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ABSTRACT. This is a survey and announcement of recent results on the structure of free profinite
semigroups using techniques and results ffom symbolic dynamics. The intimate connection
between uniformly recurrent infinite words and $\mathrm{J}$’-maximal regular $\mathrm{J}$’-classes is explored to
compute the maximal subgroups of the $J$-classes associated with Arnoux-Rauzy infinite words,
which turn out to be free profinite groups whose rank is the number of letters involved.

1. INTRODUCTION

Given a pseudovariety $\mathrm{V}$ of semigroups and a finite set $A$ , the associated relatively free profinite
semigroup $\overline{\Omega}_{A}\mathrm{V}$ is an object which encodes in its topological and algebraic structures and the
interplay between them the common properties of $A$-generated members of V. This fact comes
basically out of any definition of $\overline{\Omega}_{A}\mathrm{V}$ and is behind the usefulness of relatively free profinite
semigroups in finite semigroup theory and its applications. There are by now several works
reviewing various aspects of this role played by such profinite semigroups, even when they are
not explicitly mentioned by this name [1, 8, 6, 22, 4].

While this is generally a hard problem, for some pseudovarieties, a complete structural descrip-
tion or at least a substantial knowledge of $\overline{\Omega}_{A}\mathrm{V}$ has been achieved (see, for instance, [1, 9, 14, 21]).
But for most pseudovarieties very little is known about their free profinite semigroups. This
is the case in particular for absolutely free profinite semigroups $\overline{\Omega}_{A}$S, which are the object of
this paper. Since the subsemigroup of $\overline{\Omega}_{A}\mathrm{S}$ generated by $A$ is the free semigroup on $A$ , whose
elements are generally known as words, for shortness we call the elements of $\overline{\Omega}_{A}\mathrm{S}$ pseudowor&;
they have also been called profinite words $[5, 7]$ .

The author has discovered some promising connections with symbolic dynamics which have
already proved to be ffuitful $[3, 2]$ . Surely a lot remains to be done in this direction particularly
since all developments in this area are rather recent. The present paper is both a research
announcement and a survey of results pertaining specifically to the structure of free profinite
semigroups. Since several results remain hitherto unpublished and have only been announced
in conferences and workshops, the main purpose of this paper is to put in print a collection
of statements that may contribute for other researchers to take advantage of the results and
perhaps join the research effort made by the author.

This paper contains almost no proofs. For results for which no reference is given, detailed
prooffi will appear in forthcoming papers. We collect in Section 2 a number of preliminaries which
are required for understanding the rest of the paper, including a self-sufficient introduction to
relatively free profinite semigroups. Section 3 presents a number of results concerning uniformly
recurrent pseudowords, which $\mathrm{f}\mathrm{o}$ rm maximal 7-classes not containing finite words and which
are regular. The main results presented in the paper concern the identification of the structure
of the maximal subgroups in these 7-classes, which turn out to be free profinite groups in some
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particularly natural classes of examples. In Section 3 this is stated for minimal complexity
non-quasi-periodic pseudowords, called Sturmian pseudowords. This is generalized in Section 4
to Arnoux-Rauzy pseudowords and the proof that Arnoux-Rauzy maximal subgroups are free
profinite groups is sketched through the statement of intermediate results which may be of
independent interest.

Section 5 reviews results on the other extreme of free profinite semigroups, namely the min-
imal ideal, which were obtained jointly with M. V. Volkov using another dynamical systems
parameter, the entropy. Finally, we propose in Section 6 some open problems suggested by this
research.

2. PRELIMINARIES

2.1. Relatively free profinite monoids. We begin with an elementary remark on the topol-
ogy of products of finite spaces. Recall that an ultrametric on a set $X$ is a function $d$ defined
on $X\mathrm{x}X$ with nonnegative real values such that

(1) $d(x, y)=0$ if and only if $x=y$ ;
(2) $d(x, y)=d(y, x)$ ;
(3) $d(x, z)\leq$ $\mathrm{d}(\mathrm{x}, y),$ $\mathrm{d}(\mathrm{x}, z)\}$ .

Proposition 2.1. Let $X=Qi\in I$ $M_{i}$ be the Cartesian product of a family of finite sets with
at least 2 elements and define a real-valued function on $X\mathrm{x}X$ by letting $d(x, y)=0$ if $x=y$
and $d(x, y)=2^{-r}$ if $r$ is the minimum size $|M_{i}$ $|$ of a factor $M_{i}$ such that $x$ and $y$ differ in
the $ith$ component Then $d$ is an ultrametric on X. The induced topology coincides with the
product topology for the discrete topologies on the factors $M_{i}$ if and only if, for each $r\geq 2$ the
set $I_{r}=\{i\in I:|M_{i}|<r\}$ is finite.
Proof The verification of properties (1) and (2) of the definition of ultrametric is immediate.
For (3), just note that if $x$ , $y$ , $z$ $\in X$ are such that $x$ and $y$ coincide in all components $i$ with
$|M_{i}|\leq r$ and $y$ and $z$ coincide in all components $i$ with $|M_{i}|\leq s,$ then $x$ and $z$ certainly coincide
in all components $i$ such that $|M_{i}| \leq\min\{r, s\}$ . Hence $d$ is an ultrametric.

Suppose that every subset $I_{r}$ is finite $(r\geq 1)$ . Given $r\geq 2$ and $x\in X,$ the open ball $B_{r}(x)$

of radius $2^{-r}$ centered at $x$ consists of all $y\in X$ which coincide with $x$ in all components $i$

with $i\in I_{r}$ , a finite set of indices, and therefore $Br\{x$ ) is open in the product topology. On the
other hand, if we fix $i_{0}\in I,$ choose $a\in M_{i_{0}}$ , and take $r=|M_{\mathrm{i}_{0}}|$ $+1$ then, by the finiteness
assumption on the $I_{r}$ , there is a finite subset $F$ of $X$ such that the members of $F$ use all possible
$i$-components for every $i\in I_{r}\backslash \{i_{0}\}$ and whose $i_{0}$-component is $a$ . Since the set of aU $x\in X$

whose $i_{0}$-component is $a$ coincides with the union $\bigcup_{y\in F}Br(x)$ , it follows that the basic open
sets of the product topology are open in the topology induced by $d$ . Hence the two topologies
coincide.

Conversely, assume that the two topologies coincide and consider $r\geq 2.$ Then the cor-
responding quotient topologies on the product $X_{r}$ of all $M_{i}$ with $i\in I_{r}$ also coincide. The
quotient topology for the product topology on $X$ is the product topology on $X_{r}$ . In turn the
quotient topology for the topology on $X$ induced by the ultrametric $d$ is discrete since balls of
the form $Br\{x$) project to singletons. Hence $X_{r}$ is finite. Since we have excluded singleton and
empty factors, we deduce that $I_{r}$ is finite. $\square$

Let $\mathrm{V}$ be a pseudovariety of finite monoids, that is a class of finite monoids which is closed
under taking homomorphic images, submonoids and finite direct products. Consider a finite
set $A$ , whose members are called letters, and say that a monoid $M$ is $A$ -generated if a function
$\varphi:Aarrow M$ is fixed whose image generates $M$ . In general we omit reference to the generating
function / $\cdot$ A homomorphism of $A$ -generated monoids is a monoid homomorphism $h$ : $Marrow N$
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such that the image of each letter $a$ in $M$ is mapped to its image in $N$ . Let $\mathrm{V}_{0}$ be a subset of $\mathrm{V}$

which contains exactly one monoid from each isomorphism class of 4-generated members of V.
Since on a given finite set there are only finitely many monoid structures that one may define, the
condition of Proposition 2.1 is verified for the product $\prod_{M\in \mathrm{V}_{0}}M$ and so the product topology
is induced by the corresponding ultrametric defined in the proposition. Since the multiplication
is continuous on each finite monoid for the discrete topology, multiplication is continuous in
the product monoid $\prod_{M\in \mathrm{V}_{0}}M$ and so this product is a topological monoid. As a product of
(Hausdorff) compact and zerO-dimensional spaces (that is, spaces which admit bases of clopen
sets), $\prod_{M\in \mathrm{V}_{0}}M$ is a compact zerO- imensional space and therefore so is every closed subspace.

Now consider the free monoid $A^{*}$ on the set $A$ and the unique homomorphism $\iota$ : $A^{*}arrow$

$\prod_{M\in \mathrm{V}_{0}}M$ which maps each letter $a$ to the element whose $M$-component is the corresponding
generator of $M(M\in \mathrm{V}_{0})$ . It is a well-known result of Birkhoff [12] that the image of $\iota$ is
the $\mathrm{V}$-free monoid on the set $A$ , which we denote $\Omega_{A}\mathrm{V}$ . The closure of $\Omega_{A}\mathrm{V}$ in $\prod_{M\in \mathrm{V}_{0}}M$ is
a compact monoid which we denote $\overline{\Omega}_{A}\mathrm{V}$ . It is the completion of $\Omega_{A}\mathrm{V}$ with respect to the
ultrametric of Proposition 2.1 and it may also be seen directly as the completion of $A^{*}$ with
respect to the pseudO-ultrametric $d_{\mathrm{V}}$ defined by $d_{\mathrm{V}}(u, v)=2^{-r}$ , where $r$ is the minimum size of
a monoid $M\in \mathrm{V}$ for which there exists a homomorphism $\varphi$ : $A^{*}arrow M$ such that $\varphi(u)\neq\varphi(v)$ ,
in case there is such a homomorphism, or $\mathrm{d}\mathrm{y}(\mathrm{u}, v)=0$ otherwise. Note that there exists such
a homomorphism / if and only if $u\neq v$ in $\Omega_{A}\mathrm{V}$ . Note also that the identification of $\overline{\Omega}_{A}\mathrm{V}$ as a
completion provides a characterization of $\overline{\Omega}_{A}\mathrm{V}$ which is independent of the choice of Vq.

The monoid $\overline{\Omega}_{A}\mathrm{V}$ is therefore a compact monoid whose topology is zerO-dimensional and
which is residually in $\mathrm{V}$ in the sense that continuous homomorphisms into members of $\mathrm{V}$ suffice
to separate points. A topological monoid with these properties is called a prO-M monoid. Note
that the finite pro $\mathrm{V}$ monoids are the elements of V. By a profinite monoid we mean a prO-V
monoid with respect to the pseudovariety of all finite monoids.

It turns out that $\overline{\Omega}_{A}\mathrm{V}$ is the free prO-V monoid on $A$ in the sense that the function $\iota$ satisfies
the following universal property: given any mapping $\varphi$ : $Aarrow M$ into a prO-V monoid there is
a unique continuous homomorphism $\mathrm{i}$ : $\overline{\Omega}_{A}\mathrm{V}$ ” $M$ such that $\hat{\varphi}0\iota$ $=/’$ . In case $M$ is finite,
the existence of such a continuous homomorphism is established by taking the projection on the
component in the product $\prod_{N\in \mathrm{V}_{0}}N$ isomorphic to the submonoid of $M$ generated by the image
of $\varphi$ . The general case follows by observing that every prO-V monoid embeds, as a topological
monoid, in a product of members of V. We thus obtain another abstract characterization of $\overline{\Omega}_{A}\mathrm{V}$ ,
although in this way we do not establish the existence of such a structure.

2.2. Examples of relatively ffee profinite structures. In the above we haven chosen to
work with monoids because this is close to the main topics of this paper. But we could as well
had worked with any finite algebraic signature involving only finitary operations. In particular,
we could had considered semigroups instead.

The following are important examples of pseudovarieties and some of their associated free
profinite structures.

Example 2.2. Take

$\mathrm{K}=\cup[x_{1}\cdots x_{n}y=x_{1}\cdots x_{n}\mathrm{J}=n\geq 1[ex=$
eI,

the pseudovariety consisting of all finite semigroups in which every sufficiently long product
is a left-zero or, equivalently, every idempotent is a left-zero. (See [1] for a more thorough
explanation of the notation.) Then the $\mathrm{K}$-free semigroup on a finite set $A$ is the free semigroup
$A^{+}$ and the ultrametric $d_{\mathrm{K}}$ described above is topologically equivalent to the longest common
prefix metric appearing in symbolic dynamics which is defined by $d(u, v)=2^{-r}$ if $u$ ! $v$ and $r$ is
the length of the longest common prefix of tz and $v$ , with $d(u, v)=0$ otherwise. Indeed, if $s_{r}$ is
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the number of elements of the [$x_{1}\cdots x_{r}y=x_{1}\cdots x_{r}\mathrm{I}$-free semigroup $S_{r}$ on $A$ , then $d(u, v)<2^{-r}$

implies $d_{\mathrm{K}}(u, v)<2^{-s_{r}}$ since two words are equal in $S_{r}$ if and only if they have the same prefixes
of length at most $r$ . On the other hand, if $d(u, v)\geq 2^{-r}$ , $5\in \mathrm{K}$ has less than $r$ elements, and
$\mathrm{p}$ : $A^{+}arrow S$ is a homomorphism, then the images of $u$ and $v$ under $\varphi$ are both left-zeros in $S$

which are determined by their prefixes of length at most $r$ and so $\varphi(u)=\varphi(v)$ , which shows
that $d_{\mathrm{K}}(u, v)\geq 2^{-r}$ .

Now it is immediate to show that Cauchy sequences in $A^{+}$ with respect to $d$ are in bijective
correspondence with infinite words on the alphabet $A$ . Denoting by $A^{\omega}$ the set of all such
infinite words, we conclude that $\overline{\Omega}_{A}\mathrm{K}$ is isomorphic to the topological semigroup $A^{+}\cup A^{\omega}$ , where
multiplication is concatenation of words except that infinite words are taken to be left-zeros,
and the topology is that determined by the longest common prefix metric.

Example 2.3. Let $\mathrm{G}_{p}$ denote the pseudovariety consisting of all finite pgroups, where $p$ is a
prime integer. For a singleton alphabet $A=\{a\}$ , $\overline{\Omega}_{A}\mathrm{G}_{p}$ is the free cyclic prO-p-group The
mapping $\varphi$ : $\mathbb{Z}arrow\overline{\Omega}_{A}\mathrm{G}_{p}$ sending $n$ to $a^{n}$ is a group embedding of the additive group of integers
such that its image is dense in $\overline{\Omega}_{A}\mathrm{G}_{p}$ . Moreover, the ultrametric induced on $\mathbb{Z}$ is such that, if
$m\neq n$ then $d(m,n)=2^{-r}$ where $r$ is the greatest nonnegative integer such that $m$ and $n$ are
congruent modulo $p^{r}$ . This is one possible way of defining a -adic metric on Z. Hence $\overline{\Omega}_{A}\mathrm{G}_{p}$ is
isomorphic to $\mathbb{Z}_{p}$ , the $p$-adic completion of the integers.

Other relevant examples for this paper are the following:
$\mathrm{o}$ The pseudovariety $\mathrm{G}$ of all finite groups; there is an extensive theory of free profinite

groups $\overline{\Omega}_{A}\mathrm{G}$ with connections with number theory and logic, among other areas $[16, 21]$ .
$\circ$ The pseudovariety $\mathrm{S}$ of all finite semigroups; free profinite semigroups $\overline{\Omega}_{A}\mathrm{S}$ play an

important role in the theory of finite semigroups [1, 8, 4].
$\mathrm{o}$ The pseudovariety $\mathrm{M}$ of all finite monoids; it is easy to see that the free profinite monoid

$\overline{\Omega}_{A}\mathrm{M}$ is obtained from $\overline{\Omega}_{A}\mathrm{S}$ by adjoining an identity element which topologically is an
isolated point.

The elements of $\overline{\Omega}_{A}\mathrm{S}$ or of $\overline{\Omega}_{A}\mathrm{M}$ will be called pseudowords. Recall that pseudowords are
limits of sequences of (finite) words. Pseudowords ffom $\overline{\Omega}_{A}\mathrm{S}\mathrm{s}$ $A^{+}$ are said to be infinite. More
generally, elements of $\overline{\Omega}A\mathrm{V}3$ $\Omega_{A}\mathrm{V}$ will be said to be infinite.

Given two pseudovarieties of semigroups $\mathrm{V}$ and $\mathrm{W}$ with $\mathrm{V}\subseteq$ W, every prO-V semigroup
is also a pro $\mathrm{W}$ semigroup. Hence the natural mapping $\iota_{}$ : $Aarrow\overline{\Omega}_{A}\mathrm{V}$ induces a unique
continuous homomorphism $p$ : $\overline{\Omega}_{A}\mathrm{W}arrow\overline{\Omega}_{A}\mathrm{V}$ which is onto since the image of $\iota_{\mathrm{V}}$ generates a
dense subsemigroup. We call $p$ the natural projection.

In particular, the existence of the natural projection $\overline{\Omega}_{A}\mathrm{S}arrow\overline{\Omega}_{A}\mathrm{K}$ implies that for every
infinite pseudoword $w$ there is a unique accumulation point in $A^{\omega}$ of the sequence $(w_{n})_{n}$ of its
finite prefixes, which we $\mathrm{w}\mathrm{i}\mathrm{U}$ call the infinite prefix of $w$ .
2.3. Local structure of semigroups. We recall from semigroup theory the fundamental Green
relations. For a semigroup $S$ denote by $5^{1}$ either $S$ if $S$ is a monoid or $S\cup\{1\}$ where 1 is an
added identity element. For $s,t\in S,$ write $s\leq$) $t$ if $s\in S^{1}tS^{1}$ that is if $t$ can be found as a factor
in some factorization of $s$ . Write $s\leq z$ $t$ if $s\in tS^{1}$ and $s$ $\leq_{\mathrm{L}}t$ if $s\in S^{1}t$ . The relations $\leq J,$ $\leq c$

and $\leq_{\mathcal{R}}$ are quasi-Orders on $S$ . Also consider the associated equivalence relations $J$ $=\leq 7$ $\cap\geq 7,$

$\mathcal{L}=\leq \mathrm{J}$ $\cap\geq \mathrm{j}$ , $\mathcal{R}=\leq 2$ $\cap\geq 2,$ $D$ $=\mathcal{R}\vee$ $\mathrm{C}$ and $it=\mathcal{R}\cap$ $\mathrm{i}$ . Using associativity one shows that
72 and $\mathcal{L}$ commute under relation composition and so 7) is given by their composite.

An element $s$ of a semigroup $S$ is said to be regular if there exists $t\in S$ such that $sts=s.$
A subset of $S$ is said to be regular if all its elements are regular. More generally, a subset $S$ is
said to have property $P$ if all its elements have property P. It is well-known that the regular
$\mathcal{H}$-classes of $S$ are its maximal subgroups.
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If a topological semigroup $S$ is compact then the following facts are well-known:

(1) $\mathrm{P}$ $=J;$

(2) $s\leq_{\mathit{7}Z}$ $t$ and $sJ$ $t$ implies $s\mathcal{R}t$ ;
(3) $s\leq_{\mathit{1}}$, $t$ and $sJ$ $t$ implies $s\mathcal{L}t$ ;
(4) a regular $\mathrm{P}$-class is isomorphic, as a partial subsemigroup, to a Rees matrix (partial)

semigroup $\mathcal{M}(I, G,\Lambda;P)=I\mathrm{x}G\cross$ A with multiplication

$(i_{1},g_{1}, \lambda_{1})(i_{2}, g_{2}, \lambda_{2})=$ $(i_{1},g_{1}P(’ 1, i2)g2, \lambda_{2})$

where I and A are compact spaces, $G$ is a compact group, and $P$ : A $\cross Iarrow G$ is a
partially-defined continuous function;

(5) $S$ has a unique minimal ideal which has the structure described in (4) where $P$ is a
fully-defined function.

2.4. Iterated substitutions. For an element $s$ of a finite semigroup $S$ , the sequence $(s^{n!})_{n}$ is
eventually constant and its limit is the unique idempotent power of $s$ . Since profinite monoids
embed in products of finite monoids, it follows that if $S$ is a profinite semigroup and $s\in S$ then
the sequence $(s^{n!})_{n}$ converges to an idempotent, namely the unique idempotent in the closed
subsemigroup generated by $s$ . This idempotent is denoted $s^{\omega}$ . More generally, any accumulation
point in $S$ of the subsemigroup generated by $s$ is denoted in the form $s^{\nu}$ where $\nu$ is called an
infinite exponent Another example of an infinite exponent is i-l defined by $s^{\omega-1}= \lim s^{n!-1}$

or, in structural terms, the inverse of $ss$” in the maximal subgroup of the closed subsemigroup
generated by $s$ .

We say that a profinite monoid $M$ is finitely generated if there is a finite subset of $M$ which
generates a dense submonoid of $M$ . Recall that the pointwise convergence topology of a set $F$

of functions $\mathrm{Y}arrow X,$ where $X$ is a topological space, is the subspace topology for $F$ viewed as
a subset of the product space $X^{Y}$

For a profinite monoid $M$, let End $M$ denote the set of all continuous endomorphisms of $M$ .
This is clearly a monoid under composition but it is not immediately apparent which topology
should be taken on End $M$ in order to make it a relevant topological monoid.

Theorem 2.4. Let $M$ be a profinite monoid.
(a) If $M$ is finitely generated then End $M$ is a profinite monoid under the pointwise conver-

gence topology and the evaluation mapping

$\eta$ : End $M\mathrm{x}M$ $arrow$ $M$

$(\varphi, m)$ $\mapsto$ $\varphi(m)$

is continuous.
(b) If End $M$ is a profinite monoid with a continuous evaluation mapping $\eta$ then the topology

of End $M$ is the pointwise convergence topology.

In particular, for a finite set $A$ , End $\overline{\Omega}_{A}\mathrm{M}$ is a profinite monoid under the pointwise convergence
topology. Hence, if $B$ is another finite alphabet , ,$\mathrm{J}\mathrm{h}\mathrm{e}\mathrm{n}$ any mapping $Barrow$ End $\overline{\Omega}_{A}\mathrm{V}$ extends to a
unique continuous homomorphism $\overline{\Omega}_{B}\mathrm{S}$ $arrow$p End $\overline{\Omega}_{A}$V. Elements of End $\overline{\Omega}_{A}\mathrm{V}$ may also be called
substitutions. A substitution $f\in$ End $\overline{\Omega}_{A}\mathrm{V}$ is said to be primitive if there exists a positive
integer $k$ such that, for every $a\in A,$ the word $f^{k}(a)$ involves all letters from $A$ .

Example 2,5. The Amoux-Rauzy homomorphism

$0$ : $\Omega_{A}\mathrm{S}$ $arrow$ End $\Omega_{A}\mathrm{S}$

$w$ $\mapsto$
$\rho_{w}$
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is defined by the following formula for $a$ , $b\in A:$

$\rho_{a}(b)=\{$
$a$ if $a=b$

ab otherwise.

of the Fibonacci pseudoword $\rho_{(ab)^{\omega}}(a)$ is the usual Fibonacci
abaababaababaabaababa. . . ’ and the infinite prefix of $\rho_{(abc)^{\omega}}(a)$

abacabaabacababacabaabacabacabaabacababacaba... $[19, 11]$ ,
the Tribonacci pseudoword.

For instance, the infinite prefix
word, which starts with $abaababa|$

is known as the Tribonacci word
and so we will also call $\rho_{(abc)^{\omega}}(a)$

2.5. Some tools and notions from symbolic dynamics. Let $\mathrm{V}$ be a pseudovariety of semi-
groups such that $\Omega_{A}\mathrm{V}$ is isomorphic with $A^{+}$ . For $w\in$ QAV, we introduce the following sets of
finite factors of $w$ , where $A^{n}$ denotes the set of all words in $4^{+}$ of length $n$ :

$F_{n}(w)$ $=$ $\{u\in A^{n} : w\in(\overline{\Omega}_{A}\mathrm{V})^{1}u(\overline{\Omega}_{A}\mathrm{V})^{1}\}$

$L_{n}(w)$ $=$ {tz $\in 4^{n}$ : $w\in A^{*}u(\overline{\Omega}_{A}\mathrm{V})^{1}$ }
$R_{n}(w)$ $=$ $\{u\in A^{n} : w\in(\overline{\Omega}_{A}\mathrm{V})^{1}uA^{*}\}$

We also write $c(w)$ for Fi(w) and we call it the content of $w$ . For $O\in\{F, L, R\}$ we also let
$\mathrm{c}(\mathrm{w})=\bigcup_{n\geq 1}O(w)$ . The associated complexity functions are given by

$qw\{n$) $=|F_{n}(\mathrm{t}\mathrm{t}\mathrm{t})|$ , $p_{w}(n)=|Ln(\mathrm{t}\mathrm{t})$ $|$ , $\tilde{\mathrm{P}}w(\mathrm{r}\mathrm{r})$ $=|$ &(tp) $|$ .

Note that $Fn(w)$ is a7-class invariant while $Ln(w)$ is an $\mathcal{R}$-class invariant and, dually, $R_{n}(w)$

is an $\mathrm{C}$-class invariant. A factor tt of $w$ such that $w\in A^{*}u(\overline{\Omega}_{A}\mathrm{V})^{1}$ is said to be within finite
distance from the left, or simply an $\ell$ -factor.

We say that $w\in\overline{\Omega}_{A}\mathrm{V}$ is

We also write $c(w)$ for $F_{1}(w)$ and we call it the content of $w$ . For $O\in\{F, L, R\}$ we also let
$O(w)= \bigcup_{n\geq 1}O_{n}(w)$ . The associated complexity functions are given by

$q_{w}(n)=|F_{n}(w)|$ , $p_{w}(n)=|L_{n}(w)|,\tilde{p}_{w}(n)=|R_{n}(w)|$ .

$\circ$ recurrent if every finite factor of $w$ is a factor of every infinite factor of $w$ ;
$\mathrm{o}$ left recurrent if every finite $l$ factor of $w$ is an $\ell$ factor of every infinite $\ell$ factor of $w$ ;
$\circ$ uniformly recur rent if, whenever $u\in F(w)$ , there exists a positive integer $N$ such that

$v\in$ Fn(w) implies $u\in F(v)$ , that is, every finite factor can be found within every
sufficiently long finite factor;

$\circ$ left uniformly recur rent if, for every $u\in L(w)$ , there exists a positive integer $N$ such
that $v\in$ Fn(w) implies $u$ $\in L(v)$ .

By compactness, (left) uniform recurrence implies (respectively left) recurrence and uniform
recurrence implies left uniform recurrence but none of the reverse implications hold. Since no
infinite word $w\in A^{\omega}\subseteq$ $\Omega_{A}\mathrm{K}$ on a non-singleton alphabet $A$ is uniformly recurrent in the above
sense, to avoid confusion with the terminology, it should be noted that we will say that an
infinite word is left uniformly recurrent when in symbolic dynamics it is said to be uniformly
recurrent.

Consider the shift function $A^{\omega}arrow A^{\omega}$ which associates with an infinite word the infinite word
which is obtained by dropping the first letter. A symbolic dynamical system, also known as
shift space, subshift, or simply shift, is a topologically closed subset of $A^{\omega}$ which is also closed
under the shift function. A minimal shift is a shift which is not properly contained in any other
shift. It is well known that minimal shifts are precisely the topological closures of orbits of
left uniformly recurrent infinite words under the shift function [13]. They are in bijection with
minimal sets of finite words $X\subseteq A^{+}$ which are closed under taking factors and such that every
word in $X$ is a proper prefix of another word in $X$ .

3. RESULTS

We proceed to survey the results on the structure of free profinite semigroups $\Omega_{A}\mathrm{S}$ which
have recently been obtained using connections with symbolic dynamics. Most of these results
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are part of work which is not yet available in written form and so no references can yet be given.
When no references are given, the results are due to tlle author and are being announced here
in written form for the first time.

The first result states that left uniformly recurrent pseudowords occupy a rather special place
in $\overline{\Omega}_{A}$S.

Theorem 3.1. An infinite pseudoword $w\in\Omega_{A}\mathrm{S}$ is uniforonly recur rent if and only if it is
$\leq J$ -maximal as an infinite pseudoword.

Since every infinite pseudoword $w$ admits a factorization of the form $w=xy^{\omega}z[1$ , Corollary
5.6.2], it follows that uniformly recurrent pseudowords are regular elements of $\overline{\Omega}_{A}$S.

In general, the 7-class of a pseudoword $w$ is not characterized by its set of finite factors. For
instance, $a^{\omega}ba^{\omega}$ and aubau $ba^{\omega}$ have the same finite factors, namely the words of the forms $a^{i}$

and $a^{i}ba^{j}$ $(i,j\geq 0)$ , but they are not $J$-equivalent since for instance $b^{2}$ is a subword of one
of them but not of the other (cf. [1]). Since $J$-maximal infinite pseudowords only have finite
pseudowords strictly $\leq$

$7$-above them, we obtain the following corollary of Theorem 3.1.

Corollary 3.2. If $v$ , $w\in\overline{\Omega}_{A}\mathrm{S}$ and $w$ is uniformly recur rent, then $vJw$ if and only if $F(v)=$
$F(w)$ .

The connection between uniformly recurrent pseudowords and left uniformly recurrent infinite
words is provided by the following easy result.

Theorem 3.3. The infinite prefix of a uniformly recurrent pseudoword is a left uniformly oe-
current infinite word with the same finite factors. Conversely, for a left uniformly recurrent
infinite $word$ $w$ , all accumulation points of the sequence of its prefixes are $\mathcal{R}$-equivalent uni-
formly recurrent pseudowords whose infinite prefix is $w$ and which have the same finite factors
as $w$ .

In terms of dynamical systems, Theorem 3.3 gives the following connection between minimal
shifts and the structure of free profinite semigroups.

Corollary 3.4. Given a minimal shift $S\subseteq$ Au, the accumulation points in $\Omega_{A}\mathrm{S}$ of sequences of
finite factors of elements of $S$ are uniformly recumnt pseudowo $rds$ in the same 7-class $J_{\mathrm{S}}$ and
the correspondence $\mathit{5}\mapsto J_{\mathrm{S}}$ defines a bijection between the set of all minimal shifts $5\subseteq A^{\omega}$ and
the set of all uniformly recurrent $J$ -classes of $\overline{\Omega}_{A}$S.

The next result gives criteria for producing uniformly recurrent pseudowords by iterating $\omega$

times a substitution.

Theorem 3.5. Let $f\in \mathrm{E}\mathrm{n}\mathrm{d}\overline{\Omega}_{A}\mathrm{S}$ be such that each $f(a)$ , with $a\in A,$ is a finite word and these
words together use up all the letters, that is $c( \prod_{a\in A}\mathrm{f}(\mathrm{a}))=A$ . Then the following conditions
are equivalent:

(1) $f$ is primitive;
(2) the $\mathrm{f}\mathrm{u}(\mathrm{a})(a\in A)$ are all $J$-equivalent and infinite;
(3) the $\mathrm{f}\mathrm{u}(\mathrm{a})(a\in A)$ are all $J$ -equivalent and uniformly recurrent.

For example, the Fibonacci and Tribonacci pseudowords are uniformly recurrent. Another
“classical” example is obtained by considering the substitution $f\in$ End $\overline{\Omega}_{\{a,b\}}\mathrm{S}$ defined by
$f(a)=ab$ and $f(b)=ba.$ The pseudoword $/\mathrm{w}(\mathrm{a})$ is called the Prvuhet-Thu\"e-Morse pseu-
doutord. Its infinite prefix is the usual Prouhet-Thui-Morse infinite word which starts with
abbabaabbaababbabaababbaabbabaab. . . $\mathrm{t}$

The property of being uniformly recurrent turns out to be preserved under finite substitution
as stated in the following result.
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Theorem 3.6. Let $f\in$ End $1_{A}\mathrm{S}$ be such that each $/(\mathrm{a})(a\in A)$ is finite. If $w\in\Omega_{A}\mathrm{S}$ is
uniformly recurrent then so is $f(w)$ .

The next result gives a more general way of producing uniformly recurrent pseudowords by
using substitutions without just plainly taking cj-powers.

Theorem 3.7. Let $\sigma$ : $\overline{\Omega}_{B}\mathrm{S}arrow p$ End $\overline{\Omega}_{A}\mathrm{S}$ be such that, for all $b\in B$ and $a\in A$ , $\sigma_{b}(a)$ is a finite
word. Let $w=b_{1}b_{2}$ . . . $b_{n}$ . . . be an infinite word over $B$ such that

every finite factor tz of ru can be extended, on the right, to a finite factor $u$
’

(3.1) of $w$ such that $c(\sigma_{u’}(a))=A$ for every $a\in A.$

$Fu\hslash hemore$ , let $\overline{w}$ be any accumulation point of the sequence $(b_{1}$ . . . $b_{n})_{n}$ in $\Omega_{B}$S. Then the
$\sigma_{\overline{w}}(a)(a\in A)$ are all $J$-equivalent unifomly recurrent pseudowords and their $J$ -class depends
only on $w$ and not on $\overline{w}$ .

For instance, if $w\in\overline{\Omega}_{B}\mathrm{K}$ is any infinite word in which every letter occurs infinitely often,
then the hypotheses of Theorem 3.7 hold for the Arnoux-Rauzy homomorphism, giving a recipe
for producing uniformly recurrent pseudowords which generalizes considerably the construction
of the Fibonacci and Tribonacci pseudowords.

To define Sturmian pseudowords, let us consider the complexity functions introduced in Sub-
section 2.5.

Proposition 3.8 (Almeida and Volkov [7]). The complexity sequences {$\mathrm{p}\mathrm{w}(\mathrm{n}))\mathrm{n}$ , $(q_{w}(n))_{n}$ and
$(\tilde{p}_{w}(n))_{n}$ are all increasing for an infinite pseudoword $w\in\overline{\Omega}_{A}$S.

For a uniformly recurrent pseudoword $w$ , it is easy to show that the three complexity functions
coincide.

The following result is the analogue for pseudowords of a classical result of Hedlund and Morse
[17] characterizing ultimate periodicity (which is basically the version of the next theorem for

$\overline{\Omega}_{A}\mathrm{K})$ . Of course, for infinite pseudowords, which do not just “grow” in one direction, the
situation is somewhat more complicated.

Theorem 3.9 (Almeida and Volkov [7]). The following conditions are equivalent for an infinite
pseudoword $w\in\overline{\Omega}_{A}$ S:

(1) $q_{w}(n)=qw(n +1)$ for some $n$ ;
(2) $qw(n)\leq n$ for some $n$ ;
(3) $\{q_{w}(n)\}_{n}$ is bounded;
(4) $w=xyvz$ for some finite words $x$ , $y$ , $z$ and some infinite exponent $\nu$ .

Thus the minimum complexity for non-quasi-periodicity is $q(n)=n- f$ $1$ . In particular, $q(1)=$
$2$ , that is pseudowords satisfying this condition must involve exactly two letters. In order to avoid
uninteresting examples such as $a^{\omega}ba^{\omega}$ , we further require that the other two complexities are also
beyond the minimal threshold for excluding ultimate periodicity from both sides. This leads us
to define Sturmian pseudowords to be pseudowords $w$ such that $q_{w}(n)=p_{w}(n)=\tilde{p}_{w}(1)=n+1$

for every $n\geq 1.$

The rank of a topological semigroup $S$ is the smallest cardinal of a subset $A$ such that the
closed subsemigroup generated by $A$ is $S$ . Note that a closed subsemigroup of a profinite group
is a subgroup and, therefore, it is a profinite group.

Theorem 3.10. Sturmian pseudowords are uniformly recur rent Their $J$ -classes are of the
form $\mathcal{M}$ ( $C,\overline{\Omega}_{\{a,b\}}$ G, $C;P$) where $C$ is the Cantor set and there eist three distinct elements

$\mathrm{c}_{1}$ , $c_{2}$ , $c_{3}\in C$ such that $P(\mathrm{c}_{2}, c_{1})=P(c_{3}, c_{2})=P(x,x)=1$ for all $x\in C\mathrm{z}$ $\{02\}$ , and $P$ is
undefined otherwise.
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The proof of this result has two kinds of ingredients. One is the identification of the set $C$

and the function $P$ . This is done by defining a left intercept for a Sturmian pseudoword as the
intercept of its infinite prefix (cf. [19]) and, dually, a right intercept. For Sturmian pseudowords
in a $\mathrm{J}$’-class, the $\mathcal{R}$-class is determined by the left intercept and the $\mathcal{L}$-class is determined by
the right intercept. Moreover the product $uv$ of two $J$-equivalent Sturmian pseudowords $u$ and
$v$ lies in the same $\mathrm{j}\mathrm{T}$-class if and only if the right intercept of $u$ uniquely matches with the left
intercept of $v$ , except for some special values which have two matching values, corresponding to
sO-called characteristic Sturmian infinite words [19].

The other ingredient concerns the identification of the structure group, that is of the maximal
subgroups of a Sturmian $\mathrm{j}\mathrm{T}$-class, as free profinite groups of rank 2. In the next section we
present extensions of this result as well as a sketch of a proof.

4. EXTENSIONS AND INGREDIENTS 1N PrOOfS

A finite factor $u$ of a pseudoword $w\in\overline{\Omega}_{A}\mathrm{S}$ is said to be right special of degree $n$ if there are
exactly $n$ factors of $w$ of the form $ua$ with $a\in A$ . Left special factors are defined dually. A
return word of a finite factor $u$ of a pseudoword $w$ is a finite factor $v$ such that vu is a factor
of $w$ and $u$ appears in vu as its prefix and its suffix but nowhere else as a factor. Thus, in a
left uniformly recurrent pseudoword $w$ , a return word of $u$ is the factor between the beginning
positions of two consecutive occurrences of $u$ in $w$ .

By an Arnoux-Rauzy pseudoword we mean a pseudoword $w\in\overline{\Omega}_{A}\mathrm{S}$ satisfying the following
conditions :. for every $n\geq 1,$ has exactly one right special factor and one left special factor of length $n$ ,

each of degree $|c(\mathrm{z}\mathrm{p})|$ ;
$\circ$ the equalities $qw(n)=pw(n)=\overline{p}_{w}(n)$ hold for every $n\geq 1.$

This is the natural generalization for pseudowords of the notion of an Arnoux-Rauzy infinite
word $[10, 11]$ . The second condition serves to avoid uninteresting examples such as $a^{\omega}b^{\omega}$ and
also to allow us to extend more or less automatically results about Arnoux-Rauzy infinite words
which involve only properties of finite factors to Arnoux-Rauzy pseudowords. The following
facts are examples of such results.

Theorem 4.1. Stur mian pseudowords are precisely the Arnoux-Rauzy pseudowords on rwO-letter
alphabets.

Theorem 4.2. In an Arnoux-Rauzy pseudoword $w\in\Omega_{A}\mathrm{S}$ every finite factor $u$ has precisely
$|C|$ retu$m$ words, where $C=c(w)$ . Moreover, the return words of $u$ are obtained by cyclic
conjugation from the $\mathrm{p}\mathrm{V}\mathrm{n}(\mathrm{a})$ where $v_{n}$ is the prefix of length $n=|u|$ of an infinite word $v\in C’$

in which every letter occurs infinitely often. In fact, rp is an element of the 7-class of the $\mathrm{p}\mathrm{V}\mathrm{n}(\mathrm{a})$

$(a\in A)$ there $\overline{v}$ is any accumulation point in $\overline{\Omega}_{A}\mathrm{S}$ of $(v_{n})_{n}$ .
The word $v$ in Theorem 4.2 is uniquely determined by $\mathrm{f}1$ and is called the directive $word$ of $w$ .
By an Arnoux-Rauzy maximal subgroup of $\overline{\Omega}_{A}\mathrm{S}$ we mean a maximal subgroup of $\overline{\Omega}_{A}\mathrm{S}$ con-

sisting of Arnoux-Rauzy pseudowords. The following result generalizes the statement about the
group component of the structural description of Sturmian $J$-classes in Theorem 3.10.

Theorem 4.3. If $H$ is an Arnoux-Rauzy maximal subgroup of $\overline{\Omega}_{A}\mathrm{S}$ then the restriction $Harrow$

$\overline{\Omega}_{A}\mathrm{G}$ of the natural projection $\overline{\Omega}_{A}\mathrm{S}arrow\overline{\Omega}_{A}\mathrm{G}$ is an isomorphism of profinite groups.

We proceed to sketch the ingredients in the proof of this result. In the following, we assume
$v\in A^{\omega}$ is an infinite word in which every letter occurs infinitely often, $\overline{v}$ is an accumulation point
in $\overline{\Omega}_{A}\mathrm{S}$ of the sequence of finite prefixes of $v$ , $\mathrm{v}$ : $\overline{\Omega}_{B}\mathrm{S}arrow$ End $\overline{\Omega}_{A}\mathrm{S}$ is a continuous homomorphism
satisfying condition (3.1), $H$ is a maximal subgroup of the 7-class of the $\mathrm{p}\mathrm{V}\mathrm{n}(\mathrm{a})(a\in A)$ , and
$p:\overline{\Omega}_{A}\mathrm{S}arrow\overline{\Omega}_{A}\mathrm{G}$ is the natural projection.
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We say that $f\in$ End $\Omega_{A}\mathrm{S}$ is $\mathrm{G}$ -inveriible if there exists $g\in$ End $\Omega_{A}\mathrm{S}$ such that $p(fg(u))=p(u)$
for all $u\in\overline{\Omega}_{A}$ S, that is if $f$ induces an automorphism of $\overline{\Omega}_{A}$ G. An endomorphism $g$ satisfying
this condition is said to be a $\mathrm{G}$ -inverse of $f$ . For example, the images of the letters under the
Arnoux-Rauzy homomorphism are $\mathrm{G}$-invertible. Indeed, if $g$ is defined by

$g(b)=\{"\omega-1/$ $\mathrm{o}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{w}\mathrm{i}\mathrm{s}\mathrm{e}\mathrm{i}\mathrm{f}b=a$

then $g$ is a $\mathrm{G}$-inverse of $\rho_{a}$ .
The next result is a rather general and easy observation.

Proposition 4.4. If $K$ is a subgroup of $\Omega_{A}\mathrm{S}$ and $f\in$ End $\Omega_{A}\mathrm{S}$ are such that the restriction
$p|_{K}$ : $Karrow$v $\overline{\Omega}_{A}\mathrm{G}$ is an isomorphism and $f$ is $\mathrm{G}$ -invertible, then $f|_{K}$ : $Karrow f(K)$ and the
restriction $p|_{f(K)}$ : $f(K)$ $arrow\overline{\Omega}_{A}\mathrm{G}$ are also isomorphisms.

Using the preceding proposition, in the case of an idempotent substitution we may now
compute some special maximal subgroups. Since, in a $\mathrm{j}\mathrm{T}$-class, they are all isomorphic, this will
achieve our goal.

Proposition 4.5. Suppose $\overline{v}$ is an idempotent and let $K=$ ay (H). If the elements of $K$ start
with the letter $a_{0}$ and end with the letter $a_{12}y_{1}$ , $\ldots$ , $lm$ are the return words of $a_{1}a_{0}$ in the
elements of $K$ , and $x_{i}=a_{1}^{-1}y_{i}a_{1}$ , according to the picture

then $K$ is the closure of the subgroup generated by the $\sigma_{\overline{v}}(x_{i})(i=1, \ldots,m)$ and a maximal
subgroup of $\overline{\Omega}_{A}$ S. Moreover, if the $\sigma_{b}$ are $\mathrm{G}$ -invertible then $p(K)$ is the closure of the subgroup
of $\overline{\Omega}_{A}\mathrm{G}$ genemted by the $x_{i}$ $(i=1, \ldots,m)$ .

Taking into account Theorem 4.2 for the structure of return words, it is now easy to conclude
the proof of Theorem 4.3 in case $\overline{v}$ is an idempotent. For the general case, a compactness argu-
ment plus Ramsey’s Theorem provides a factorization $\overline{v}’=\overline{x}\overline{y}$ where $\overline{v}$

,
and $\overline{x}$ are accumulation

points of the sequence of finite prefixes of $v$ and $\overline{y}$ is an idempotent accumulation point of a
sequence of finite factors of $v$ . Using Proposition 4.4 and some extra work the general case my
now be deduced from the idempotent case.

But not all maximal subgroups consisting of uniformly recurrent pseudowords are free profinite
groups as stated in the following example.

Proposition 4.6. Let $f$ be the continuous endomorphism of $\overline{\Omega}\{a,b\}\mathrm{S}$ defined by $\mathrm{f}(\mathrm{K})=a^{3}b$ and
$f(b)=ab$. Then the maximal subgroups of the $J$ -class of $f^{\omega}(a)$ are non-free profinite groups of
rank 2.

It should be observed that if $|A|=2,$ then any $\sigma$ : $\Omega_{A}\mathrm{S}arrow$ End $\Omega_{A}\mathrm{S}$ such that each $\sigma_{a}$ is
$\mathrm{G}$-invertible produces Sturmian pseudowords by the scheme described in Theorem 3.7 (see [19]).
On the other hand, for $|A|>3$ it is known that that there are such $\sigma$ which do not produce
Arnoux-Rauzy pseudowords (see [11]).

5. ENTROPY

This section contains the announcement of some results involving entropy which were obtained
jointly with M. V. Volkov [7].

Let $w\in\overline{\Omega}_{A}\mathrm{V}$ . Since a factor of length $m+n$ of $w$ is a product of a factor of length $m$ by one
of length $n$ , we obtain the inequality $qw(m+n)\leq q_{w}(m)q_{w}(n)$ . From this observation it is an
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exercise in elementary calculus to show that the following limit exists (see [18]):

$h(w)= \lim\underline{1}1o\mathrm{g}_{|A|}q_{w}(n)$ .
$Tlarrow\infty n$

The number $h(w)$ is clearly a real number in the interval $[0, 1]$ and it is called the entropy of $w$ .
Similarly, a left entropy may be defined as the limit

$h_{\ell}(w)= \lim\underline{1}\log_{|A|}p_{w}(n)$ .
$narrow\infty n$

Note that $h_{\ell}(w)=h(w)$ for a uniformly recurrent pseudoword $w$ .
The main connection which has been discovered so far between entropy and the structure of

$\overline{\Omega}_{A}\mathrm{S}$ is given by the following result which is easy to prove taking into account that an element
of $\overline{\Omega}_{A}\mathrm{S}$ lies in the minimal ideal if and only if admits every finite word as a factor.

The number $h(w)$ is clearly a real number in the interval $[0, 1]$ and it is called the entropy of $w$ .
Similarly, aleft entropy may be defined as the limit

$h_{\ell}(w)= \lim\underline{1}\log_{|A|}p_{w}(n)$ .
$narrow\infty n$

Note that $h\ell(w)=h(w)$ for a uniformly recurrent pseudoword $w$ .
The main connection which has been discovered so far between entropy and the structure of

$\overline{\Omega}_{A}\mathrm{S}$ is given by the following result which is easy to prove taking into account that an element
of $\overline{\Omega}_{A}\mathrm{S}$ lies in the minimal ideal if and only if admits every finite word as afactor.

Theorem 5.1. A pseudoword $w\in\Omega_{A}\mathrm{S}$ has $h(w)=1$ if and only if $w$ belongs to the minimal
ideal of $\overline{\Omega}_{A}$S.

In case $|A|=1,$ there is nothing else than finite pseudowords and the minimal ideal, in
which every element is uniformly recurrent. On the other hand, a recent result of Damanik
and Solomyak [15] shows that in general there are left uniformly recurrent infinite words $w$

with arbitrarily large entropy $hi(w)<1$ . Hence, in view of Theorem 3.3, there are uniformly
recurrent pseudowords of arbitrarily large entropy less than 1.

Next we examine how entropy is affected by iteration and evaluation.

Theorem 5.2. Let 5 $\in$ End $\Omega_{A}\mathrm{S}$ and assume that $|A|>1$ , $\max_{a\in A}h(\varphi(a))\leq r,$ and $w\in\Omega_{A}\mathrm{S}$

also has $h(w)\leq r.$ Then $h(\varphi(w))\leq r$ and $h(\varphi^{\omega}(w))\leq r.$

So, in particular, it is not possible to reach the minimal ideal of $\Omega_{A}\mathrm{S}$ by applying or iterating
substitutions whose values on letters do not reach the minimal ideal on pseudowords outside
the minimal ideal. This extends considerably an earlier observation of Volkov and the author
[5, Corollary 3.4] according to which, for alphabets $A$ with more than one letter, no element of
the minimal ideal of $\overline{\Omega}_{A}\mathrm{S}$ belongs to the subsemigroup generated by $A$ closed under arbitrary
infinite powers $s\mapsto$ sv. This result was deduced from a more precise result whose proof depends
on structural knowledge of free Burnside semigroups.

Thus, it is not so easy to describe elements of the minimal ideal of $\overline{\Omega}_{A}\mathrm{S}$ for $|A|>1.$ Construc-
tions of idempotents in the minimal ideal were found by Reilly and Zhang [20] and independently
by Almeida and Volkov [5]. See also these two papers for applications of such idempotents.

6. QPEN PROBLEMS

We conclude this paper by proposing a few open problems which are suggested by the work
reported herein.

Problem 6.1. Are the maximal subgroups of pseudowords in $\Omega_{A}\mathrm{S}$ produced by the recipe in
Theorem 3.7, under the extra assumption that $\sigma_{b}$ is $\mathrm{G}$ -invertible, always free profinite groups of
rank $|A|$ ?

Note that a lot of the arguments in Section 4 were developed in this more general framework.

Problem 6.2. Find the structure of $Amo^{\mathrm{I}}ux$-Rauzy J-classes.
While for Sturmian 7-classes we have a complete structural result, in Section 4 we only

identified the maximal Arnoux-Rauzy subgroups. More generally, it should contribute to a
deeper knowledge of the structure of $\overline{\Omega}_{A}\mathrm{S}$ and its relationships with symbolic dynamics to be
able to describe the structure of arbitrary uniformly recurrent maximal subgroups of $\overline{\Omega}_{A}$S. Since
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this is probably a very hard problem to handle at present, a specific example is proposed in the
next problem.

Problem 6.3. Find the structure of the $J$ -class of the Prouhet-Thu\"e-Morse pseudoword.

Finally, in view of Corollary 3.4, minimal shifts $5\subseteq A^{\omega}$ are naturally associated with uni-
formly recurrent $J$-classes of $\overline{\Omega}_{A}$S. Thus there is this profinite group associated with a minimal
shift which we call the Schitzenberger group of the system. In general groups mean symmetry,
which suggests that there is some hidden symmetry in symbolic dynamical systems and leads
to the following problem.

Problem 6.4. Find the significance of the Schitzenberger group of minimal shifts in tems of
symmetry of the shift.

An answer to this problem might open the road for further connections between free profinite
semigroups and symbolic dynamics and perhaps to applications to symbolic dynamics.
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