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1 Introduction
Compatible well-0rders on monoids are used in the rewriting theory in algebra.

They do not only guarantee the termination of reduction processes in a system [3],
[4] but also are a base of the completion procedure [8]. In the Grobner base theory of
polynomial rings, such orders on free commutative monoids, and in the rewriting theory
of groups and monoids, such orders on free monoids play a crucial role (see [1], [11]).
Compatible orders on a free commutative monoid are characterized by weights [15],
but in contrast, compatible orders on a free monoid are very diverse and complicated
([2], [9], [10]).

In this paper we study compatible well-0rders on monoids. A well-0rdered monoid
is a monoid with a well-0rder that is strictly compatible with the operation of the
underlying monoid. We introduce two numerical parameters associated with the order.
The first one, which is discussed in Section 3, is related to weight functions on a monoid.
The second, which is discussed in Section 4, comes ffom some effect of commutation
of two elements in a monoid. With these parameters we study the ordered structure
of well-0rdered monoids, especially in the case of tw0-generator monoids in the last
section.

2 Preliminary
A quasi-Order $[succeq]$ on a set $X$ is a reflexive transitive relation on $X$ such that $x[succeq] y$ or

$y[succeq] x$ holds for any $x$ , $y\in X.$ For a quasi-0rder $[succeq]$ , define relations $\sim$ and $\succ$ as follows.
For $x$ , $y\in X$ , $x\sim y$ if and only if $x\mathrm{r}$ $y$ and $y[succeq] x,$ and $x$ ? $y$ if $y[succeq] x$ does not hold,
equivalently, $x[succeq] y$ but $x \oint y$ . We call $\succ$ the strict part of $[succeq]$ . It is easy to see that $\sim$ is
an equivalence relation. A quasi-0rder $[succeq]$ is an order, if $\sim$ is the equality relation, that
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is, $x\sim jl$ if and only if $x=y$ . A quasi-0rder $[succeq]$ is well-founded, if there is no infinite
decreasing sequence $x_{1}\succ x_{2}\succ$ I $\cdot\cdot$ . A well-founded order is called a well-Order.

Let $[succeq]_{1}$ and $[succeq]_{2}$ be two quasi-0rders on $X$ . The lexicographic composition $[succeq]_{1}$ $\circ[succeq]_{2}$

of $[succeq]_{1}$ and S2 is defined by

$x$ $([succeq]_{1}\circ[succeq]_{2})$ $y$
$\Leftrightarrow$ $xc_{\mathit{1}}$ $y$ , or $x\sim_{1}y$ and $x[succeq]_{2}$ $y$ ,

where $\sim_{1}$ is the equivalence relation induced by $[succeq]_{1}$ . Similarly, for $n$ quasi-0rders
$[succeq]_{1}$ , $\ldots,$

$[succeq]_{n}$ , the lexicographic composition $[succeq]_{1}\circ\cdots\circ \mathrm{r}_{n}$ is defined as follows. Let
$x$ , $y\in X$ and $\sim_{i}$ be the equivalence relation induced by $[succeq]_{i}$ and $\succ_{i}$ be the strict part
of 7 $i$ . Then, $x$ $([succeq]_{1}\circ\cdots\circ[succeq]_{n})$ $y$ , if $x\sim_{i}y$ for $i=1,$ .. . ’ $k-1$ and $x\succ_{k}y$ for some
$1\leq$ C $\leq n,$ or $x\sim:y$ for all $i=1$ , $\ldots$ , $n$ .

Lemma 2.1. $If[succeq]_{1}$ , \ldots ,
$[succeq]_{n}$ are (well-founded) quasi-Orders on X, $then[succeq]_{1}\circ\cdots 0[succeq]_{n}$

is (well-founded) quasi-Orders on X.

Let $[succeq]_{i}$ be a quasi-0rder on a set $X_{i}(i=1,2)$ . A mapping $f$ : $X_{1}arrow X_{2}$ is order
preserving, if $x[succeq]$c1 il implies $f(x)\mathrm{r}_{2}f(y)$ for all $x,y\in X_{1}$ , equivalently, $f(x)r_{2}$ $f(y)$

implies $x\succ_{1}$ $y$ . It is strictly order-preserving if $x[succeq]_{1}y\Leftrightarrow f(x)[succeq]_{2}$ $f(y)$ for all $x$ , $y\in X_{1}$ .
A (quasi- (resp. well-))ordered set is a pair $(X, [succeq])$ of a set $X$ and a (quasi- (resp.

well-))order\succeq on $X$ . Quasi-0rdered sets $(X_{1}, [succeq]_{1})$ and $(X_{2}, [succeq]_{2})$ are isomorphic if there
is a bijection $f$ : $X_{1}arrow X_{2}$ which is strictly order-preserving. A class of isomorphic
well-0rdered sets is an order type. If the class of $(X, [succeq])$ is $\alpha$ , we say $(X, [succeq])$ has order
type $\alpha$ .

Let $\geq$ be the ordinary order of the set $\mathrm{N}$ of natural numbers. The order type of
$(\mathrm{N}, \geq)$ is denoted by $\omega$ . For $n\geq 2,$ let $\geq$ lex be the lexicographic order on $\mathrm{N}^{n}$ , that is,
$(x_{1}, \ldots, x_{n})>\mathrm{l}\mathrm{e}\mathrm{x}$ $(y_{1}, \ldots, y_{n})$ if there is A such that $1\leq k\leq n$ and $x_{1}=y_{1}$ , . . . , $x_{k-1}=$

$y_{k-1}$ and $x_{k}>y\mathrm{h}.$ The order type of $(\mathrm{N}^{n}, \geq_{1\mathrm{e}\mathrm{x}})$ is $\omega^{n}$ . Similarly we can consider
the length-lexicographic order $\geq$ llex on the set $\mathrm{N}^{*}=\bigcup_{k=1}^{\infty}\mathrm{N}^{k}$ of all finite sequences of
natural numbers;

$(x_{1}, \ldots, x_{m})\geq$ llex $(y_{1}, \ldots, y_{n})$ $F\mathit{7}$ $m>n,$ or

$m=n$ and $(x_{1}, \ldots, x_{m})\geq_{1\mathrm{e}\mathrm{x}}(y_{1}, \ldots, y_{m})$ .

The ordered set $(\mathrm{N}^{*}, 2_{11\mathrm{e}\mathrm{x}})$ has order type $\omega^{\omega}$ .
Let $M$ be a monoid, a semigroup with identity element 1. A quasi-0rder $[succeq]$ on

$M$ is compatible if $x[succeq] y$ implies $zxw[succeq] zyw$ for any $x,y$ , $z$ , $w\in M,$ or equivalently,
$zxw$ ? $zyw$ implies $x\succ y.$ It is $st\sqrt.ctly$ compatible if $x\succ y\Leftrightarrow zxw\succ$ $zyw$ for
any $\mathrm{x},\mathrm{y}$ $z$ , $w\in M,$ or equivalently $x[succeq] y\Leftrightarrow zxrn$ $[succeq] zyw$ for any $x,y$ , $z,w\in M.$ $\mathrm{A}$

pair $(M, [succeq])$ of a monoid and a compatible (quasi-)order\succeq 0n $M$ is $\mathrm{a}$ (quasi-)ordered
monoid.

Lemma 2.2. $Let[succeq] be$ a compatible quasi-Order on a monoid M. Then, the equivalence
relation $\sim$ induced $by[succeq] is$ a congruence and the quotient monoid $M/\sim is$ an ordered
monoid with the order induced $by[succeq]$ . $If[succeq] is$ strictly compatible (resp. well-founded) on
$M$ , then so is the induced order $\mathrm{S}$ on $M/\sim$ .
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Note that the induced order $[succeq]$ on the quotient $M/\sim$ in the above lemma is defined
as $[x][succeq][y]\Leftrightarrow x[succeq] y$ for $x$ , $y\in M,$ where $[x]$ denotes the congruence class of $x$ .

In this paper, by a well-Ordered monoid we mean an ordered monoid $(M, [succeq])$ with
strictly compatible well-0rder $\mathrm{s}$ . As easily seen, a monoid $(M, [succeq])$ with compatible
well-0rder $[succeq]$ is a well-0rdered monoid if it is cancellative.

Lemma 2.3. $If[succeq]_{1}$ , \ldots ,
$[succeq]_{n}$ are (strictly) compatible quasi-Orders on M, then the lex-

icographic compositions $[succeq]_{1}\circ\cdots\circ[succeq]_{n}$ is also a (strictly) compatible quasi-Order on M.

A weight function of $M$ is a morphism of $M$ to the additive group $\mathbb{R}$ of real numbers;
$f(xy)=f(x)+f(y)$ for $x,y\in M.$ Of course, the zero function 0 is a weight function.
A weight function $f$ is non-negative (resp. positive) if $f(x)\geq 0$ (resp. $f(x)>0$) for all
$x\in M\backslash \{1\}$ . If $M$ is generated by a subset $\Sigma$ , a weight function $f$ is determined by
the values $f(a)$ for generators $a\in$ C. In fact, for any $x=a_{1}\cdots$ $a_{n}$ with $a_{i}\in$

$\mathrm{X}$ , we
have $f(x)= \sum_{i}f(a_{i})$ .

We define a relation $[succeq] f$ associated with a weight function $f$ on $M$ by

$x[succeq]_{f}$ $y$ $\Leftrightarrow$ $f(x)\geq f(y)$ .

Lemma 2.4. For a weight function $f$ of a monoid $M,$ $\mathrm{r}_{1}$ is a strictly compatible quasi-
order on M. The congruence $\sim_{f}$ induced $by[succeq]_{f}$ is given by $x\sim f$ $y\Leftrightarrow f(x)=f(y)_{J}$

and the quotient $M/\sim f$ is a well-Ordered monoid.

A quasi-0rder $[succeq]$ on a monoid $M$ is weight-sensitive, if there is a nonzero order-
preserving weight function $f$ on $M$ , that is, $x[succeq] y$ implies $f(x)\geq f(y)$ , or equivalently,
$f(x)>f(y)$ implies $x$ ? $y$ , for $x,y\in M.$ In this case we say $[succeq]$ is $f$-sensitive specifying
$f$ . If this $f$ is nonzero non-negative (resp. positive), $[succeq]$ is non-negatively (resp. positively)
weight-sensitive.

Lemma 2.5. Let $M$ be a finitely generated monoid. If $f$ is a non-negative weight
function of $M$, the quasi-Order $[succeq]_{f}$ is well-founded. If $f$ is positive, any f-sensitive
quasi-Order is well-founded.

3 Weight sensitivity
In this section $M$ is always a well-0rdered monoid.

Lemma 3.1. $M$ is torsion-free, cancellative, and for any $x\in M\backslash \{1\}$ , we have an
infinite increasing sequence

$1\prec x-*!x^{2}\prec$ . $:\prec x^{n}\prec 1.$ .

Corollary 3.2. Let $x,y\in M$ and $m$ , $n\in$ N. Then,

(1) $x^{m}\succ x^{n}\Leftrightarrow m>n.$

(2) $x^{m}\succ y^{m}\Leftrightarrow x\succ y.$
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As we see in Lemma 3.1, $x[succeq] 1$ for any $x\in M.$ This is actually a sufficient
condition for a compatible quasi-0rder $[succeq]$ on $M$ to be well-founded by Higman’s well-
known theorem [6].

An element $a$ of $M$ is a pivot, if for any $x\in M$ there is $n\in \mathrm{N}$ such that $x\prec a".$ A
monoid may not have a pivot, but a finitely generated monoid, which we are interested
in, has one.

Lemma 3.3. A nontrivial finitely generated monoid $M$ has a pivot.

We fix a pivot $a\in M,$ and based on this element we define a function $\phi_{a}$ : $Marrow \mathrm{R}$

as follows:

$\phi_{a}(x)=$ inf { $n/m$ $|x^{m}\preceq a^{n},$ $m,$ $n\in$ N, $m>0$}
for $x\in M.$

Now we have the main results in this section.

Theorem 3.4. $\phi_{a}$ is a nonzero non-negative order-preserving weight function on $M$ .

Corollary 3.5. If a well-Ordered monoid $(M, [succeq])$ has a pivot $a,$ $[succeq] is$ non-negatively
weight-sensitive, specifically, $\phi_{a}$ -sensitive.

Corollary 3.6. A well-founded strictly compatible nontrivial quasi-Order $[succeq] on$ a finitely
generated monoid $M$ is non-negatively weight-sensitive.

The above results were proved for free monoids in [13] (see [14] for a different proof),
and are a variant of the classical embedding theorems of ordered semigroups into the
nonnegative reals (see [5], [7]).

Lemma 3.7. $\phi_{a}(a^{n})=n$ for all $n\in$ N.

Lemma 3.8 (approximation lemma). For any $m>0$ there is a positive integer $n$

such that $x^{m}\preceq a^{n}$ and

$\frac{n-1}{m}\leq\phi_{a}(x)\leq\frac{n}{m}$ .

Lemma 3.9. An order-preserving nonzero non-negative weight $fi\nu nction$ on $M$ (if ex-
ists) is unique up to constant factor.
Theorem 3.10 (chain rule). Let $a$ and $b$ be pivots of M. For any $x\in M$ we have

$\phi_{a}(x)=\phi_{a}(b)\cdot\phi_{b}(x)$ .

Define a relation $\equiv \mathrm{o}\mathrm{n}$ $M$ as follows: For $x$ , $y\in M,$ $x\equiv y$ if and only if $y\preceq x^{m}$

and $x\preceq y^{n}$ for some positive integers $m$ , $n$ .

Lemma 3.11. $\equiv is$ an equivalence relation on $M$ .
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The equivalence class $A(x)$ of $x\in M$ is the archimedean component of $x$ in $M$ . As
easily seen, if $x\succ y$ and $A(x)\neq A(y)$ , then $x’\succ y’$ for all $x’\in$ $\mathrm{A}(x)$ and $y’\in A(y)$ .
Thus, we can define a relation $[succeq]$ on the set $A$ of all archimedean components by
$A(x)\mathrm{r}$ $A(y)\Leftrightarrow x[succeq] y.$ Actually $[succeq]$ is a well-0rder of $A$, and the set $P$ of all pivots of
$M$ , if it is not empty, is the maximal archimedean component of $M$ .

If $P$ and {1} are the only archimedean components of $M$, $M$ is called archimedean.
Accordingly, $M$ is archimedean if and only if for any $x$ , $y\in M\backslash \{1\}$ there are $m$ , $n>0$
such that $y\preceq x^{m}$ and $x\preceq y^{n}$ .
Theorem 3.12. For a nontrivial well-Ordered monoid $M$, the following statements are
equivalent.

(1) $M$ is archimedean.

(2) $\phi_{a}$ is positive for any (some) $a(\neq 1)\in M.$

(3) $M$ has an order-preserving positive weight function.
If $M$ is finitely generated, these are still equivalent to

(4) $M$ has order type $\omega$ .

4 Position sensitive functions
The value of a weight function for an element is only determined by the weights of

generators which appear in that element, but does not depend on the positions where
the generators appear. In this section we introduce a function which depends not only
on how many times a generator appears in the element but also on the places where it
appears.

Let $M_{1}$ be a $\mathrm{s}\mathrm{u}\mathrm{b}\mathrm{m}\mathrm{o}\dot{\mathrm{n}}$oid of a well-0rdered monoid $(M, [succeq])$ . $M_{1}$ is also a well-0rdered
monoid with the order $[succeq]$ restricted to Mi. Let $a$ be a pivot of $M_{1}$ and set $\mathrm{A}$ $=\phi_{a}$ be
the weight function of $M_{1}$ based on $a$ . For $x\in M$ define

$\mu\ell(x)=$ inf $\{\phi(u)/\phi(v)|xv\preceq ux, u, v\in M_{1}, \phi(v)>0\}$

Here, if there are no elements $u$ , $v\in M$ such that $\phi(v)>0$ and $xv\preceq ux$ , $\mu\ell(x)$ is
defined to be $\infty$ . These functions are considered to be a generalization of the functions
introduced by Martin and Scott on the ffee monoid generated by two elements (see
[12] $)$ .

For $r$ , $s\in[0,\infty]=\mathrm{R}_{+}\mathrm{U}\{0,\infty\}$ , the product $r\cdot s$ is defined in a conventional way,
but 0 . oo and oo . 0 are not defined.

Theorem 4.1. For all $x\in M$ , $\mu\ell(x)\in[0, \infty]$ , and

$\mu_{\mathit{1}}(xy)=\mu_{\ell}(x)\cdot\mu_{\ell}(y)$

holds for any $x$ , $y\in M$ as far as the righthand side is defined.
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The value $\mu\ell(x)$ is, so to speak, the rate of change of the weight when an element
of $M_{1}$ is transformed from right to left of $x$ . We can consider also the rate from left to
right as follows. For $x\in M$ define

$\mathrm{q}(x)$ $=$ inf $\{\phi(v)f\phi(u)|ux\preceq xv, u, v\in M_{1},6(\mathrm{z}\mathrm{z})>0\}$

here $\mu_{r}(x)=$ oo if there are no $u$ , $v\in M_{1}$ such that $ux$ $\preceq xv$ and $\phi(u)>0.$

Theorem 4.2. For any $x\in M$ we have

$\mu_{r}(x)=1/\mu_{\ell}(x)$ .

Lemma 4.3. $\mu\ell(x)=\mu_{r}(x)=1$ for any $x\in M_{1}$ .

For an element $x\in M$ expressed as

$x=u_{0}b_{1}u_{1}\cdots$ $b_{k}u_{k}$ (4.1)

with $k$ $\geq 0$ , $u_{i}\in M_{1}$ for $i=0,1$ , $\ldots$ , $k$ and $b_{i}\in M$ such that $0\leq$ $\mu_{\ell}(b:)$ $<\infty$ , define

$\psi(x)=\phi(u_{0})+\phi(u_{1})\mu_{1}+\cdot$ . . $+$ $\mathrm{t}\mathrm{i}_{k})/\ _{1}$
$\cdots\mu_{k}$ ,

where $\mu:=\mu_{\ell}(b_{i})$ and 6 is the weight function on $M_{1}$ based on a pivot $a$ of $M_{1}$ .
For the main theorem of this section we need the following assumption:

$(*)$ There is an element $b\in M$ such that $0<\mu=\mu\ell(b)<$ oo and $\mu\neq 1.$

Theorem 4.4. We assume the condition $(*)$ . Let $x,y$ be two elements of $M$ expressed
as (4.1) ;

$x=$ $u_{0}b_{1^{\mathrm{f}\mathrm{J}_{1}}}\cdot$ .. $b_{k}u_{k}$ $(u_{i}\in M_{1}, b_{i}\in M)$ ,
$y=u_{0}’b_{1}’ u_{1}’\cdots$ $b_{\mathit{1}}’u_{\ell}’$ $(u_{i}’\in M_{1}, b_{i}’\in M)$ .

Then, $b_{1}\cdots$ $b_{k}=b_{1}’\cdots$ $b_{\ell}’$ and $\psi(x)>\psi(y)$ imply $x\succ y.$

We do not know if Theorem 4.4 remains true in general without assumption $(*)$ .
But in some special situations we consider next, we can prove the assertion without
$(*)$ .

First we consider the case where each $b_{:}$ is in the cyclic submonoid $b^{*}$ generated by
a fixed element $b$ in $M$ . Consider an element $x$ of $M$ written as (4.1), where $b_{i}\in b^{*}$ for
$i=1$ , $\ldots$ , $k$ . If $\mu_{\ell}(b)=1,$ the value of our weight sensitive function $\psi$ is given by

$\psi(x)=\phi(u_{0})+\phi(u_{1})+\cdots+$ $6(\mathrm{t}\mathrm{z}_{7})$ .

Let $y$ be another element of $M$ written as

$y=u_{0}’b_{1}’u_{1}’\cdots$ $b_{l}’u_{t}’$ $(u_{i}’\in M_{1}, b’\dot{.}\in b^{*})$ .



117

Lemma 4.5. Assume $\mu(b)=1.$ For elements x and y given above, if $b_{1}$ \cdots $b_{k}=$

$b_{1}$
’ . . . $b_{t}’$ and

$\phi(u_{0})+\phi(u_{1})+\cdot$ . . $+\phi(u_{k})>\phi(u_{0}’)+\phi(u_{1}’)+\cdot$ . . $+\phi(u_{k}’)$ ,

then $x\succ y.$

If $M$ is generated by $M_{1}\cup\{b\}$ , any element $x\in M$ is written as (4.1) with $b_{:}\in b^{*}$ .
Now, using the function $\psi$ we define a quasi-0rder $[succeq]_{\psi}$ on $M$ by

$x[succeq] \mathrm{p}$ $y\Leftrightarrow\psi(x)\geq\psi(y)$ .

Corollary 4,6. If $M$ is generated by $M_{1}\cup\{b\}$ for some $b\in M$ such that $0<\mu t$ $<\infty$ ,
then

$[succeq]=[succeq]|$ . $|_{b}\circ[succeq] \mathrm{p}$
$\circ[succeq]$

’

for some quasi-Order $[succeq]’$ .

If $\mu_{l}(b_{i})=0$ for some $i$ in (4.1), letting $\overline{k}$ be the smallest such $i$ , we have $\psi(x)=$

$\psi(\overline{x})$ , where $i=u_{0}b_{1}u_{1}\cdots$ $b_{\overline{k}-1}u_{\overline{k}-1}$ . So under the condition $(*)$ , Theorem 4.4 asserts
that $b_{1}\sqrt$ $\cdot\cdot b_{k}=b_{1}’\cdots b_{\ell}’$ and $\psi(\overline{x})>\psi(\overline{y})$ imply $x$ ? 17 for $x,y$ given in the theorem.
Here we consider without condition $(*)$ the case where $\mu_{\ell}(b_{i})=0$ for all $i$ in (4.1) and
$M_{1}$ is cyclic.

Lemma 4.7. Let $a\in M_{1}$ and $b_{1}$ , .. ., $b_{k}\in M$ and suppose $\mu\ell(b_{1})=\cdot\cdot$ $1$ $=\mu\ell(b_{k})=0.$

Let $x$ and $y$ be elements of $M$ written as

$x=a^{m_{0}}b_{1}a^{m_{1}}$ . . . $b_{k}a^{m_{k}}$ (4.2)

and
$y=a^{n_{0}}b_{1}a^{n_{1}}$ .. . $b_{k}a^{n_{k}}$ . (4.3)

Then, $(m_{0}$ , $m_{1}$ , . . . , $m_{k})\geq$ lex $(n_{0}, n_{1}, \ldots, n_{k})$ implies $x\succ y.$

When $\mathrm{P}\ell(/)_{i})$ $=$ oo for all i in (4.1), then $\mu_{r}(b_{i})=0.$ Thus, in the dual way we have

Corollary 4.8. Let $a\in M_{1}$ and $b_{1}$ , $\ldots$ , $b_{k}\in M$ and suppose $\mu\ell(b_{1})=\cdot$ $\mathrm{t}$ $=\mu\ell(b_{k})=$

$\infty$ . Let $x$ and $y$ be elements of $M$ written as (4.2) and (4.3) respectively. Then,
$(m_{k},m_{k-1}, \ldots, m_{0})\geq_{1\mathrm{e}\mathrm{x}}(n_{k}, 7\mathrm{L}_{k-1}, \ldots, 7\mathrm{L}_{0})$ $i$ mzpljes $x$ ? $y$ .

5 Monoids generated by two elements

In this section we apply the results obtained in Sections 3 and 4 to monoids generated
by two elements. Let $(M, [succeq])$ be a well-0rdered monoid generated by $a$ and $b$ . Suppose
that $b$ is a pivot and consider the weight function $\phi$ $=\phi_{b}$ based on $b$ . By Theorem 3.4

$[succeq]=[succeq] 0$ $\circ[succeq]$
’ (5.1)
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for some compatible quasi-0rder $[succeq]^{l}$ , where $[succeq]_{\phi}$ is the quasi-0rder associated with $\phi$ .
If $r=\phi(a)>0$ , $a$ is also a pivot. By Theorem 3.12, $M$ is archimedean and has

order type $\omega$ . The quasi-0rder $[succeq]_{\phi}$ is an order if and only if the congruence $\sim\phi$ induced
by $[succeq]_{\phi}$ is the equality relation, that is, $x=y$ in $M$ if and only if $\phi(x)=\phi(y)$ . In this
case, $M$ is a commutative monoid isomorphic to $\{a, b\}^{*}/\sim$ , where for $x$ , $y\in\Sigma^{*}$ , $x\sim y$

if and only if

$\phi(x)=|x|_{b}+r($ $|x|_{a}=\phi(y)=|y|_{b}$ $+r$ . $|y|_{a}$ .

In particular, if $r$ is irrational, the equality $\phi(x)=\phi(y)$ holds if and only if $x=y$ as
abelian words over $\{a, b\}$ . Hence, $M$ is the ffee commutative monoid generated by $a$

and $b$ . If $r=n\in$ N, then $a\sim\phi$
$b^{n}$ and $M$ is the infinite cyclic monoid generated by

$b$ . If $r=1fn(n\in \mathrm{N})$ , then $M$ is the infinite cyclic monoid generated by $a$ . If $r=p \int q$

with $p$ , $q>1$ and $(p, q)=1,$ then $M$ is the commutative monoid generated by $a$ , $b$

subject to the relation $a^{q}=b^{p}$ . But, if $[succeq]_{\phi}$ is not an order, we need a quasi-0rder $[succeq]^{l}$

which is nontrivial on $\sim\phi$ in (5.1), that is, there are two elements $x,y\in M$ such that
$f\sim\phi$ il and $x\succ^{l}y$ .

Suppose that $r=0,$ then $M$ is not archimedean. Based on the weight function $|$ . $|_{a}$

on the submonoid $a^{*}=\{x\in M|6(a)=0\}$ of $M$ generated by $a$ , we have the weight
sensitive function $\mu\ell$ on $M$ . Let $\mu=\mu\ell(b)$ .

First, suppose $0<\mu<\infty$ , then for an element

$x=a^{m_{0}}ba^{m_{1}}\cdots$ $ba^{m_{k}}$

of $M$ we have

$\psi(x)=m_{0}+m_{1}\mu+\cdot$ . . $m_{k}\mu^{k}$ .

By Corollary 4.6 we see
$[succeq]=[succeq]|\mathrm{i}b\circ[succeq]_{\psi}\circ[succeq]$

’ (5.2)

for some quasi-0rder $[succeq]’$ . For any $k\geq 0,$ the subset $M_{k}=\{x\in M||x|_{b} =k\}$ of $M$ has
order type $\omega$ , and hence $M$ has order type $\omega^{2}$ .

If $\mu$ is transcendental, then $\psi(x)=\psi(y)$ implies $x=y$ as words over $\{a, b\}$ . It
follows that $M$ is the free monoid generated by $a$ and $b,$ $[succeq]_{\psi}$ is an order, and

$[succeq]=$ $\mathrm{r}|$ . $|_{b}\circ 7$
$\mathrm{p}$

Next suppose that $\mu$ is algebraic. Let

$P_{\mu}(X)=k_{0}+k_{1}X+\cdots+k_{n}Xn$ $(k_{\dot{1}} \in \mathbb{Z})$

be the minimal primitive polynomial of $\mu$ over Z. Set

$\ell_{i}=\{$

$k_{i}$ if $k_{:}>0$

0otherwise,

$\ell_{\dot{l}}’=\{$

$-k$: if $C_{i}<0$

0otherwise,
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and define

$x=a^{\iota 0}ba^{\iota_{1}}\cdots$ $ba^{\iota_{n}}$ ,
$x’=a^{\ell_{\acute{0}}}ba’ \mathit{4}.$ . . $ba^{\ell_{\acute{n}}}$ .

Then $x\neq x’$ as words but $\psi(x)=\psi(x’)$ . Let $\sim$ be the congruence induced by the
quasi-0rder $[succeq]|\mathrm{i}b$ $\circ[succeq]_{9}$ . Then, $[succeq]|\cdot|_{b}\circ[succeq]_{\psi}$ is an order, if and only if $\sim$ is the equality
relation, and in this case, $M$ is isomorphic to $\{a, b\}^{*}/\sim_{P}$ , where $\sim_{P}$ is the congruence
on the ffee monoid $\{a,b\}$ defined as follows: for elements $x=a^{m0}ba^{m_{1}}\cdots$ $ba^{m_{k}}$ and
$y=a^{n_{0}}ba^{n_{1}}\cdots ba^{n\ell}$ , $x\sim_{P}y$ if and only if $k=\ell$ and

$(m_{0}-n_{0})+(m_{1}-n_{1})X+\cdots+(m_{k}-n_{k})X^{k}\equiv 0$ (mod $P_{\mu}(X)$ ).

If $\sim$ is not the equality, $[succeq]|1b0[succeq]_{\psi}$ is not an order, and a quasi-0rder $[succeq]^{l}$ which is
nontrivial on $\sim$ is necessary in (5.2).

Next suppose $\mu=0.$ Then, by Lemma 4.7, for two elements

$x=a^{m_{\mathrm{O}}}ba^{m_{1}}\cdots$ $ba^{m_{k}}$ (5.3)

and
$y=a^{n\mathrm{o}}ba^{n_{1}}$ . . . $ba^{n\ell}$ (5.4)

in $M$, $x\succ y$ if and only if either $k>\ell$ , or $k=\ell$ and $(m_{0},m_{1}, \ldots, m_{k})\succ\iota_{\mathrm{e}\mathrm{x}}$

$(n_{0},n_{1}, \ldots, n_{k})$ . Hence, $x[succeq] y$ and $y[succeq] x$ if and only if $x=jl$ as words. It follows that
$M$ is the free monoid generated by $a$ and $b$ , and

$[succeq]=[succeq]|$ . $|_{b}\circ[succeq]_{0}$ ,

where $[succeq]_{0}$ is the quasi-0rder defined through the lexicographic order $\geq$ lex on $\mathrm{N}^{*}=$

$\bigcup_{k\geq 1}\mathrm{N}^{k}$ . In other words, the ordered set $M$ is isomorphic to ($\mathrm{N}^{*},$ $\geq$ llex) by the mapping
which sends an element $x\in M$ written as (5.3) to the vector $(m_{0}, m_{1}, \ldots, m_{k})\in \mathrm{N}^{k+1}$ .
The order type of $M$ is $\omega^{\omega}$ .

Finally, suppose $\mu=\infty$ . Similarly to the case $\mu=0$ , $M$ is ffee again, and by
Corollary 4.8 we have

$[succeq]=[succeq]_{1\cdot 1_{b}}\circ[succeq]_{\infty}$ ,

where $[succeq]_{\infty}$ is the quasi-0rder defined through the reverse-lexicographic order on $\mathrm{N}^{*}$ .
Again, $M$ has order type $\omega^{\omega}$ .

Summarizing, when $M$ is non-archimedean and $\mu$ is transcendental or $\mu=0$ or
$\mu=\infty$ , the structure of $M$ is unique, that is, $M$ is free, and the order on $M$ is
completely determined by $r$ and $\mu$ . But in other cases, the two parameters $r$ and $\mu$ are
not sufficient to determine the structure of $M$ . Actually uncountably many different
structures for $M$ are possible for each $r$ and nonzero algebraic $\mu$ . Moreover, even if the
algebraic structure of the underlying monoid $M$ is fixed, uncountably many different
well-0rders on $M$ are possible. We omit the details here.
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