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Introduction

Temporal logics defined for labeled partial orders (pomsets) come in two
kinds. The evaluation of a formula can be defined at cuts or, locally at
vertices. For suitable logics both approaches remain within first-Order de-
finability, but it is a difficult task for a given temporal logic to find a large
and natural class of pomsets where the logic is expressively complete, i.e.,
where every first-Order property can be expressed. Kamp’s Theorem says
that the pure future fragment of linear temporal logic LTL is expressively
complete for finite and infinite words $[9, 7]$ . This result has been extended
in [3] to Mazurkiewicz traces when formulae are evaluated at cuts, see
also [12] for a related result. However, evaluation at cuts has a price. The
satisfiability problem becomes non-elementary, as shown in [13]. This is
one of the motivations to consider a local temporal logic: we are interested
in a logic where the satisfiability problem is in PSPACE. The problem is
that we do not know whether we lose expressive powe When we restrict
ourselves to a linear temporal logic with evaluation at vertices and the
future modalities next and until, only, then the best result which has been
published so far covers cograph monoids, [2].

Cograph monoids are built up from free monoids by taking direct and
free products. We obtain free monoids $\Sigma^{*}$ , direct products of free monoids
like $\mathrm{N}^{k}$ , $\Sigma^{*}$ x $\mathrm{N}^{k}$ , or nested objects like $((\mathrm{N}^{k_{1}}*\mathrm{N}^{k_{2}})\cross\Sigma_{1}^{*})$ $*(\Sigma_{2}^{*}\cross \mathrm{N})$ .
The elements of cograph monoids are traces which have a representation
as series parallel posets. It turns out that the linear temporal logic LTL
is expressively complete for cograph monoids and that the satisfiability
* Partially supported by PROCGPE project $\mathrm{D}/9910318$ (MoVe)
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problem of LTL is in PSPACE for cograph monoids. This is the best we
can expect since the satisfiability problem of LTL is PSPACE complete for
words.

In this paper we define $\mathrm{L}\mathrm{T}\mathrm{L}_{\beta}$ -definable languages and we show that we
can use $\mathrm{L}\mathrm{T}\mathrm{L}_{\beta}$ for a class of $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}$ monoids which is strictly larger than the
class of cograph monoids. We restrict ourselves to finitary languages in
order to focus on the essential ideas. However, since the monoid structure
is not always used, we develop the concepts in terms of labeled partial
orders (pomsets).1

1 Aperiodic languages

For every monoid $M$ there is a notion of aperiodic language, A subset
$L$ $\subseteq M$ is called aperiodic, if there is a homomorphism $h$ : $M$ $arrow S$ to
some finite aperiodic monoid $S$ such that $L=h^{-1}h(L)$ . Our main interest
concerns $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}$ monoids, i.e., finitely generated ffee partially commutative
monoids [4]. For free monoids $\mathrm{U}$ ’ or, more generally for $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}$ monoids, it
is well-known that a language $L$ is first-Order definable if and only if it is
aperiodic [11, 10, 8, 5, 6]. Therefore we concentrate on aperiodic languages
and the challenge is to define a suitable temporal logic TL which is first-
order definable and which is rich enough to specify all aperiodic languages
of $M$ . We say that TL is expressively complete for $M$ in this case.

If $M$ $=\mathrm{N}$ is the monoid of natural numbers with addition, then the
aperiodic languages are just the finite or cofinite subsets. So, the task is
trivial for N.

One way to see Kamp’s result on words is to view it as a closure prop-
erty: If LTL is expressively complete for monoids $M_{0}$ and $\#_{1}$ , then it is
for the free product $M$ $=M_{0}*M_{1}$ . If a temporal logic TL is properly
defined, then we may add another (rather trivial) closure property: If TL
is expressively complete for monoids $M_{0}$ and $M_{1}$ , then it is for the direct
product $M_{0}\cross$ $\mathrm{f}_{1}$ . The reason why it works nicely with aperiodic lan-
guages is as follows: Let $h$ : $M_{0}\cross M_{1}arrow S$ be a homomorphism to some
finite (aperiodic) monoid $S$ . Define $h_{i}$ : $M_{i}arrow S$ by $h_{0}(u)=h(u, 1)$ and
$h_{1}(v)=h(1, v)$ . Then $h^{-1}(s)$ is a finite union of languages of the form
$h_{0}^{-1}(s_{0})\cross h_{1}^{-1}(s_{1})$ for each $s$ $\in S.$ Indeed, it is enough to consider all pairs
$(s_{0}, s_{1})\in S\cross S$ with $s_{0}s_{1}$ $=s$ in $S$ . This observation is closely related to
what is known as Mezei’s Theorem.

1 The work in this note is based o$\mathrm{n}$ a collaboration with Paul Gastin. The
techniques here are very close to those of [2].
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So both closure properties lead to an expressively complete temporal
logic for cograph monoids. By well-known closure properties of cographs [1],
a $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}$ monoid is not a cograph monoid if it contains the $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}$ monoid
$M(P_{4})=\{a, b, c, d\}^{*}/\{ac=ca, ad =da, bd =db\}$ as a submonoid. (This
means the independence relation contains a $P_{4}$ in the graph theoretical
sense, i.e., a path of four vertices, hence the name.)

So, if our favorite temporal logic TL captures finite and cofinite sets as
well as all aperiodic sets of A#(7’4) and if moreover we can show closure
properties for direct and free products, then we are already beyond Kamp’s
Theorem for cograph monoids. This is the purpose of the logic LTLj) defined
below.

2 Pomsets

For set theoretical convenience let us fix some alphabet $\Gamma$ of large enough
cardinality which can be viewed as our universe. By $\Sigma$ we always mean
a finite subset of $\Gamma$ A pomset is defined here to be a finite partial order
$(V, \leq)$ together with a labeling function A : $Varrow$ E. Strictly speaking a
pomset $t$ is an isomorphism class of a labeled partial order, $t$ $=[V, \leq, \lambda]$ .
By $<$. we denote the direct successor relation in the Hasse diagram of $\mathrm{t}$ .
Thus, $x$ $<$. $z$ , if $x\leq y$ $\leq z$ implies either $x$ $=y$ or $y=z,$ but not both.
The empty pomset is denoted by 1 and the set of all pomsets by P. The
set of all pomsets $[V, \leq, \lambda]$ with $\lambda(V)\subseteq$ $\mathrm{U}$ is called $\mathrm{P}(\Sigma)$ , by $\mathrm{p}+(\Sigma)$ we
mean $\mathrm{P}(\Sigma)\backslash \{1\}$ . The sets $\mathrm{P}$ and $\mathrm{P}(\Sigma)$ are monoids by taking the complex
product: $[V_{1}, \leq_{1}, \lambda_{1}]$ $[V_{2}, \leq_{2}, \lambda_{2}]=[V, \leq, \lambda]$ where $V$ is the disjoint union
of $V_{1}$ and $V2$ , A $=\lambda_{1}\cup\lambda_{2}$ and $\leq$ is the transitive closure of the relation
$\leq_{1}$ $\cup\leq_{2}$ $\cup V_{1}\cross V_{2}$ . The empty pomset 1 is the unit element and $\mathrm{P}(\Sigma)$ is
a submonoid of P.

If $a\in\Gamma$ is a letter, then we also view $a$ as a pomset consisting of one
vertex labeled by $a$ . Hence, for $a\in\Gamma$ , $t\in$ P, the pomset a-t is a pomset
with a single minimal vertex. In particular, the free monoid $\mathrm{F}$’ becomes a
submonoid of $\mathrm{P}(\Sigma)$ .

Let $t$ $=[V, \leq, \lambda]\in$ P be a pomset. The set of minimal elements is
denoted by $\min(t)$ , by ${\rm Min}(t)$ we mean $\lambda(\min(t))$ . Hence $\min(t)\subseteq V$ and
${\rm Min}(t)\subseteq\Sigma$ . For $a\in\Gamma$ and $t$ $\in$ P we have ${\rm Min}(a- l)=\{a\}$ . By abuse
of language, if $t$ $=[V, \leq, \lambda]$ and $x$ $\in V,$ then we also write $x$ $\in$ t. For
$s=a\cdot t$ the letter $a$ means also the unique minimal vertex of $s$ . For $A\subseteq\Sigma$

we denote by $({\rm Min}\subseteq A)$ the set { $t$ $\in$ P $|{\rm Min}(t)\subseteq A$}, finally we let
$({\rm Min}=A)$ the set { $t$ $\in$ P $|{\rm Min}(t)=A$ }.
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3 Linear temporal logic

The logic LTL(JC) is given by the following syntax:

$\varphi::=[perp]|a\in \mathrm{F}$ $|\neg\varphi|\varphi\vee\varphi$ $|\mathrm{X}\varphi|\varphi \mathrm{U}\varphi$ .

The symbol 1 means false, $\mathrm{X}\varphi$ claims existentially that ? holds for
some immediate successor of the current vertex; $\varphi\cup\psi$ is an until claiming
that $\psi$ holds for some vertex in the future of the current one and universally
that $\varphi$ holds for all vertices in between. More precisely, let $t=[V, \leq, \lambda]\in \mathrm{P}$

and let $x\in t.$ The semantics is inductively given as follows:

$t$ , $x\models a$ if $\lambda(x)=a$

$t$ , $x\models\neg\varphi$ if $t$ , $x\#$ $\mathit{1}$

$t$ , $x\models\varphi\vee\psi$ if $t$ , $x\models$
$\mathrm{r}\varphi$

$\vee t$ , $x\models\psi$

$t$ , $x\models \mathrm{X}\varphi$ if $\exists y$ , $x<$. $y$ &t, $l$ $\models/$’

$t$ , $x\models 5\varphi\cup\psi$ if ’$\mathit{3}z$ , $x\leq z$ &t, $z\models\psi$ $\ \forall x\leq y<z$ , $t$ , $y\models\varphi$

We define $\mathrm{T}=\urcorner 4$ , hence $\mathrm{T}$ means $tme$. We derive some more operators
from the above ones. Eventually (or future) $\varphi$ claims the existence of some
vertex where $\varphi$ holds in the future of the current one: $\mathrm{F}\varphi=\mathrm{T}\mathrm{U}\varphi$ . Its
dual operator, always or globally ?, means that A holds at all positions
in the future of the current one: $\mathrm{G}\varphi=\neg \mathrm{F}\neg\varphi$ . Finally, for $A\subseteq\Sigma$ we let
$A\in$ LTL(U) also denote the formula $A=_{a\in A}a$ .

Note that the semantics of the until operator does not use any path
formula; and it can be defined in first-Order logic. The question is how to
define a language $L(\varphi)\subseteq$ P for each $\varphi$

$\in \mathrm{L}\mathrm{T}\mathrm{L}(\Sigma)$ . If $t\in \mathrm{P}$ has a unique
minimal vertex $x_{0}$ , then it is rather clear that we should have $t\in L(\varphi)$ if
and only if $t$ , $x_{0}\models\varphi$ . But what do we do if $t$ has no minimal vertex, $\mathrm{i}.\mathrm{e}.$

}

$t=1,$ or more importantly, if $t$ has several minimal vertices?
There are several choices to resolve this problem which may lead in-

deed to different language classes. Here we proceed as follows: Given $\varphi\in$

LTL(27), choose some letter $c\in\Gamma\backslash \Sigma$ (so, $c$ does not occur in the formula
$\varphi)$ . Then define $L_{c}(\varphi)=$ { $t\in$ P $|c\cdot l,$ $c\models\varphi$}. This means $\varphi$ is evaluated at
the unique minimal vertex of the pomset $c\cdot \mathrm{t}$ . By induction on /, we have
$L_{c}(\varphi)=L_{d}(\varphi)$ for all $c$ , $d\in\Gamma\backslash \Sigma$ . Therefore, we denote $L_{c}(\varphi)$ rather by
$L\mathfrak{p}(\varphi)$ , where $\#$ is some special symbol not used otherwise.
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Some sets are easy to express:

$({\rm Min}\subseteq 4)$ $=\mathrm{L}_{\beta}(\neg \mathrm{X}\neg A))$ ,
$({\rm Min}=A)=\mathrm{L}\mathfrak{y}$ $(\neg \mathrm{X}\neg A \Lambda /\mathrm{S} a\in A\mathrm{X}a)$ ,

$\mathrm{P}(\Sigma)=\mathrm{L}_{\beta}(_{A\subset\Sigma(\neg \mathrm{X}\neg A\wedge\bigwedge_{a\in A}\mathrm{X}(a\Lambda \mathrm{G}} \Sigma)))$ .

For a subset $M\subseteq \mathrm{P}$ we denote by LTLj (M) the class of all languages
$L\subseteq M$ where there is some $\varphi$

$\in \mathrm{L}\mathrm{T}\mathrm{L}(\Sigma)$ such that $L$ $=$ L$((p) $\cap M\mathrm{r}$

In [2] we have considered a slightly different syntax using initial formu-
lae. In the framework here this means that we have considered a restricted
class of formulae, where $\varphi$ is a Boolean combination of $\mathrm{X}\psi$ formulae with
$\psi\in$ LTLji ). The reason is that on one hand for these formulae we can
avoid the artificial introduction of a single minimal point and on the other
hand the restricted class is still rich enough to express all first-Order lan-
guages of cograph monoids. However, in the restricted class some languages
cannot be expressed anymore. To give an idea why this holds let $M\subseteq I(\Sigma))$

be the set of all pomsets without auto concurrency, i.e., vertices with the
same label are always ordered. Consider [ $=\{a, b, c, d\}$ and let

$L=\{aarrow dbarrow(\nearrow arrow)arrow c|||$ $barrow c\}\subseteq \mathrm{P}(\Sigma)$ .

Inside $({\rm Min}=\{a, d\})$ a Boolean combination of $\mathrm{X}\psi$ formulae can be
transformed into a disjunction of conjunctions of $\mathrm{X}\psi$ formulae. Now, if
infinitely many $t\in L$ are in $\mathrm{L}_{\#}(\mathrm{X}\psi)$ , then there are also infinitely many
$s\in \mathrm{L}_{\#}(\mathrm{X}\psi)$ where $s$ has the form

$aarrow barrow carrow barrow c$ . $|$

, ) $arrow c$

$\nearrow$

$darrow c$

On the other hand, we have $L\in \mathrm{L}\mathrm{T}\mathrm{L}_{\#}(M)$ by a formula which is a
conjunction $\varphi\Lambda\neg \mathrm{X}\neg\{a, d\}\Lambda \mathrm{X}\psi_{a}\Lambda \mathrm{X}\psi_{d}$ where $\varphi=\neg c\cup b$ and for $e=a$ , $d$

the formula $\psi_{e}$ states $e$ , and after $e$ there is $b$ ( $c$ resp.), globally after $b$

there is $c$ , and globally after $c$ there is either $b$ or nothing. This shows that
$\mathrm{L}\mathrm{T}\mathrm{L})\mathrm{j}(\mathrm{M})$ contains more languages than the class investigated in [2].

The following fact can be shown.

Proposition 1. The class $\mathrm{L}\mathrm{T}\mathrm{L}_{\mathrm{Q}}(M(P_{4}))$ is the class of all aperiodic lan-
guages of the trace monoid $M(P_{4})$ .
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In the following we say $\mathrm{L}\mathrm{T}\mathrm{L}\#$ is expressively complete for a monoid
$M\subseteq$ P, if all aperiodic languages $L\subseteq M$ can be represented as $\mathrm{L}_{\beta}(\varphi)\cap\#$

for some suitable $\varphi\in$ LTL(Z’). Thus by the proposition above, $\mathrm{L}\mathrm{T}\mathrm{L}_{\Downarrow}$ is
expressively complete for $M(P_{4})$ . The result we are interested in here can
be stated as follows.

Theorem 1. Let Mo, $M_{1}\subseteq$ P be submonoids such that the logic LTLU
is expressively complete for both $M_{0}$ and $\mathrm{f}_{1}$ . Then $\mathrm{L}\mathrm{T}\mathrm{L}\#$ is expressively
complete for the direct product $M_{0}\cross M_{1}$ and for the free product $M_{0}*M_{1}$ .

4 Definability of mappings

In the following $M$ denotes a subset of P. We shall prove Theorem 1 from
a slightly more general viewpoint. Let $h:Marrow S$ be any mapping to some
finite set $S$ . We say that $h$ is definable in LTLj (M) if $h^{-1}(s)\in$ LTLj(M)
for all $s\in S.$ For example, let $S’=2^{\Sigma}$ be the power set of $\Sigma$ and $S=$

$S’\cross S’\cup\{*\}$ . Then define $h$ : $\mathrm{P}arrow S$ by $\mathrm{h}(\mathrm{t})=({\rm Min}(t), \mathrm{A}(\mathrm{F}))$ if $t=[V, \leq, \lambda]$

with $\lambda(V)\subseteq\Sigma$ and $h(t)=*$ otherwise. Then $h$ is definable in $\mathrm{L}\mathrm{T}\mathrm{L}\mathfrak{g}(M)$ .
When we work with two structures Mo, $M_{1}\subseteq \mathrm{P}$ , we shall assume that
$M_{i}\subseteq \mathrm{P}(\Sigma_{i})$ , $i=0,1$ where $\mathrm{U}_{0}\cap \mathrm{U}_{1}=\emptyset$. This is always possible by some
suitable relabeling.

4.1 Closure under direct products

Let $\mathrm{U}$ $=\mathrm{X}_{0}\cup\Sigma_{1}$ be a disjoint union, i.e., $\Sigma_{0}\cap\Sigma_{1}=\emptyset$ . Assume that
we have $M_{i}\subseteq \mathrm{P}(\Sigma_{i})$ for $i=0,1$ . Then, a pair $(u, v)\in M_{0}\cross M_{1}$ can be
represented by the disjoint union of $u$ and $v$ , and vice versa: a pomset
$t\in \mathrm{P}$ which is the disjoint union of pomsets $u\in M_{0}$ and $v\in M_{1}$ can be
written as a pair $t$ $=(u, v)\in M_{0}\cross M_{1}$ . Thus, $M_{0}\cross \mathrm{f}_{1}\subseteq \mathrm{P}(\Sigma)$ . Moreover,
if $1\in M_{i}$ , then $M_{i-1}\subseteq M_{0}\cross M_{1}$ for $i=0,1$ .

Remark 1. There is some $\varphi$
$\in \mathrm{L}\mathrm{T}\mathrm{L}(\Sigma)$ such that $\mathrm{L}\mathfrak{g}(\varphi)=\mathrm{P}(\Sigma_{0})\cross \mathrm{P}(\Sigma_{1})$ .

$Pro\mathrm{o}/$. For $i=0,1$ let $\psi\in$ LTL(F) with $\mathrm{L}\mathfrak{g}(\psi)=\mathrm{P}(\Sigma)$ . Define

$\varphi=\psi$ $\Lambda \mathrm{G}$ ( $\bigwedge_{i=0,1}$
( $\mathrm{G}$ $\Sigma_{i}\neg\Sigma_{i}$ )).

口
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Lemma 1. For $i=0,1$ let $\alpha_{i}\in$ LTL(II) with $\mathrm{L}\mathfrak{g}(\alpha_{i})\subseteq \mathrm{P}(\Sigma_{i})$ . Then there
is some $\alpha\in$ LTL(!) with

$\mathrm{L}_{\beta}(\alpha)=$ Lp $(\alpha_{0})\cross \mathrm{L}_{\#}(\alpha_{1})\subseteq \mathrm{P}(\Sigma)$ .

Proof. Since $\Sigma_{0}\cap$ $\mathrm{r}_{1}$ $=\emptyset$ and $\mathrm{L}\#(\alpha_{i})\subseteq$ P(Z’i), the set $\mathrm{L}_{\#}(\alpha_{0})\cross \mathrm{L}\mathfrak{y}(\alpha_{1})$ is
well-defined as a subset of $\mathrm{P}(\Sigma)$ . Let $\varphi\in$ LTL $(\Sigma)$ from the remark above
such that $\mathrm{L}\mathfrak{g}(\varphi)=\mathrm{P}(\Sigma_{0})\cross \mathrm{P}(\Sigma_{1})$ . By symmetry, it is enough to find $\overline{\alpha_{0}}$

such that
$\mathrm{L}\mathfrak{p}$ $(\overline{\alpha_{0}})\cap \mathrm{P}(\Sigma_{0})\cross \mathrm{P}(\Sigma_{1})=\mathrm{L}_{\beta}(\alpha_{0})\cross$ $\mathrm{P}(\Sigma_{1})$ .

(Indeed, then $\alpha=\overline{\alpha_{0}}\Lambda\overline{\alpha_{1}}\Lambda\varphi$ satisfies the assertion of this lemma.) We
construct $\overline{\alpha_{0}}$ in such a way that for all $(u, v)\in \mathrm{P}(\Sigma_{0})\cross \mathrm{P}(\Sigma_{1})$ and $x\in\neq\cdot$ $u$

we have
$\#$ $\ulcorner(u, v)$ , $x\models\overline{\alpha_{0}}$ if and only if $\#$ $u$ , $x\models\alpha_{0}$ .

The construction is clear for Boolean operations and $a\in$ U. Hence, let
$\alpha_{0}=\mathrm{X}\beta_{0}$ . Then define $\overline{\alpha_{0}}=\mathrm{X}(\beta_{0}\Lambda \mathrm{U}_{0})$ . For $\alpha_{0}=\beta_{0}\cup\gamma 0,$ define $\overline{\alpha_{0}}=$

$(\overline{\beta_{0}}\Lambda\neg\Sigma_{1})$
$\mathrm{U}(\tilde{\gamma_{0}}\Lambda\neg \mathrm{U}_{1})$ . For the correctness observe that the set of vertices

in $\#$ $(u, v)$ satisfying $\Sigma_{0}$ is $u$ , whereas $\neg\Sigma_{1}$ is true for the set of vertices
in $ $u$ . Cl

Proposition 2. For $i=0,1$ let $h_{i}$ : $M_{i}arrow S_{i}$ be definable in $\mathrm{L}\mathrm{T}\mathrm{L}\mathfrak{y}(M_{i})$ .
Then the mapping $h$ : $M_{0}\mathrm{x}M_{1}arrow$i $S_{0}\cross S_{1},7(\mathrm{J}, v)=(h_{0}(u), h_{1}(v))$ is
definable in $\mathrm{L}\mathrm{T}\mathrm{L}\mathfrak{g}(M_{0}\cross M_{1})$ .

Proof. Let $(s_{0}, s_{1})$ $\in S_{0}\cross S_{1}$ and $\alpha_{i}\in$ LTL $(\Sigma_{i})$ such that $h_{i}^{-1}(s_{i})=\square$

$\mathrm{L}\#(\alpha_{i})\cap M_{i}$ for $i=0,1$ . Take $\alpha$ as in the lemma above.

Corollary 1. If LTLA is expressively complete for submonoids Mo, $M_{1}\subseteq$

$\mathrm{P}$, then it is expressively complete for the direct product $\mathrm{f}_{0}$ $\cross M_{1}$ .

4.2 Closure under free products

Again, let $\mathrm{U}$ $=$ $\mathrm{r}_{0}$ $\cup\Sigma_{1}$ with $\mathrm{U}_{0}\cap \mathrm{F}_{1}=\emptyset$ and $M_{i}\subseteq \mathrm{P}(\Sigma_{i})$ for $i=0,1$ .
The free product $M$ of $M_{0}$ and $M_{1}$ is defined by all sequences $(t_{1}, \mathrm{C}3 \cap’ t_{n})$ ,
$n\geq 0,$ where with $t_{0}=1$ for all $i=0,1$ and $1\leq j\leq n$ we have $t_{j-1}\in M_{i}$

implies $t_{j}\in M_{1-i}$ . We identify $(t_{1},1|\cdot, t_{\mathrm{n}})$ with the (complex) product
$t_{1}-$ ?. $t_{n}$ . Hence, we view $M\subseteq \mathrm{P}(\Sigma)$ . If $M_{0}$ , $M_{1}$ are submonoids of $\mathrm{P}$, then
$M$ is the usual free product $M_{0}*M_{1}$ .
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Lemma 2. Let $\alpha\in$ LTL(27) and $i\in\{0,1\}$ . Then there is a formula
$\alpha_{i}\in$ $\mathrm{L}\mathrm{T}\mathrm{L}(\mathrm{U}_{i})$ such that for all letters $c\in\Gamma\backslash \mathrm{X}_{i}$ we have

$L_{\mathrm{c}}(\alpha_{i})\cap \mathrm{P}^{+}(\Sigma_{i})$ $({\rm Min}\subseteq\Sigma_{1-},)$ $=(\mathrm{L}\#(\alpha)\cap \mathrm{P}^{+}(\Sigma_{i}))(({\rm Min}\subseteq \mathrm{U}_{1-i})$ .

Proof. We may assume that a $\in$ $\mathrm{L}\mathrm{T}\mathrm{L}(\mathrm{U}_{i})$ and $\mathrm{L}\mathfrak{g}(\alpha)\subseteq \mathrm{p}+(\Sigma_{i})$ . In particu-
lar, $\mathrm{L}\mathfrak{g}(\alpha)=$ Lc(a) for all $c\in\Gamma\backslash \Sigma_{i}$ . Consider some $c\in\Gamma\backslash \Sigma_{i}$ , $t\in \mathrm{p}+(\Sigma_{i})$

and $s\in$ $({\rm Min}\subseteq \mathrm{U}_{1-i})$ . It is enough to construct $\alpha_{i}\in \mathrm{L}\mathrm{T}\mathrm{L}(\Sigma_{i})$ such that
for all vertices $x\in c$ { $t$ we have:

$c\downarrow ts$ , $x\models\alpha_{i}$ if and only if $c\cdot t$ , $x\models\alpha$ .

Again, this is clear for Boolean operations. For $\alpha=a\in\Sigma_{i}$ , there is nothing
to do. For $\alpha=\mathrm{X}\beta$ let $\alpha_{i}=\mathrm{X}(\beta_{i}\Lambda\Sigma_{i})$ . For $\alpha=$ $\mathrm{d}$ U7 let $\alpha_{i}=$ $(\beta_{i}\Lambda \mathrm{X} \Sigma_{i})$ $\cup\gamma_{i}$ .
For the correctness observe that $t\in \mathrm{p}+(\Sigma_{i})$ . Hence, if $x\in c$ ( $t$ is a vertex
which is not a maximal vertex of $t$ and if $z$ $\in s,$ then every path from $x$

to $z$ in $c\cdot t^{1}s$ passes through some maximal vertex $y$ of $t$ and then $\cross\Sigma_{i}$ is
not satisfied at $y$ . $\square$

Proposition 3. Let $S$ be a finite aperiodic monoid and let $h_{i}$ : $M_{i}arrow S$

be definable in LTLA $(M_{i})$ for $i=0,1$ . Define $h$ : $Marrow S$ by $h(t_{1}, l|\circ , t_{n})=$

$h(t_{1})\uparrow$ $(\supset \mathrm{h}(\mathrm{t}\mathrm{n}))$ Then $h$ is definable in $\mathrm{L}\mathrm{T}\mathrm{L}_{\beta}(M)$ .

Proof. Let $e$ : $S^{*}arrow S$ be the canonical homomorphism which evalu-
ates a sequence, $\mathrm{i}.\mathrm{e}.$ , $e(s_{1}$ , . . . ’

$s_{n})=s_{1}\supset\cdot s_{n}$ . Define $f$ : $Marrow S^{*}$ by
$f(t_{1}, .l ., t_{n})=(h(t_{1}), , ., h(t_{n}))$ . Then $h=e\circ f$ . Fix some $s\in S$ .
By Kamp’s Theorem for words we have $L(\varphi)=e^{-1}(s)\cap S^{+}$ for some
$\varphi$

$\in$ LTL(5), where for convenience $L(\varphi)=$ Lp(X $\varphi$) $\cap$s $S^{+}\mathrm{n}$ We construct
a formula $\alpha\in \mathrm{L}\mathrm{T}\mathrm{L}(\Sigma)$ such that for all ($t_{1},$

$($ . , $t_{n})\in M$ with $n\geq 1$

we have: $(t_{1}$ , . , . , $t_{n})\in \mathrm{L}_{\beta}(\alpha)$ if and only if $(h(t_{1}), . |., h(t_{n}))\in L(\varphi)$ . For
$i=0,1$ we construct a formula $\alpha_{i}$ such that for all $c\in\Gamma\backslash \Sigma_{i}$ we have:
$(t_{1}, \urcorner \not\subset \supset’ t_{n})\in L_{c}(\alpha_{i})$ if and only if both $(h(t_{1}), \mathrm{t} ., h(t_{n}))\in L(\varphi)$ and
$t_{1}\in \mathrm{p}+(\Sigma_{i})$ . We do this by induction on $\varphi$ .

The construction is clear for Boolean operations. For $\varphi=s\in S$ we
have to consider $t_{1}\in h^{-1}(s)\cap(M_{i}\mathrm{z}\{1\})=h_{i}^{-1}(s)\cap(M_{i}\mathrm{s} \{1\})$ . The
resulting formula $\alpha_{i}$ is given by the lemma above.

Since we are transforming LTL formulae on words, it is now enough to
consider formulae of type $\mathrm{X}(\varphi \mathrm{U}\psi)\in$ LTL(S). We have $(h(t_{1}), \} | ., h(t_{n}))\in$

$L(\mathrm{X}(\varphi\cup\psi))$ if and only if there is $\mathrm{I}<k$ $\leq n$ such that for all $1<j<k$
we have both $(h(t_{k}), : . ., \mathrm{h}(\mathrm{t}\mathrm{n}))\in L(\psi)$ and $(h(t_{j}), . | ., h(t_{n}))\in L(\varphi)$ .
By induction, for $\ell=0$ , $\mathrm{I}$ , there are $\beta_{l}$ , $\gamma\ell\in \mathrm{L}\mathrm{T}\mathrm{L}(\Sigma_{\mathit{1}})$ such that for all
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$c\in\Gamma\backslash \Sigma_{l}$ we have: $c\cdot t_{k}\mathrm{r}$ . $t_{n}$ , $c\models\gamma\ell$ if and only if both $f(t_{k}, 4 \mathrm{J}_{n})\in L(\psi)$

and $t_{k}\in \mathrm{p}+(\Sigma_{l})$ . Analogously, $c$ $t_{j}$ { $\cdot t_{n}$ , $c\models\beta_{l}$ if and only if both
$f(t_{j}, \tau . , t_{n})\mathrm{E}$ $L(\varphi)$ and $t_{j}\in \mathbb{P}^{\vdash}(\Sigma_{\ell})$ . The resulting formula $\alpha_{i}$ is almost
independent of $i$ . We define:

$\alpha_{i}=\mathrm{X}(\Sigma_{i}\wedge(\vee$ $\Sigma_{\ell}\Lambda(\cross\Sigma_{\ell}\vee\beta_{l}))\cup(\vee$ $\Sigma_{l}\Lambda\neg \mathrm{X}\Sigma_{\ell}\wedge\gamma_{\ell)}$

$l=0,1$ $\ell=0,1$

口

Conclusion: We have seen that $\mathrm{L}\mathrm{T}\mathrm{L}_{\beta}$ is a local and pure future tempO-
ral logic. The class of $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}$ monoids where LTLjj is expressively complete
is strictly larger than the class of cograph monoids which has been studied
in [2]. The challenging programme remains to see whether or not, $\mathrm{L}\mathrm{T}\mathrm{L}_{\beta}$

is expressively complete for all $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}$ monoids. More general, it would be
interesting to study the expressive power of $\mathrm{L}\mathrm{T}\mathrm{L}_{\beta}$ in other classes of pom-
sets.
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