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FINITE COMPLETION OF COMMA-FREE CODES. Part II

NGUYEN HUONG LAM*

Hanoi Institute of Mathematics
P.O.Box 631, Bo Ho, 10000 Hanoi, Vietnam

Abstract. This paper is a sequel to an earlier paper of the present author, in which it was proved
that every finite comma-free code is embedded into a sO-called (finite) canonical comma free code.
In this paper, it is proved that every (finite) canonical comma-free code is embedded into a finite
maximal comma-free code, which thus achieves the conclusion that every finite comma free code

has finite completions.

Keywords. Comma-free Code, Completion, Finite Maximal Comma-ffee Code.

\S 1. Introduction, This paper continues the previous one of the present author [L].
Taken as a whole, they represent a solution to the problem of finite completion of
comma-free codes.

in
$\mathrm{g}\mathrm{e}\mathrm{n}\mathrm{e}\mathrm{r}\mathrm{a}\mathrm{l}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{o}\mathrm{r}\mathrm{y}\mathrm{o}\mathrm{f}^{\mathrm{c}\mathrm{o}\mathrm{m}}\mathrm{T}\mathrm{h}\mathrm{e}\mathrm{p}\mathrm{r}\mathrm{o}\mathrm{b}\mathrm{l}\mathrm{e}\mathrm{m}\mathrm{o}\mathrm{c}\mathrm{o}\mathrm{d}\mathrm{e}_{\mathrm{s}[\mathrm{g}_{\mathrm{p}}\mathrm{j}\mathrm{a}_{\mathrm{h}\mathrm{a}}^{\mathrm{C}}\mathrm{o}\mathrm{d}_{\mathrm{h}\mathrm{a}}^{\mathrm{e}}\mathrm{o}\mathrm{f}}^{\mathrm{p}1\mathrm{e}}\mathrm{n}$

$\mathrm{S}\mathrm{o}_{\mathrm{o}\mathrm{m}\mathrm{e}}^{\mathrm{m}\mathrm{e}\mathrm{c}}1\mathrm{a}_{\mathrm{t}\mathrm{e}}^{\mathrm{s}}$
$\mathrm{w}\mathrm{i}\mathrm{t}\mathrm{h}_{0}^{\mathrm{i}\mathrm{n}}\mathrm{t}\mathrm{h}_{\mathrm{e}\mathrm{s}}^{\mathrm{i}\mathrm{s}}\mathrm{c}_{\mathrm{a}\mathrm{r}\mathrm{c}\mathrm{h}\mathrm{e}}^{1\mathrm{a}\mathrm{s}\mathrm{s}\mathrm{i}}\mathrm{s}_{\mathrm{S}}$

$\mathrm{m}^{0}\mathrm{n}\mathrm{g}\mathrm{p}\mathrm{T}_{\mathrm{y}}^{\mathrm{o}\mathrm{b}}1_{\mathrm{a}}^{\mathrm{e}}\mathrm{m}\mathrm{s}$

For (finite) prefix codes the problem is easy (positive answer), but for finite codes in
general, the answer is negative and the argument is more sophisticated (see Restivo [R]
or Berstel and Perrin $[\mathrm{B}\mathrm{P}]).\mathrm{T}\mathrm{h}\mathrm{e}$ situation is same for finite bifix codes: there exist finite
bifix codes which are not included in any finite maximal bifix code [BP]. More on the
positive side we can mention finite iffix codes [IJST] and we can also prove that every
finite outfix code is included in a finite maximal outfix code (a set $X$ is an outfix code
provided $uv$ , $uxv\in X$ implies $x=1$ for any words $u,v$ , $x$).

As for comma-ffee code, in [L] we proved that every finite comma-free code is
included in a sO-called (finite) canonical comma-free code and in this paper we shall
prove further that every finite canonical code is included in a finite maximal comma-
free code. Thus we add one more class of codes having a positive ansewr to the finite
completion problem.

This paper is organized as follows: In the next two sections we review some back-
ground and prove several simple technical statements which are almost folklore and
will be used in later constructions. After that we prove an instrumental proposition,
which enable us to make a ramification respective to the set of sO-called $\mathrm{i}\mathrm{l}\mathrm{r}$ words. If
this set is finite (in \S 4) the completion is straightforward. Else, if infinite, this set con-
tains a “short” $\mathrm{i}\mathrm{l}\mathrm{r}$-word with rich properties and starting from this word we construct
finite maximal comma-free codes, more or less explicit, that all contain the original
comma-free code (in \S 5).

\S 2. Notions and Notation. We briefly specify our standard vocabulary and state
some prerequisites.

Let $A$ be a finite alphabet. Then $A^{*}$ denotes the set of words on $A$ including the
empty word 1 and as usual $\mathit{4}^{+}$ denotes the set of non-empty words. For subsets of words
we use interchangeably the plus and minus signs to denote the union and difference of
them, besides the ordinary notation.

The set of words is equipped with the concatenation as product with the empty
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word 1 as the unit. For subsets $X$ and $X’$ of $A^{*}$ we denote

$XX’=\{xx’ : x\in X, x’\in X’\}$

$X^{0}=\{1\}$

$X^{i+1}=X^{i}X$, $i=0,1,2$ , $\ldots$

$X^{*}=$ ,$J_{i\geq 0}Xi$ .

Our subject-matter is comma-free codes which are defined as follows [S].

DEFINITION 2.1. A subset $X\subseteq A^{+}is$ said to be a comma-free code $ifX^{2}\cap A^{+}XA^{+}=\emptyset$ .
A comma-ffee code is called $m$ aximal if it is not a proper subset of any other comma-

ffee code. A completion of a comma-free is a maximal comma-free code containing it.
In view of Zorn’s lemma, every comma-free code always has completions.

EXAMPLE 2.2. Every primitive word constitutes a comma-free code. This means that
for a primitive word $p$ , $p^{2}=up^{2}v$ implies $u=1$ or $v=1.$

We shall use frequently the following result (Fine and Wilf): If $u\{u, v\}$
* and $\{u, v\}$

’

have a common left factor of length at least $|u|+|\mathrm{t}$ $|$ , in particular, if $uv=vu$ , then $u$

and $v$ are copowers.
Comma-ffee codes are closely connected to the notion of overlap. We say that two

words tt and $v$ , not necessarily distinct, overlap if

$u=tw,$ $v=ws$

for some non-empty words $s,t\in A^{+}$ and $w\in A^{+}$ , or equivalently,

$us=tv$

$X^{*}= \bigcup_{i>0}X^{i}$ .

Our subject-matter is comma-free codes which are defined as follows [S].

DEFINITION 2.1. A subset $X\subseteq A^{+}is$ said to be a comma-free code $ifX^{2}\cap A^{+}XA^{+}=\emptyset$ .
Acomma-ffee code is called maximal if it is not a proper subset of any other comma-

ffee code. Acompletion of a comma-free is amaximal comma-free code containing it.
In view of Zorn’s lemma, every comma-ffee code always has completions.

EXAMPLE 2.2. Every primitive word constitutes a comma-free code. This means that
for a primitive word $p$ , $p^{2}=up^{2}v$ implies $u=1$ or $v=1.$

We shall use ffequently the following result (Fine and Wilf): If $u\{u, v\}^{*}$ and $\{u, v\}^{*}$

have a common left factor of length at least $|u|+|v|$ , in particular, if $uv=vu,$ then $u$

and $v$ are copowers.
Comma-ffee codes are closely connected to the notion of overlap. We say that two

words $u$ and $v$ , not necessarily distinct, overlap if

$u=tw,$ $v=ws$

for some non-empty words $s$ , $t\in A^{+}$ and $w\in A^{+}$ , or equivalently,

$us=tv$

for some non-empty words $s$ , $t$ such that $|t$ and $|s|<|\mathrm{t}^{\mathrm{t}}|$ . We call $w$ an overlap, $s$

a right border and $t$ a left border of the two overlapping words $u$ , $v$ . We say also that $u$

self-Overlaps if $u$ and $u$ overlap, that is, $u$ overlaps itself. A right (left) border of a set
$X$ is a right (left, resp.) border of any two overlapping words of $X$ . We denote the sets
of right and left borders of $X$ by $R(X)$ and $L(X)$ , respectively.

With each conuna-ffee code $X$ we associate the following set, which plays a central
role in our treatment

$E(X)=A^{+}-R(X)A^{*}-A^{*}L(X)-A^{*}XA^{*}$ .

We recall the principal object of this paper, which has been defined in the previous
paper [L]. Let $N$ be a positive integer.
We recall the principal object of this paper, which has been defined in the previous
paper [L]. Let $N$ be apositive integer.

DEFINITION 2.3. A comma-free code $X$ is $cJed$ $N$-canonical if for an arbitrary word
$w\in E(X)$ and an arbitrary factorization $w=xuy$ with $x,$ $y$ , $u\in A^{*}$ and $|u|\geq N,$

there exist factorizations $u=pp’=ss’$ such that $xp\in E(X)$ and $s’y\in$ E(X), or just
the same, $xp\not\in A^{*}L(X)$ and $s’y\not\in R(X)A^{*}$ . $A$ comma-free code is canonical if it is
$N$-canonical for some $N$ .

Equivalently, a comma-free code $X$ is $N$-canonical if and only if for any word

;hat$\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{y}\mathrm{i}\mathrm{n}\mathrm{t}\mathrm{e}\mathrm{g}\mathrm{e}\mathrm{r}nn\leq|p|,|s|<n’+N\mathrm{n}0<n\mathrm{d}^{1:}|,s\in E(X),$$\mathrm{o}\mathrm{r}\mathrm{j}\mathrm{u}\mathrm{s}\mathrm{t}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{e}\mathrm{i}\mathrm{s}\mathrm{a}\mathrm{l}\mathrm{e}\mathrm{f}\mathrm{t}\mathrm{f}\mathrm{a}\mathrm{c}\mathrm{t}\mathrm{o}\mathrm{r}$ ps$\mathrm{a}\mathrm{m}\mathrm{e}\mathrm{a}\mathrm{n},\mathrm{a}p$7$\mathrm{h}4*1^{\mathrm{C}}$(K$\mathrm{r}$

)
and $s\not\in R(X)A^{*}$ .
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Our aim now is to prove that we can complete every finite $N$-canonical comma-free
code to a finite maximal comma-free code.

Surely, we have to make a completion out of those words $u$ outside $X$ , for which
$X+u$ is still a comma-free code. We term such words good words for $X$ . Explicitely,

1. $u\not\in A^{*}XA^{*}$ .
2. $u\not\in F(X^{2})$ .
3. $u\not\in A^{*}L(X)+R(X)A^{*}$ .
4. $u\in$ I(X) $=\{u:u^{2}\not\in A^{*}XA^{*}\}$ .
5. $A^{+}u\cap uP(X)=\emptyset$ and $uA^{+}$ $\mathrm{f}" 1$ $S(X)u=\emptyset$ .
6. $u$ is primitive: $u\in Q.$

Let $u$ be an arbitrary word. Consider the following conditions concerning $u$ :
(r) $u$ avoids $X$ (i.e. $u$ has no factors in $X$), $u$ has no left factor in $R(X)$ :

$u\in A^{+}-R(X)A^{*}-A^{*}XA^{*}$ .

(1) $u$ avoids $X$ , $u$ has no right factor in $L(X)$ :

$u\in A^{+}-A^{*}L(X)-A^{*}XA^{*}$ .

We call the words satisfying the conditions (r), (1), both (1) and (r) $r$-words, l-words,
$lr$-words respectively. We call an $1\mathrm{r}$ word $ilr$-word if, in addition, it satifies the condition
4 in the definition of a good word above. Notice that the set $E(X)$ mentioned in the
definition of canonical comma-ffee codes is nothing but the set of $\mathrm{k}$-words. We also
denote the set of 1-words and $\mathrm{r}$ words by $E(X)$ and $E(X)$ , respectively.

The good word $u$ is called $R$-good if $uv$ avoids $X$ for all $r$-words $v$ . Similarly, $u$ is
$L$-good provided vu avoids $X$ for all $l$ words $v$ .

We say that the word $u$ is an Lr-lr-word if it is an $1x$-word and for all $\mathrm{r}$ words $v$ , $\mathrm{w}$

avoids $X$ . Similarly, we say that $u$ is an Rl-lr-word if it is an $1\mathrm{r}$-word and for all l-words
$v$ . $uv$ avoids $X$ .

\S 3. Auxiliary Technical Results. We present several preliminary lemmas here in
one section for easy reference in the sequel. First we discuss the notion of sesquipower,
which is closely connected to the notion of self-Overlap.

Let $k$ be a positive real number, the word $w$ is called a $k$ -sesquipower if it is aleft
factor of $u^{+}$ for some word $u$ of length less or equal to $k$ , $|u|\leq k,$ or equivalently, $\mathrm{m}$ is is
a right factor of $v^{+}$ for some word $v$ of length $|v|\leq k.$ We have the following assertion,
which is a folklore, relating sesquipowers to self-Overlapping words.

PROPOSITION 3.1. For any words $x,y$ and $u$ the following assertions are equivalent:
(i) $xu=uy,$
(ii) $u$ is a left factor of $x^{+}$ ,
(ii) $u$ is a right factor of $y^{+}$ ,
(iv) $x=pq$ , $u=\{pq$) $sq$ $=p(qp)$ ’ , $y=qp$ for some words $p$ , $q$ .

It is straightforward to see that the if $|w|>k$ , $w$ is $k$-sesquipower if and only if $w$

self-Overlaps with borders no longer than $k$ . So in the sequel if we want to prove some
word not to self-Overlap with borders which are left or right factors of $X$ we just show
that it is not a $k$-sesquipower for $k \geq\max\{|x| : r\in X\}$ .
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In the following simple statement we show that we can pick out of three special
words, not self-Overlapping with short borders, a primitive one. Let $N$ be a possitive
integer.

PROPOSITION 3.2. Let $u$ , $v_{1}$ , $v_{2}$ be non-empty words such that $|u|\geq 3N$ , $|v_{1}$ $|\leq N,$

$eq^{2}u\mathrm{a}lt|v|\leq$No. $Supposethatu,uv_{1}en\mathrm{a}teastoneo$ $anduv_{1}v_{2}dothemisprim$intiovte.self-overlap with borders shorter or

The proof of the proposition requires two lemmas below.

LEMMA 3.3. Let $u$ and $v$ be words such that $|u|\geq 3N$, $0<|v|\leq N$ , $u=\lambda^{m}$ , $uv=\mu^{n}$

with primitive words $\lambda$ , $\mu$ and integers $m\geq 2$ , $n>2.$ Ifnot both of $u$ and $uv$ self-Overlap
$with$ borders of length shorter than or equal to $\overline{N}$ then $m=n=2.$

LEMMA 3.4. Let $u$ and $v$ be non-empty words such that $|u|>|v|$ and $u=\lambda^{2}$ , $uv=\mu^{2}$

for some primitive words $\lambda$ , $\mu$ . Then $\mu=$ XX$n$ for some positive integer $n$ and some
primitive word $\overline{\lambda}$ such that A is a left factor of ) $+and$ $|$ ) $|< \frac{|v|}{2}$ .

The following lemma will be used later in the proof of the existence of short ilr-
words,

LEMMA 3.5. Let $w$ not be a $k$-sesquipovter and let $u$ be the longest proper left factor
of $w$ , $w=uv$ and $v\neq 1$ , which is a $k$-sesquipovver, that is, $u=$ $u\mathrm{j}\mathrm{T}\mathrm{J}2$ with $u_{2}$ a
proper left factor of $u_{1}$ , $u_{1}$ primitive and $|\mathrm{t}\mathrm{t}_{1}$ $|\leq k.$ Then for every integer $t$ such that
$|u \mathrm{x}u_{2}|\geq\min$ $(| \mathrm{L}1\mathrm{S}t1u_{2}|, 2k)$ the $word$ us$t1u_{2}?7^{\cdot}\mathrm{s}$ not a k-sesquipower.

$\mathrm{L}\mathrm{E}\mathrm{M}\mathrm{M}\mathrm{A}3.3.Letuandvwithprim\mathrm{i}tivewords\lambda,$

$\mu$ anbed $integersm\geq 2,nwordssuchthat|u>2.|\begin{array}{l}\geq 3N,0<I\mathrm{f}b\end{array}|$

not
$othofu\mathrm{a}nduvseif-overlapv|\leq N,u=\lambda^{m}uv=\mu^{n}$

with borders length shorter than or equal $to\overline{N}$ then $m=n=2.$

LEMMA 3.4. Let $u$ and $v$ be non-empty words such that $|u|>|v|$ and $u=\lambda^{2}$ , $uv=\mu^{2}$

for some primitive words $\lambda$ , $\mu$ . Then $\mu=\lambda\overline{\lambda}^{n}$ for some positive integer $n$ and some
primitive word $\lambda-$ such that $\lambda$ is aleft factor of $\lambda-+$ and $| \overline{\lambda}|<\frac{|v|}{2}$ .

The following lemma will be used later in the proof of the existence of short ilr-
words.

LEMMA 3.5. Let $w$ not be a $k$-sesquipower and let $u$ be the longest proper left factor
of $w$ , $w=uv$ and $v\neq 1$ , which is a $k$-sesquipower, that is, $u=u_{1}^{s}u_{2}$ with $u_{2}$ a
proper left factor of $u_{1}$ , $u_{1}$ primitive and $|u_{1}|\leq k.$ Then for every integer $t$ such that
$|u_{1}^{t}u_{2}| \geq\min(|u_{1}^{t}u_{2}|, 2k)$ the word $u_{1}^{t}u_{2}v$ is not a k-sesquipower.

The following fact is left as an easy exercise.

LEMMA 3.6. Let $p$ not be a factor of $q$ and $|q|\geq 2|p|$ . Then $qp^{n}$ is primitive for all
integers $n>0.$

$X\}\S 4..\mathrm{S}\mathrm{h}\mathrm{o}\mathrm{r}\mathrm{t}\mathrm{i}\mathrm{l}\mathrm{r}- \mathrm{w}\mathrm{o}\mathrm{r}\mathrm{d}\mathrm{s}\mathrm{S}\mathrm{u}\mathrm{p}\mathrm{p}\mathrm{o}\mathrm{s}\mathrm{e}\mathrm{t}\mathrm{h}\mathrm{a}\mathrm{t}h\mathrm{i}\acute{\mathrm{s}}$
$\mathrm{a}\mathrm{p}_{\mathrm{r}\mathrm{i}\mathrm{m}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{v}\mathrm{e}}$

$\mathrm{i}\mathrm{l}\mathrm{r}- \mathrm{w}\mathrm{o}\mathrm{r}\mathrm{d}\mathrm{f}\mathrm{o}\mathrm{r}X\mathrm{o}\mathrm{f}\mathrm{l}\mathrm{e}\mathrm{f}\mathrm{f}\mathrm{i}\mathrm{n}\mathrm{i}\mathrm{t}\mathrm{e}N- \mathrm{c}\mathrm{a}\mathrm{n}\mathrm{o}\mathrm{n}\mathrm{i}\mathrm{c}\mathrm{a}\mathrm{l}$ wngorhd $\mathrm{w}\mathrm{i}\mathrm{g}\mathrm{r}\mathrm{e}\mathrm{a}\mathrm{t}\mathrm{e}\mathrm{r}\mathrm{t}\mathrm{h}_{\mathrm{m}}m\mathrm{m}:\{|x\mathrm{v}\mathrm{u}\mathrm{e}$
$x\mathrm{p}\mathrm{u}\mathrm{t}$

$K= \max(N, m)$ and $f=h^{k}$ , where $k\geq\underline{6K}\pm\underline{6N}h$ . We have the following key statement.

THEOREM 4.1. $f^{2}$ contains a factor of length greater than $3K$ and less than or equal
to $3K+3N$ which is either an $R$-good or an $L$-good $word$.

Proof. We first prove that $f$ has a factorization $f=f’f’$ such that either $f’$ is an
Rl-lr-word or $f’$ is an Lr-lr-word and

$\frac{|f|}{2}|-m<|f’|$ , $|f’|<| \frac{|f|}{2}|+m.$

Let $f=f_{1}f_{2}$ be a factorization such that

$\lfloor\frac{|f|}{2}\rfloor+1\geq|f_{1}$ $|$ , $|f_{2}|$ $\geq\lfloor\frac{|f|}{2}\rfloor$

Note that $f_{1}$ is an 1-word and $f_{2}$ is an $\mathrm{r}$-word. Suppose that there exists a word $u_{1}$ of
$X$ or $E_{l}$ $(X)$ such that fiui contains a factor, not a right one, in $X$

$f_{1}u_{1}\in A^{*}XA^{+}$

Note that $f_{1}$ is an 1-word and $f_{2}$ is an $\mathrm{r}$-word. Suppose that there exists a word $u_{1}$ of
$X$ or $E_{l}(X)$ such that fiui contains a factor, not a right one, in $X$

$f_{1}u_{1}\in A^{*}XA^{+}$



133

Since $f_{1}$ avoids $X$ and $u$ contains no proper factor in $X$ , we see that $f_{1}$ has a right
factor $x_{1}$ which is a proper left factor of $X$ :

$f_{1}=f_{1}’x_{1}$ .

Consider now the word $x_{1}f_{2}$ . If there is some word $u_{2}$ in $X+E_{r}(X)$ such that
$u_{2}x_{1}f_{2}$ contains a factor, not a left one, $xEX$ , that is

$u_{2}x_{1}f_{2}=$ llJxv

for some words $w\in A^{+}$ and $v\in A^{*}$ . Since #1/2, being a factor of $f$ , avoids $X$ and $u_{2}$

does not contains $x$ if $u_{2}\in E_{r}(X)$ and does not contain properly $x$ if $u_{2}\in X$ , we have

$|w|<|u2|<|wx|$ .

Thus, $x_{1}f_{2}$ has a left factor $x_{2}$ which is a right factor (of $x$ ) in $X$ and we can write

$x_{1}f_{2}=x_{2}f_{2}’$ .
We have then a factorization

$f=f_{1}x_{2}f_{2}’$

with $|f_{1}x_{2}|< \lfloor\frac{|f|}{2}\rfloor+m$ and $|f_{1}x_{2}|=|f_{2}|$ $-|x2|>\lfloor_{2}^{\cup f}\rfloor-m$ , because $0<|x_{2}|<m.$

Note that
$|x_{1}|<|x_{2}|$ .

Consider now the word $x_{1}f_{2}$ . If there is some word $u_{2}$ in $X+E_{r}(X)$ such that
$u_{2}x_{1}f_{2}$ contains a factor, not a left one, $x\in X,$ that is

$u_{2}x_{1}f_{2}=wxv$

for some words $w\in A^{+}$ and $v\in A^{*}$ . Since $x_{1}f_{2}$ , being a factor of $f$ , avoids $X$ and $u_{2}$

does not contains $x$ if $u_{2}\in$ Er{X) and does not contain properly $x$ if $u_{2}\in X,$ we have

$|w|<|u_{2}|<|wx|$ .

Thus, $x_{1}f_{2}$ has a left factor $x_{2}$ which is aright factor (of $x$ ) in $X$ and we can write

$x_{1}f_{2}=x_{2}f_{2}’$ .
We have then a factorization

$f=f_{1}x_{2}f_{2}’$

Now we proceed similarly with the latter factorization and with $f_{1}x_{2}$ playing the role of
$f_{1}$ in the former factorization for $f$ to obtain a left factor $x_{3}$ of $x$ and some factorization
of $f$ with the relevant relations, such that

$|x_{1}$ $|<|x_{2}$ $|<|x_{3}$ $|$

and so on. However we cannot iterate the argument infinitely, as the length of factors
of $X$ are bounded by $m$ . So we stop in some step, no later than the $m-1$-th one, to
obtain a factorization

$f=f’f’$
with the claimed properties regarding as on which step we get stuck, even or odd.

Suppose for definiteness that $f’$ is an Lr-lr-word. Recall that $|f\prime\prime|>\lfloor \mathrm{j}^{\mathrm{L}}$ $\rfloor-m.$

Let $u$ be the longest left factor which is an $m$-sesquipower of $f’f’f’$ . We write

$u$ $=$ $\mathrm{e}\mathrm{n}_{1}^{\mathrm{s}}u_{2}$

for $s\geq 0$ and $n_{2}$ is a proper left factor of $u_{1}$ . Since $f$ is a power of a primitive word, $h$ ,
of length longer than $m$ and $|u_{1}|\leq m$ by Fine and Wilf we have

$|u|<|$ $\mathrm{f}|+m$

otherwise $u_{1}\in h^{+}$ , hence $|u1$ $|>m,$ a contradiction.
Put $u_{0}=u$ if $|u|<2m$ and $n_{0}$ $=u_{1}^{t}u_{2}$ , where $t$ is the smallest integer such that

$|u\mathrm{i}u_{2}|\geq 2m,$ otherwise. In any case, we have

$\min(|u|, 2m)\leq|u_{0}|<3m.$

for $s\geq 0$ and $u_{2}$ is aproper left factor of $u_{1}$ . Since $f$ is apower of aprimitive word, $h$ ,
of length longer than $m$ and $|u_{1}|\leq m$ by Fine and Wilf we have

$|u|<|f|+m$

otherwise $u_{1}\in h^{+}$ , hence $|u_{1}|>m,$ acontradiction.
Put $u_{0}=u$ if $|u|<2m$ and $u_{0}=u_{1}^{t}u_{2}$ , where $t$ is the smallest integer such that

$|u_{1}^{t}u_{2}|\geq 2m,$ otherwise. In any case, we have

$\min(|u|, 2m)\leq|u_{0}|<3m.$
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Note that $n_{0}$ is a right, and left, factor of $u$ . Now let $u_{3}$ be the left factor of $f’f’f^{lJ}$ of
length $3K$ , we see that $u_{0}$ i $\mathrm{s}$ aproper left factor of $u_{3}$ . We have the following relations
for some words $l\in A^{*}$ , $r$ , $v\in A^{+}$

$f’f’f’=$ luorv $=$ lu3v,

where
$lu_{0}=u,$ $\mathrm{L}\mathrm{L}_{0?}=(L_{3}$ .

If $u=u_{0}$ , that is if $l=1,$ then

$|v|=|f$” $f’f’|-|u_{0}|>|f’f’|-3m> \lfloor\frac{|f|}{2}\rfloor-m$ $+|f|-3m$

$\geq\frac{3}{2}|f|-4m$ $\geq 9K+9N-4m>3N.$

If $|u|\geq 2K$ then $|u_{0}|\geq 2m$ and $|l|=|$ ?J $|-|u_{0}|<|7$ $|+$ $\mathrm{r}\mathrm{z}\mathrm{z}$ $-2m=|f|-m,$ hence

$|v|=|f$” $f’f’|-|l|-|u_{0}\mathrm{r}$ $|>|f$” $|+|f|-(|f|-m)-|u_{3}|=|f$” $|+|$ ?7? $|-3K$

$>| \frac{|f|}{2}|-m\mathit{1}-$ $m-3K$ $\geq\frac{|f|}{2}-3K$ $=3N.$

Now we use the hypothesis. Since $X$ is $N$-canonical and $f^{2}\in$ L{X), for the factorization

$f^{2}=f’lu_{3}v$

with respect to the factor $v$ of length $|\mathrm{t}\mathrm{z}|\geq 3N,$ there exist three words $v_{1}$ , VIV2 V3 such
that $0<|1^{)}1$ $|$ , $|\mathrm{t}^{)}21$ $|v_{3}|\leq N$ and $v_{1}$ , $v_{1}v_{2}$ , $\mathrm{V}1\mathrm{V}2\mathrm{V}3$ all are left factors of $v$ and

$f’lu_{3}v_{1}$ , $f’lu_{3}v_{1}v_{2}$ , $f’lu_{3}v_{1}v_{2}v_{3}$ $\not\in A^{*}L(X)$

which means
$u_{3}v_{1}$ , u$viV2, $\mathrm{U}3\mathrm{V}1\mathrm{V}2\mathrm{V}3\not\in A^{*}L(X)$ .

because of the large length $(>m)$ of the latter words.
If $|u|<2K$ then $u_{0}=u$ and $u$ is aproper left factor of all three $u_{3}v_{1}$ , u$viV2,

$\mathrm{U}3\mathrm{V}1\mathrm{V}2\mathrm{V}3,\overline{\mathrm{h}\mathrm{e}}\mathrm{n}\mathrm{c}\mathrm{e}$ all of them cannot be $m$-sesquipowers in view of the maximality of $|u|$ .
If $|u|\geq 2K$ then by Lemma 3.5 all of them cannot be $m$-sesquipowers either. So in any
case

$u_{3}v_{1}$ , u$viV2, $n_{3^{t)}1^{\mathit{1})}2^{\mathit{1})}3}$

are not m-sesquipowers.
Moreover, by Proposition 3.2, as $|$ tt3 $|=3K\geq 3N,$ one of the three words, say,

$\mathrm{U}\mathrm{Z}\mathrm{V}1\mathrm{V}2\mathrm{V}3$ , should be primitive.

an
$\mathrm{L}- \mathrm{g}\mathrm{o}\mathrm{o}\mathrm{d}\mathrm{o}\mathrm{n}\mathrm{e}.\mathrm{L}\mathrm{e}\mathrm{t}\mathrm{u}\mathrm{s}\mathrm{N}\mathrm{o}\mathrm{w}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{s}\mathrm{r}\mathrm{o}\mathrm{u}\mathrm{t}\mathrm{i}\mathrm{n}\mathrm{e}$t,ofovre!$\mathrm{t}\mathrm{a}\mathrm{b}\mathrm{c}\mathrm{e}\mathrm{a},g\mathrm{c}\mathrm{h}\mathrm{e}\mathrm{c}\mathrm{k}$$v\mathrm{t}\mathrm{L}^{2^{\mathrm{V}}}\mathrm{P}\mathrm{o}\mathrm{i}_{\mathrm{t}\mathrm{s}}^{\mathrm{S}\mathrm{a}}$ $\xi_{3),(4)\mathrm{a}\mathrm{n}\mathrm{d}(5)\mathrm{i}\mathrm{n}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{d}\mathrm{e}\mathrm{f}\mathrm{i}\mathrm{n}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}}^{\mathrm{o}\mathrm{o}\mathrm{d}\mathrm{w}\mathrm{o}\mathrm{r}\mathrm{d},\mathrm{a}\mathrm{n}\mathrm{d}\mathrm{m}\mathrm{o}\mathrm{r}\mathrm{e}\mathrm{t}\mathrm{h}\mathrm{a}\mathrm{n}\mathrm{t}\mathrm{h}\mathrm{a}\mathrm{t}}$

’

of a good word.
Clearly $g\not\in A^{*}L(X)$ . The fact that $g\not\in R(X)A^{*}$ follows from the fact that $u_{3}$ is a

left factor of $f’$ if $n_{0}$ $=u$ and t&3 has $u_{0}$ as a left factor, which is a left factor of $u$ of
length at least $2K\geq 2m>m,$ hence of $f’$ if $|$ rr $|\geq 2K.$ This shows also that $g$ is Lr-lr-
word, as $f’$ is so. Finally (5) holds, otherwise, $g$ is an $m$-sesquipower, a contradiction.
Certainly

$3K<|g|=|u\mathrm{s}|+|\mathrm{t}\mathrm{t}_{1}|$ $+|v_{2}|$ $+|v3|$ $\leq 3K+3N$
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what is desired to prove.

In virtue of Theorem 4.1, we have the following dichotomy. First, there are no
primitive $\mathrm{i}\mathrm{l}\mathrm{r}$-words of length longer than $m$ . Because good words are primitive ilr-
words, all of them have length shorter or equal to $m$ . In order to complete $X$ , then,
all we have to do is to search for appropriate goods words among the words of length
not exceeding $m$ . Second, there is a primitive $\mathrm{i}\mathrm{l}\mathrm{r}$-word longer than $m$ . This implies the
existence of an $\mathrm{L}$ or $\mathrm{R}$-good word, claimed in Theorem 4.1.

Nevertheless, how could we know in which branch of the dichotomy we are? The
answer is an easy consequence of the following results by Ito, Katsura, Shyr and Yu
[IKSY] :

PROPOSITION 4.2. Let $R$ be a regular set accepted by a deterministic automaton
consisting of $n>1$ states. Then
(i) $R$ contains a primitive word if and only if it contain a primitive word of length not
exceeding $3n-$ $3$

$o$
(?l $R_{gth}\mathrm{C}onLX^{i}ns_{e}^{in}\mathit{2}\%_{e}el(,m\mathrm{a}nyp3n-$

primitive words if and only ifit contains a primitive word

PROPOSITION 4.3. If $R$ contains only a finite number of primitive words then all of
them have length less than $n$ .

The next section is devoted to the completing $X$ , starting from an L- or R-good
word.

\S 5. Short Good Words. We may now suppose that we dispose of, say, an $\mathrm{L}$ good
word $g$ satisfying

$3K<|g|\leq 3K+3N$

in view of the discussion in the preceeding section. In order to complete $X$ . We follow
the steps below:

(a) If for almost all (i.e. all but finitely many) primitive $\mathrm{i}\mathrm{l}\mathrm{r}$ words $v$ , $v$ contains a
factor in $X+g$ , or, $vg$ contains a factor in $X$ or an occurences of $g$ dferent from the last
one (this issue we can effectively test in view of Proposition 4.2) then the set of good
words for $X+g$ is finite (the maximum length is effectively computable by Proposition
4.3) and we are finished. Otherwise

(b) We can effectively pick out a primitive $\mathrm{i}\mathrm{l}\mathrm{r}$ word $v$ such that

$|v|>2|g|$

and $vg$ contains no occurrence of any word in $X+g,$ except the last one (of $g$). We
state that $vg$ is both an L- and an $\mathrm{R}$-good word for $X$ . Indeed,

1. $vg$ is both an Lr- and an Rl-lr-word, because of the current assumption on $g$ and
on the set of ilr-words.

2. $vg$ is not in $F(X^{2})$ , as $|vg|>|g|>3m>2m,$ too long to be a factor of $X^{2}$ .
3. $vg$ is primitive, in view of Lemma 3.6.
4. $vg$ is not a $6K$-sesquipovzer (hence not a $m$-sesquipower). Because from any

equality for the overlapping
$xvg=vgy$

$\mathrm{W}\mathrm{d}\mathrm{o}^{\mathrm{e}\mathrm{r}\mathrm{e}x\in A^{+}}\mathrm{e}\mathrm{s}\mathrm{n}\mathrm{o}\mathrm{t}" \mathrm{o}\mathrm{n}\mathrm{t}\mathrm{a}\mathrm{i}\mathrm{n}’ \mathrm{a}!^{x|=|y|<}\mathrm{n}\mathrm{y}\mathrm{o}\mathrm{c}\mathrm{c}\mathrm{u}\mathrm{r}\mathrm{e}\mathrm{n}\mathrm{c}$levsgol,fig $\mathrm{a}_{\mathrm{i}\mathrm{f}\mathrm{f}\mathrm{e}\mathrm{r}\mathrm{e}\mathrm{a}^{X}\{!\mathrm{o}\mathrm{m}\mathrm{t}\mathrm{h}\mathrm{e}1\mathrm{a}\mathrm{s}\mathrm{t}\mathrm{o}\mathrm{n}\mathrm{e}.\mathrm{T}\mathrm{h}\mathrm{u}\mathrm{s}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{b}\mathrm{o}\mathrm{r}_{\mathrm{d}\mathrm{e}\mathrm{r}\mathrm{s}\mathrm{a}\mathrm{r}}^{\mathrm{a}\mathrm{n}\mathrm{d}v}\mathrm{e}}\mathrm{o}\mathrm{W}\mathrm{S}|y|\mathrm{f}\mathrm{o}\mathrm{r}g\mathrm{o}\mathrm{e}\mathrm{s}\mathrm{n}\mathrm{c}\mathrm{o}\mathrm{a}\dot{\mathrm{m}}$

,
longer than $|v|>2|g|>6K\geq 6m.$
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(c) Put $p=vg.$ So $p$ is both an L- and an $\mathrm{R}$-good word and $|p|>3|g|>9K\geq 9m.$

It may self-Overlap only with borders longer than $6m$ .
If for almost all 1-words $w\in E_{l}(X)$ , either $wp$ contains a factor in $X$ or $w$ contains

$p$ then we are done, the comma-free code $X\mathit{1}$ $p$ has only a finite number of good words
(of course, the hypotheses can be effectively tested) , we can complete it at least by trial.
Otherwise we can choose (again, effectively) an 1-word $q\in$ Ei(X) with $|$ ($7|\geq 2|p|$ such
that $qp$ avoids $X+p$ and $q$ does not contain any occurrence of $p$ other than the last
one.

By Lemma 3.6 $qp^{i}$ is primitive for all positive integers $i$ . We choose a positive
integer $n$ satisfying

$(n-1)|p|>|q|+6N.$

Note that $n>2.$ We have first

REMARK 5.1. It is routine to check that $qp^{n+1}$ is a good word for $X$ .

Let $G_{i}$ , for every $i=0,1$ , $\ldots$ , $n-$ l, be the set consisting of words of the form

$up^{i}qp^{n}$

satisfying the following conditions.
(i) $|u|\geq|p|$

(i) $u$ is an 1-word and up avoids $X:u\in E_{l}(X)$ , $up\not\in A^{*}XA^{*}$

(iii) $p$ is not a right or left factor of $u$

(iiii) $up^{i}qp^{n}$ is primitive $up^{i}qp^{n}\in Q.$

We have a few preliminary remarks.

REMARK 5.2. Since $|p|>9m>m$ and $p$ is primitive, $|q|\geq 2|p|$ and $p$ is not a factor of
$\mathrm{g}$ , all words of $G_{i}$ are not m-sesquipowers.

REMARK 5.3. All words of $G_{i}$ avoid $X$ and are not factors of $X^{2}$ .

REMARK 5.4. All words of $G_{i}$ are $\mathrm{i}\mathrm{l}\mathrm{r}$ words, $G_{i}\subseteq E(X)$ , because $u$ is an 1-word and $p$

is an $\mathrm{R}$-good word.

REMARK 5.5. If $up^{i}qp^{n}$ has another occurrence of $p^{n}$ , apart from the last one, then
it must occur in up if $i>0$ and in $uq$ if $i=0.$ This is because $|q|\geq 2|p|$ , $q$ does not
contain $p$ , $n>2$ and $p$ is primitive.

These remarks give rise to the following assertion.

PROPOSITION 5.6. (g) Every word of $G_{i}$ is a good $\mathrm{w}$ ord for $X$ .
(gg) All $w$ ords of $G_{i}$ are not factors of $p^{n}qp^{n}$ .

Next, we define the set $H$ as follows: $H$ consists of the words of the form $vp^{n}$

satisfying
(j) $|v|\geq|(\mathrm{j}|(\geq 2|p|>|p|)$

(jj) $v$ is 1-word and $vp$ avoids $X$ , in other words, $vp$ is 1-word: $vp\in E_{l}(X)$ .
(jjj) $p$ is not a right or left factor of $v$ , $q$ is not a right factor of $v$ .
(jjjj) $vp^{n}$ is primitive: $vp^{n}\in Q.$

It is routine to verify that the counterparts of Remarks 5.2 –5.4 and Proposition
5.6 are al $0$ valid for $H$ (instead of $G_{i}$ ). Also, by the similar reasons, we have

PROPOSITION 5.6. (g) Every word of $G_{i}$ is a good word for $X$ .
(gg) All words of $G_{i}$ are not factors of $p^{n}qp^{n}$ .

Next, we define the set $H$ as follows: $H$ consists of the words of the form $vp^{n}$

satisffing
(j) $|v|\geq|q|(\geq 2|p|>|p|)$

(jj) $v$ is 1-word and $vp$ avoids $X$ , in other words, $vp$ is l-wOrd: $vp\in$ Ei(X).

(jjj) $p$ is not a right or le ft factor of $v$ , $q$ is not a right factor of $v$ .
(jjjj) $vp^{n}$ is primitive: $vp^{n}\in Q.$

It is routine to verify that the counterparts of Remarks 5.2 –5.4 and Proposition
5.6 are also valid for $H$ (instead of $G_{i}$ ). Also, by the similar reasons, we have
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REMARK 5.7. If $vp^{n}$ has another occurrence of $p^{n}$ different bom the last one, then it
must be one in $vp$ .

$\mathrm{b}^{1}\mathrm{e}\mathrm{t}$

$\overline{G}_{i}=G_{i}-A^{+}G_{i}$

$\overline{H}=H-A^{+}H$$\overline{H}=H-A^{+}H$

as the sets of “minimal” words of $G_{i}$ and $H$ . The following proposition says that the
“minimal” words are of bounded length, hence $\overline{G}_{i}$ and $\overline{H}$ are finite.

PROPOSITION 5.8. (i) If $wp^{i}qp^{n}$ is a $lr$-word with $n>i\geq 0$ , $|\mathrm{t}\mathrm{p}|\geq 6N+|p|$ and if $p$ is
not a right factor of $w$ then $wp^{i}qp^{n}$ has a right factor in $G_{i}$ , hence in $\overline{G}_{i}$ .
(ii) If $wp^{n}$ is an $lr$-word with $|\mathrm{r}\mathrm{p}|\geq 6N+|q|$ and if both $p$ , $q$ are not right factors of $w$

then $wp^{n}$ has a right factors in $H$ , hence in $\overline{H}$ .

Proof, (i) Since $|\mathrm{t}\mathrm{P}|\geq 6N+|p|$ and $X$ is $N$-canonical, we can write

$\mathit{4}l\mathit{1}$ $=w’w_{6}w_{5}w_{4}w_{3}w_{2}w_{1}w_{0}$

where $w’\in A^{*}$ , $|w_{0}|=|p|$ , $|w_{j}|$ $\leq N$ and

$UJ_{j}$ . . . $\mathrm{f}\mathrm{f}_{1^{\mathrm{j}\mathrm{j}7}}\mathrm{o}p^{i}qp^{n}$

is an 1-word (hence a $1\mathrm{r}$-word) for $j=1$ , . . . ’ 6. In view of Proposition 3.2, there exist
two different integers

$1\leq s\leq 3<t\leq 6$

such that
$U\mathit{1}_{S}$ . . . 1111 $u$)$\mathit{0}p^{i}qp^{n}$

and
$w_{t}$ . . . $w_{1}$ $u$)$0p^{i}qp^{n}$

where $w’\in A^{*}$ , $|w_{0}|=|p|$ , $|w_{j}|\leq N$ and

$w_{j}\ldots w_{1}w0p^{i}qp^{n}$

is an 1-word(hence alr-word) for $j=1$ , $\ldots$ , 6. In view of Proposition 3.2, there exist
two different integers

$1<s<3<t<6$
such that

$w_{s}\ldots w_{1}w_{0}p^{i}qp^{n}$

and
$w_{t}\ldots w_{1}w_{0}p^{i}qp^{n}$

both are primitive, for, first $|p^{i}qp^{n}|>3N,$ and, second all $w_{j}\ldots$
$w_{1}w_{0}p^{\overline{t}}qp^{n}$ , $j=1$ , $\ldots$ , 6

are not $N$-sesquipowers, as $|p|>9K\geq 9N$ , $n>2$ and $q$ has no factor $p$. Moreover, at
least one of them has no left factor $p$ , otherwise, $p$ is self-Overlaps with borders shorter
than $(s-t)N<6N\leq 6K,$ which contradicts a property of $p$ which says that $p$ is not
a $6K$-sesquipower. Say

$w_{s}$ . . . $w_{1}w_{0}p^{i}qp^{n}$

has no left factor $p$ . Finally,
$w_{s}$ . . . $w_{1}n$)$0p^{i}qp^{n}$

as a factor of an $1\mathrm{r}$-word, avoids $X$ . All together, the facts above mean that

$\mathrm{U}^{\mathrm{j}}1_{\theta}$ . . . $\mathit{4}\mathit{1}J_{1}$

$UJ_{0p^{i}qp^{n}}$ $\in G_{i}$ .

(ii) is handled analogously. The proposition is proved.

The following statement is an immediate consequence of the preceding proposition.

THEOREM 5.9. Every word of $\overline{G}_{i}$ is no longer than $6N+(n+i+1)|p|+|q|\leq 6N+$
$2n|p|+|q|$ for $i=0,1$ , $\ldots$ , $n-1$ and every word of $\overline{H}$ is no longer than $6N+$ $\mathrm{r}\mathrm{z}|p|+|(\mathrm{j}|$ .
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We need a simple fact about the words of $G_{i}$ and $H$ .

COROLLARY 5.10. Every word of $G_{i}$ and $H$ has a unique occurence of $p^{n}$ .

PROPOSITION 5.11. (h) No word of $\overline{H}$ is a factor of $\overline{G}_{i}$ , for all $i=0,1$ , $\ldots$ , $n-$ l, and
vice versa.
(hh) No word of $\overline{H}$ or $\overline{G}_{i}$ is a factor of $qp^{n+1}$ and vice versa, $qp^{n+1}$ is not a factor of $\overline{H}$

or $\overline{G}_{i}$ , for all $i=0,1$ , $\ldots$ , $n-1.$

(hhh) No word of $\overline{G}_{i}$ is a proper factor factor of $\overline{G}_{j}$ , $0\leq i\leq j<n.$

(hhhh) No $word$ of $\overline{H}$ is a proper factor of another word in $\overline{H}$ .

Put now
$\overline{X}=qp^{n+1}+\cup n-1i=0\overline{G}_{i}+\overline{H}$.

Recall that every word of $\overline{X}$ is a good word for $X$ . How long are the borders of $X$?
By a mild argument we can show that they are much longer than $m$ which is helpful in
proving the comma-ffeeness of $X+\overline{X}$ .

As we might expect, all the constructions we have done so far aim at the following

THEOREM 5.12. $X+\overline{X}$ is a comma-free code.

Proof. Suppose the contrary that $X+\overline{X}$ is not comma-free. Then, in virtue of
Proposition 5.11, we can assume that there exists some words, not necessarily distinct,
$x_{1}$ , $x_{2}$ , $x_{3}\in X+\overline{X}$ and $r$, $l\in A^{*}$ such that

$x_{1}x_{2}=lx_{3}r$

and $|l|<|x_{1}$ $|$ , $|r|<|x_{2}|$ .
All $x_{1}$ , $x_{2}$ , $x_{3}$ should be in $\overline{X}$ due to the following reasons: $p$ is both an Lr- and an

Rl-word, every word of $\overline{X}$ is a good word (a little more: product of any two words of
$\overline{X}$ avoids $X$ ), the borders of $\overline{X}$ is larger than $m$ and $X$ is comma-free. But $x_{3}$ has an
occurrence of $p^{n}$ and every word of $\overline{X}$ , different from $\mathit{1}p^{n+1}$ , has only one occurrence
of $p^{n}$ , so the foregoing occurrence of $p^{n}$ in $x_{3}$ must overlap $x_{1}$ and $x_{2}$ , if $x_{2}\neq qp^{n+1}$ .
However this possibility is ruled out since $p$ is primitive, $n>2$ and every word in $\overline{X}$

has no left factor $p$ but has a right factor $p^{n}$ . So we have $x_{2}=qp^{n+1}$ . Note that $qp^{n+1}$

has exactly two occurrences of $p^{n}$ , hence $x_{3}$ is a right factor of $x_{l}qp^{n}$ . If $x_{3}=qp^{n+1}$

then $p$ is a right factor of $\mathrm{g}$ , contradiction. Otherwise $x_{3}\in\overline{G}_{i}$ or $x_{3}\in$ ff then $p^{n}qp^{n}$ is
a (right) factor of $x_{3}$ , again contradiction and thus the proof is completed.

We present our ultimate statement, the completion theorem.

THEOREM 5.9. Tie finite comma-free code $X+\overline{X}$ is maximal.THEOREM 5.9. The ffiite comma-free code $X+X$ is maximal.

Proof. It suffices to prove that good words for $X$ are no longer good ones for $X+X.$
It can be done as follows.

Let $f$ be an arbitrary good word for $X$ . Consider the word $f^{l}$ with $l$ arbitrarily
large but fixed integer.

1. If $f$ is a factor of $qp^{n+1}$ then obviously $f$ is not a good word for $X+\overline{X}$ . Now
suppose that $f$ is not a factor of $qp^{n+1}$ . If $p^{i}$ is a factor of $f^{l}$ then

$i|p|<|f|+|p|$
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otherwise, by Fine and Wilf and primitivity of $f$ , $f$ is a conjugate of $p$ , hence a factor
of $p^{2}$ a$\mathrm{n}\mathrm{d}$ all the more a factor of $\mathit{1}p^{n+1}$ , despite the assumption. So we get

$i< \frac{|f|}{|p|}+1$

which simply means that $i$ is bounded.
2. Suppose that $f^{l}$ contains an occurrence of $p^{n+1}$ :

$f^{l}=rp^{n+1}s$

for some words $r$ , $s$ with $r$ sufficiently long and $p$ not being a right factor of $r$ . If,
however, $q$ is a right factor of $r$ then $f^{l}$ contains $qp^{n+1}$ and $f$ is not good for $X+\overline{X}$ .
If $q$ is not a right factor of $r$ then $rp^{n+1}$ is an (sufficiently long) $\mathrm{b}$-word for $X$ , as $f$ is
so. Therefore $rp^{n+1}$ contains a right factor in $\overline{H}$ in virtue of Proposition 5.7 (ii), that
is, in $\overline{X}$ , and we are done for this alternative.

3. Now suppose that $f^{l}$ contains no occurrence of $p^{n+1}$ . Consider the word

$f^{l}qp^{n+1}$ .

If it ha a factor in $X$ , clearly, it cannot be a good word for $X+\overline{X}$ . Else, consider the
w0r1

$f^{l}qp^{n}$ .
Denote $w$ the longest right factor of $f^{l}qp^{n}$ which is in $(qp^{n})^{*}$ . Certainly $|w|\geq|qp^{n}|$ .
On the other hand, by Fine and Wilf

$|w|\leq|qp^{n}|+|f|+|(\mathrm{j}1)^{n}|$ ,

because in the opposite case, $f=qp^{n}$ in view of primitivity of both $f$ and $qpn$ . Con-
tradiction (or $f$ is not good for $X+X|$ .

Let write $w=(qp^{n})^{d+1}$ , $d\mathit{2}0$ , and

$f^{l}qp^{n}=rw=r(qp^{n})(qp^{n})^{d}$ .

because in the opposite case, $f=qp^{n}$ in view of primitivity of both $f$ and $qpn$ . Con-
tradiction (or $f$ is not good for $X+\overline{X}$ ).

Let write $w=(qp^{n})^{d+1}$ , $d\geq 0,$ and

$f^{l}qp^{n}=rw=r(qp^{n})(qp^{n})^{d}$ .

Let further $p^{i}$ be the longest right factor of $r$ in $p^{*}$ . Since $f^{l}$ is free from any occurrence
of $p^{n+1}$ , we have $i\leq n.$ We write

$r=tp^{i}$

for some words $t$ such that $p$ is not a right factor of $t$ .
If $i=n,$ by maximality of $|w|$ , $q$ is not a right factor of $t$ . This implies that $r=tp^{n}$

has a (right) factor in $\overline{H}$ , as $r$ , therefore $t$ , is chosen arbitrarily large at the onset. Thus

$f^{l}qp^{n}=rw$

contains a factor in $\overline{H}\subseteq\overline{X}$ and $f$ is not a good word for $X+X.$

Last possibility, if $0\leq i<n$ then

$tp^{\dot{\mathrm{t}}}qp^{n}$
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has a (right) factor in $G_{i}$ and the word

$f^{l}qp^{n}=tp^{i}w$

has a factor in $\overline{X}:f$ is not a good word for $X+\overline{X}$ either, which thus concludes the
proof.

References

[BP] J. Berstel, D. Perrin, “Theory of Codes”, Academic Press, Orlando, 1985.
[GGW] S. W. Golomb, B. Gordon, L. R. Welch, Comma-fiee Codes, Canad. J. Math.

10(1958)202-209.
[GVD] S. W. Golomb, L. R. Welch, M. Delbr\"uck, Construction and Properties of Comma-

free Codes, Biol. Medd. Dan. Vid. Selsk. 23(1958), 3-34.
[IKSY] M. Ito, M. Katsura, H. J. Shyr, S. S. Yu, Automata Accepting Primitive Words,

Semigroup Forum 37(1988), 45-52.
[J] B. H. Jiggs, Recent Results in Comma-free Codes, Canad. J. Math. 15(1963),

178-187.
[L] N. H. Lam, Finite Completion of Comma-Free Codes. Part 1, to appear in the

Proceedings of DLT2002, Lecture Notes in Computer Science, Springer.
[IJST] M. Ito, H. Jiirgensen, H. J. Shyr, G. Thierrin, OutGx and Inffi Codes and Related

Classes of Languages, Journal of Computer and System SCiences 43(1991), 484-
508.

[R] A. Restivo, On Codes Having No Finite Completions, Discreet Mathematics 17
(1977), 306-316.

[S] H. J. Shyr, “Free Monoids and Languages”, Lecture Notes, Hon ${\rm Min}$ Book Com-
pany, Taichung, 2001.


