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Structures of BCI and Open Problems

F#B & (Kiyoshi ISEKI)

Definition 1. Let X be a partially ordered set with
a binary operation * and a constant 0. X is called a
BCI if * satisfies the following conditions:

BCI1) (zxy)x(zx2) <zxuz,

BCI2) zx (z*y) <y,

BCI3)zxz =0,

BCl4)zxy=0<z<y,

BCI5) e <0=a=0,

Remark 1. The following facts on BCI are well-
known.

1) If X stisfies BCI 1) - 4) and

BCK 5) 0%z =0,

then X is called BCK.

2) A.Ursini introduced a concept(1994) which is called
a subtractive algebra(see A.Ursini). This is a gen-
eralization of BCK, BCI. The axioms are given by the
following two (very simple) identities:

xx0 =z, x*xx =0,

3) It is well-knwon that the classes of BCK, BCI
make (proper) quasivarieties(A.Wronski and Y.Komori(1983)).
‘The quasivariety of BCI has the relative congruence
extension property(J.G.Raftery-C.J.van Alten(1998)).



4) BCI is not algebraizable(W.Blok-D.Pigozzi(1989)).

5) BCI is exactly the residuation subreducts of sir
comonoids(J.G.Raftery-C.J. van Alten(1998)).

6) A BCI in which

holds for any z,y is a BCK.
7) A BCI in which

(zxy)sy=ax*y

holds for any z,y is a BCK.
8) A BCI in which

rx(yxz)==zx
holds for any z,y is a BCK.
'9) There is a method of making a (new) BCI from

BCK and BCI(Xin Li(1984)). But we do not find all
new BCI by this way.

On the other hand, the following basic properties
hold in any BCI:

()z<yandy<z=z=y.

(QDer<y=zxy<zxz,cxz<y*z.

(8)zx0=uz.

(4) (xxy)xz=(x*2)*xy.

(4) is called the Permutation Rule. The termi-
nology is due to A.Avron of Tel Aviv.
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Definition 2. B = {x | z > 0} is called the BCK-
part of X.

Definition 3. If there exists an element a such
that @ € X — B, the set consisting of all elements
which are comparable with a plus all elements which
associate with a(a, b associate < Je(c < a, b)) is called
a branch of X. The branch including a is denoted
by B{a).

Repeating this procedure, we have a decomposition
of X:

X =B(0)uB(e)UB(D)U ...
They are the very important concepts to research

BCI.
From now x * ¢ is denoted by multiplicatively xy.

- Proposition 1.

(1) B(0) is a subalgebra of X.

(2) B(0) is the maximal BCK ideal of X.

(3) z € B(0),y € X — B(0) = ay,yz € X — B(0).

(4) y(y(yx)) = yx. As a special case, (0(0(0x))) =
Ozx.

(6) (0z)(0y) = O(=zy).

Proof. (1) A proof of "z,y € B=2xy€ B” 0< z
implies Oy < 2y. From BCI 4), Oy = 0, So zy € B.

(2) Let € X — B. For some z € B, we assume
xa € B. Then z(za) € B and 0 < z(za) < a. Hence
a € B, which is a contradicion. This implies

r€Bac X-B=xac X - B.



Moreover, axr € X — B holds.
(az)e = (az)(a0) < 0z = 0.

From BCI5), (ax)a = 0, which impliesax < a.Ifax €
B, then @ € B, which is impossible. So ax € X — B.
This shows that B is a maximal BCK subalgebra of
X.

To prove that B is an ideal of X, we assume zy,y €
B.If z € X — B then xy € X — B. Hence B is an
ideal of X. |

(3) From (2), this is trivial.

(4) From BCI 2),

y(y(ye)) < y=.
On the other hand, BCI 1) and the permutation rule
imply
(yo)(y(y(y=))) < (ylyx))z = (yz)(yz) = 0.

(5) We mention very simple and interesting proof
given by C.Xi.

((0x)(03))(0(zy)) = ((0(0y))=)(0(zy)) = (0(0y))(O(zy))=

< ((zy)(0y))z < (z0)x = (xz)0 =00 =10.
So we have (0z)(0y) < O(zy). Conversely,
0(zy) = ((Oy)(0y))(zy) = ((0y)(zy)){0y) < (0z)(Oy).
Therefore, we have the identity: (0z)(0y) = 0(zy).

Proposition 2.
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(1) If = is the samllest element of a branch, a(ez) =
z. In particular, 0(0z) = .

(2) If 0(0x) = = then z is the smallest element in
the branch B(z).

(3) If ¢ B(0) then Oz is the smallest element of
some proper branch.

(4) The smallest element of B(x) is given by 0(0z).
Therefore each branch has the smallest element.

Proof. (1) BCI 2) = a(ax) < z. Since z is the
gmallest element,

a(az) ==z
is obtained. As a special case, we have 0(0z) = z.

(2) Assume that 0(0x) = z. Let y < . Then yz = 0.

On the other hand,
zy = (0(0z)y = (0y)(0z) < zy = 0.
So we have x = y.

(3) From Proposition 1(4),0(0(0z)) = Oz. Hence Oz
ig the smallest element of the branch with Ox. Mo-
rover, z ¢ B(0) implies 0z ¢ B(0). The branch is
proper.

(4) 0 = (0z)(0z) = (0(0z) )z — 0(0z) < =.

Hence 0(0z) is the smallest element, and this belongs
to the branch B{x)

From the above discussion, we have the following
Structure Theorem on BCI.

Theorem. BCI has two main parts: BCK-part,and
an Abelian group consisting of ail smallest elements.



If BCK part is trivial, then all branches are trivial
and BCI reduces an Abelian group.

we refer as the base the set(Abelian group part)
_consisting of all smallest elements.

To develop such an abstract theory, various exam-
ples are useful and helpful for research workers. In
particular, the following examples were used. The
main parts in Propositions and Theorem are contained

in each example(Examples 2 and 3).

Example 1. An additively written Abelian group
is BCI under z xy = z — y. If the BCK-part of a BCI
is trivial(namely B = {0}), each branch is also trivial,
and the BCI is an Abelian group.

The first example on BCI was Example 2, and they
were analyzed in detail. Consequently, we obtained
some elementary properties of BCI, {0,a} is their
BCK-part in both BCI. {0,1},{0,1,2} are Abelian
group parts respectively.

The first unsolved problem is to find an algorithm
to describe all finite BCI.

Example 2.
0 al

xR
010 0 1
ala 0 1
1j1 10
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Let us mention some unsloved problms on BCI. We
do not know many facts about infinite (proper) BCI.
By a proper BCI, we mean the BCK-part and the base
are not trivial.

(1) Find all BCI with a given BCK as its BCK-part
and a given Abelian group as its base.

(2) Give some examples of infinite proper BCI with
any cardinality. We can obtain a BCI by adding one
element to a giveanCK.

(3) Are there BCI such that BCK-part is the cardi-
nality Ry and the base is the cardinality Rg? We can
construct BCK with any cardinality R,.

{4) Characterize termal hyperidenties of class BCK-
algebras(BCH, BCC). Characterize algebras with ter-
mal hyperidentities of BCK-algebras(BCH, BCC). (for
detail, see Yu.Movsisyan (8)). The same problems are
considered for BCI.
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