset$ .
Then, the solutions set

$S=$ {$x\in K|$ b(x, $\mathrm{y})\cap$ (-int $C(x))=\emptyset)$ , for every $y\in K$}

is a nonempty and compact subset of $P$ .

Proof. Put

$a(x,y):=- \inf_{k\in B(y)z\in}\mathrm{i}\mathrm{f}y$$\mathrm{f},x)G(y, z;k)$ , $b(x, y):= \inf_{k\in B(x)}\inf_{z\in G(x,y)}W(x)z;k)$ .

It is easy to check that

$a(x, y)>0$ if and only if $F(y, x)\cap$ (-int $C(y)$ ) $\mathrm{z}$
$\emptyset$ ,

$b(y, x)<0$ if and only if $G(y, x)\cap$ (-int $C(y)$ ) $\neq\emptyset$ ,
$\mathrm{a}(\mathrm{x}, x)\leq 0,$ $\mathrm{W}(\mathrm{x})x)\geq 0.$

$b(y,x)<0$ if and only if $G(y, x)\cap$ (-int $C(y)$ ) $\neq\emptyset$ ,

$a(x, x)\leq 0,$ $b(x, x)\geq 0.$

Lemmas 2.2, 2.4 and (b) of the condition (iv) show that the conditions of Lemma 3.1
are satisfied. Further the proof is the same as that of Theorem 3.1, but in this

$\mathrm{c}\mathrm{a}\mathrm{s}\mathrm{e}\mathrm{l}$

$S_{y}:=$ {$x\in P|$ $F$ ($x$ , $y$) rl (-int $C(x))=\emptyset$}.

Remark 3.2. The above theorem is a improvement of the theorem that it is replaced
$F$ and $G$ in [4, Theorem 4.2] by $-F$ and $-G$, respectively. However, (d) of the condition
(iv) is added in comparison with [4, Theorem 4.2], because we want to use Lemma 2.2 in
the proof directly.
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4. Conclusions
We have established new inherited properties of convexity for set-valued maps. By using
one of those new inherited properties and applying to set-valued Fan’s inequality in $[4, 5]$ ,
we have generalized the existence theorem in [1]. We have also presented an existence
theorem for a different type of the generalized vector equilibrium problem in [1].
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