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Abstract
We present a result on summability of power series in one variable, whose coefficients are holomor-
phic functions of several other complex variables. This result then is applied to the Cauchy problem
for the heat equation in several spatial variables.

1 Introduction

In very recent articles, formal power series solutions of partial differential equations in two variables have
been investigated: Some authors determined their Gevrey order, while others have been concerned with
their (multi-)summability properties. Without claim of completeness, we here mention, in alphabetical
order, W. Balser [1,3,4], Balser and Kostov [5], Balser and Miyake [6], Chen, Luo, and Zhang (7], Gérard
and Tahara (8], M. Hibino [9-13], K. Ichinobe [14], Lutz, Miyake, and Schifke [15], M. Miyake [17-20],
Miyake and Hashimoto [21], Miyake and Yoshino [22-24], S. Ouchi [25-28], and Plif and Ziemian [29].
A first attempt to generalize results from [3] to the case of more than two variables has been made
by S. Malek [16). He considered a general PDE with constant coefficients, but required several technical
assumptions in order to be able to adapt the proofs from [3] to this situation. In this paper we shall study
the heat equation in several spatial dimensions, but follow a different approach: First, we shall generalize
‘a lemma from [5] to the case of power series in more than two variables. Then we shall apply this result
and briefly indicate the chances as well as the technical difficulties arising in cases of more general PDE.

2 Summability of series with variable coefficients

In this and later sections we shall be concerned with holomorphic functions in several complex variables,
and it shall make sense to seperate these variables into two groups, denoted as z = (#,...,2,) resp.
w = (w1, ..., W), with non-negative integers n and m. While the case of n = 0 shall not be of interest
here, it makes sense to allow that m = 0, in which case we should interprete functions of z and w as
being independent of w,,. .., wy.
Let (z;(2,w))j>0 be a given sequence of functions that are holomorphic in a polydisc D = D; x Dy
about the origin of C* x C™, and let k¥ > 0 and d € R be given. Then the formal power series
£(t,z,w) = Z 5T zi(z,w) (2.1)

=0
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is said to be k-summable in the direction d, if the following two conditions hold:

(a) There exist p, p; € R such that the series

00 .
ti
y(t,z,w) = Z m-’ﬂj(z,w), s, =1+1/k,
j=0 +

is absolutely convergent for ||(2, w)|leo = sup{|z1l,..-,|2nl,lwi},...,|wm|} < p1 and |t| < p.

(b) There exists § > 0 such that, for all (z,w) as above, the function y(¢, 2, w) can be analytically
continued with respect to ¢ into the sector Sqs = {t € C : 2|d — arg(t)| < }. Moreover, for all
d; < 0 there exist C > 0 and K > 0 such that

sup |y(t,z,w)| < cekll'  vie S4,s, -
(2w} lloc <p1

Functions satisfying such an estimate in every such subsector Sg s, of Sa4s shall be said to be of
ezponential growth in Sq 5 at most of order k.

This definition of k-summability is slightly modified to better suit the situation of formal solutions of
PDE. From the general theory of moment summability presented in [2, Section 6.5] one can deduce
equivalence of this and the standard definition of J.-P. Ramis [30,31]. However, observe that with the
definition given here, the k-sum z(%, z,w) of the formal series #(¢,z,w) is not obtained as the Laplace

_transform of index k, with respect to ¢, of the function y(t, z,w); instead, one has to use J. Ecalle’s
acceleration operator corresponding to the indices 1 and 1/s, — this, however, shall not be of importance
here. _

As the main tool for this article, we shall prove a lemma that rephrases k-summability of formal
series of the form (2.1) in terms of infinitely many formal power series whose coefficients are independent
of the variables 2 = (21,...,2;). To formulate this result, we shall use the following notation: By
v = (n,...,v,) we always denote a multi-indez; i. e., the entries »; are non-negative integers. We shall
write |v| = v1+.. .+ vy, for the length of v, and 8] = 33 ... 85 for the operator of partial differentiation of
orders 14, .. ., v, with respect to the variables 21, ..., 2, respectively. In addition, we set v! = 1!-...-vp!

Lemma 1l Let k > 0, d € R, and £(,z,w) as in (2.1) be given. Then the following statements are
equivalent:
(a) The formal series 2(t, z,w) 13 k-summable in the direction d.

(b) There exzist p,p1,6 > 0, such that for s, =1+ 1/k and every multi-index v the series

[~} tj Y
yv(taw) = JZ(:) —fm :B,-,.,(w) ’ x.‘i,v(w) = az z.‘i(z’w)lz=0 ) (2'2)
converge for |t| < p and ||w|| < p1, and the functions y, (¢, w), for every such w, can be holomorphi-

cally continued with respect to t into the sector Sy s. Finally, for every 6, < 0, there exist constants
C,K > 0, independent of v and w, so that

sup |y (t,w)] < CMut ek vie Sy .
il <pr

(c) For every multi-indez v, the formal series

(s 2]

- . t
ﬁ,,(t,W) = auz(tvz, w)|z=0 =. Z -J_! ziuv(w)
j=0

all are k-summable in the direction d. Moreover, there exist a sectorial region G with bisecting
direction d and opening greater than w/k and a polydisc D about the origin of C™ which both are
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independent of v, so that the sums z,(t,w) of £,(t,w) all are holomorphic in G x D, and for every
closed subsector S € G there erist constants C,K > 0, independent of v, such that

sup 8¢z, (t,w)] < C KTyl o1 T(1+¢/k) (2.3)
teS,weD

Jor all multi-indices v and all non-negative integers £.

Proof: For the special case of n = 1 and m = 0, a proof has been given in [4], and one can use the same
approach for the general case. For this reason, we shall restrict ourselves and only present the main ideas:
Assume that (&) holds, and let y(t, 2, w) be as in (2.2). Then y,(#,w) can be represented by the standard
multi-dimensional Cauchy formula for partial derivatives. Estimating this formula in a standard manner
then shows (b). For the converse implication, use the standard multi-dimensional Taylor expansion of
y(t,2,w) with respect to 2 = (21,...,2,). Analogously one can prove equivalence of (a) and {c), using
the sums z(¢, 2, w) and z, (t,w) instead of y(¢, z, w) and y, (t,w). o

3 The heat equation in several spatial dimensions

In the following sections we shall apply Lemma 1 to the Cauchy problem for the heat equation in
several spatial variables, for which we shall use the following convenient notation: For z and w as in the
introduction, let ¢(z,w) be a given function, holomorphic in a polydisc D about the origin of C* x C™.

" Abbreviating
n m
Az = Eaz, ) Aw = Ea:u.’
j=1 k=1 v
we consider the Cauchy problem for the heat equation in n + m spatial dimensions, written as
Su = (A; + Aw)u, u(0,2,w) = ¢(z,w). 3.1)
This problem has a unique formal power series solution %(¢, z) which can be written as
oo
. t1 j ) AB AL
6(t,2) = Zo ST UER), u@w) = (A + M) $muw) = 41 3 At dzw). (32)
J= u, >0

pHt=j

For n =1 and m = 0, or in other words, for one spatial dimension, this formal series has been investigated
in detail in [15] and [1]: In general, its Gevrey order is equal to s = 1, but for entire functions s < 1 may
occur as well. Moreover, it is shown in [15] that the series is 1-summable in a direction d if, and only
if, the initial condition can be holomorphically continued into the union of two sectors with bisecting
directions d/2 and 7w +d/2 and is of exponential growth at most of order 2 there. An analogous result has
been obtained in [1] for the case of k-summability, with k£ > 1, however, in this situation the condition
for k-summability in a direction d cannot be formulated in terms of the initial condition but involves its
Laplace transform of a corresponding order. Nothing was known so far about the summability of (3.2)
in the case of several spatial dimensions, since this case is not covered by the results obtained in [16].
Here, we shall prove results quite analogous to those in the one-dimensional situation, except that the
conditions we obtain are less easy to verify.

Remark 1: Note that in (3.1) the essential quantity is the number of spatial variables n + m, and it
is up to us to decide how to subdivide this number into n and m. It shall turn out to be convenient to
choose m = 0 when discussing matters where all spatial variables are of equal importance, while for the
question of summability we shall take n = 1. a

Since the initial condition ¢(z,w) is assumed to be holomorphic in a polydisc about the origin which
we shall, for simplicity of notation, assume to be the Cartesian product of discs of equal radius denoted
by r > 0, we see that the same holds for the coefficients z;(z, w), for all j > 0. Expanding these functions
with respect to 2z = (21,...,25), we have

paw) = Y2 aw), wew) = T u@  lEwlle<r, (3.3)



where summation extends over all multi-indices v in dimension n. Observing zo(2z,w) = ¢(z,w) and
Tip1(2,w) = (A; + Ay) zj(2,w), we find the following relations for the coefficients of these series, for all
multi-indices v:

n
o (w) = ¢(w), “j+1,V(w) = Apljp + Z“J',V+2eu('w) V(|wlew<r, 520, (3.4)
k=1

with e denoting the kth unit vector in dimension n.

4 Gevrey estimates

The notion of Gevrey estimates that is discussed in this section is symmetric with respect to all spatial
variables, and for this reason we shall without loss of generality restrict to the case of m = 0; if this were
not so, we could set z,+x = wi for 1 < k < m and then replace n by n + m.

Let s > 0 be given. Due to the form of the formal solution #(¢, 2), we set s, = & + 1 and say that
gsuch a series is (at most) of Gevrey order s, provided that we can find constants p,C, K > 0 such that

luj(z)] € CKIT(1+s,5) Vi20, [zl <p- (41)

Note that this definition, when the functions z;(z) all are constants, coincides with the standard definition
of the Gevrey order of power series. Moreover, observe that a series is of Gevrey order s = 0 if, and
only if, it converges (for sufficiently small |¢| > 0). As we shall show now, the Gevrey order of (3.2) is
independent of the spatial dimension:

Lemma 2 For m = 0 and arbitrary ¢(z), holomorphic in o polydisc D C C* about the origin, the
sertes (3.2) is of Gevrey order 1.

Proof: In the case m = 0, all functions u;,(w) and ¢, (w), defined by (3.3), are constants which we
shall denote as uj, and ¢,. We set

From (3.4) we conclude that

n
Uj,v+2 .
IRVESY Iil:t ('ﬁ_"*—zé')—'!(u,,+1)(u,,+2) < (E+1)(+2)ciya  Y35€20.
k=1 |v|=

Cauchy’s formula in several dimensions shows that |co,| = [¢| < C K ¥l for every multi-index v, with
sufficiently large C,K > 0. Using this, one can show by induction with respect to j the estimate
cjy < C Ki+¥ (£+25)!/8), from which follows that the series 3, , ¢;¢ p* 27 /(25)! converges for sufficiently
small z,p > 0. This and the fact that

oo o0
u-
@l €Y Y Bl < Y Vi < 6

=0 jj=t =0
complete the proof. S =
While the Gevrey order of 4i(t, z) is never larger than 1, it may well be smaller, and in some cases the

series even may converge:

Lemma 8 Let m =0 and 0 < 8 < 1, and assume that the initial condition ¢(z) is entire and, for some
C,K > 0, satisfies
l8(2)] < Cexp(Kp*t=9)  Vp>0, [2lle <o (4.2)

Then 4i(t, z) is of Gevrey order 8, and in particular converges for s = 0.



Proof: Observe that Cauchy’s formula for the coefficients of a power series (in several variables) implies
that |¢,| < p~ " C exp(K p?/(1—#)) for every p > 0 and z as in (4.2). Taking p such that the right hand
side becomes minimal, one then obtains, with C, K > 0 not necessarily the same as above:

C kvl
< ST a-aw)

for all multi-indices v. Proceeding exactly as in the proof of the previous lemma, using this improved
estimate for the coefficients of ¢(z), one can complete the proof. (]

Remark 2: Observe that the proofs of both lemmata can be generalized to give the same result for
equations where A, is replaced by }_; a; ij , with arbitrary non-zero constants a;, or even more general
ones. a

5 Summability of the formal solution

In Section 2 we showed that summability of a series of the form (2.1) is equivalent to that of the series
£, (t,w) plus an estimate of the form (2.3) for their sums. To discuss summability of the formal solution
of the heat equation (3.1), we shall take n = 1 and arbitrary m > 0, and define 4, (¢,w) a8 in (3.3),
observing that for n = 1 multi-indices v are just integer numbers > 0. In this situation we prove the
following result:

Theorem 1 For i(t, z,w) as in (3.2), withn =1 and arbitrary m > 0, we choose d € R, k > 1, and set
8, =14 1/k. Then the following statements are equivalent:

(a) The formal solution i(t, z,w) is k-summable in the direction d.
(b) There exist p,p1,0 > 0, such that for v =0 and v = 1 the series

wow) = 3 Ty ) @ =Oueee, 6D

converge for |t| < p and ||wllw < g1, and the functions v, (t,w), for every such w, can be holo-
morphically continued with respect to t into the sector Sy and is of ezponential order at most k
there.

(c) For v =0 and v = 1, the formal series

[+ 4

A vV A tj
i (tw) = 8L at,z,w)=0 = Y ’a uj (w)
=0 7

both are k-summable in the direction d.

Proof: If (a) holds, then Lemma 1 can be applied and shows that (b) and (c) hold as well. Moreover,
by definition of k-summability we see that (b) is equivalent to (c). This leaves to show, e. g., that (c)
implies (a). To do so, observe that for n = 1 the relation (3.4) becomes

ug(W) = du(w), Bjp15W) = Apujp + ujpia(w)  V]wlleo <7, #,j 20. (5.2)

This shows that i, 42(¢,w) = (8 — Ay ) 4u(¢,w) for v > 0, and from this and the general theory of
k-summability we conclude that all 4, (¢, w) are k-summable in the direction d. Moreover, if u, (¢, w) are
their sums, then they satisfy

tpra(t,w) = (8 — Aw)up(t,w) Vv20, (tL,w)eEGxD,
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with a sectorial region G of opening larger than w/k and bisecting direction d, and a suitably small
polydisc D. Observe that this relation also guarantees that G' does not depend upon ». Expanding

u,(t,w) = Z 12—‘: uypu(t),

m

with summation over all multi-indices u in dimension m, we obtain through differentiation with respect
to t (£ times) the relation

¢ ¢
2, = D) - Zu‘ ren (8
for all ¢ € G, all multi-indices s, and v > 0. Choosing a closed subsector S of G, we set

()]
upp (¢
Ugyj = SUp l |()|
teS lul=i w

and obtain uy.42; < Ues1,e,; + (G + 1) (5 + 2) ug,p,542 for all £,v,5 > 0. By induction with respect to v,
this implies

v . v

+ 2K)! j + 2x)! :

Ugayj < Z (J—ﬁ—)- Uttv—n,0,5+25 Y41,y S Z (JT-)— Ultv—n,1,j+21
x=0

for all ¢,v,j > 0. The assumption of k-summability of fio(t, w), 1 (¢, w) implies, with help of Lemma 1,
that C, K > 0 exist for which |u$9,(t)| < CKv*Bl yT(1+8,8)fort € §,v=0and v =1, and all u,£.
Using this, one can complete the proof, very much along the line of the proofs of Lemmas2and 3. O

We can improve this result by setting
- t _ " "
i(t,w) = j_go TA+s.5/2) Gj(w),  fgi(w) =ujo(w) Hajp1(w) =uj(w). (5.3)

In terms of this auziliary function, we can show:

Theorem 2 For ii(t,2,w) as in (3.2), withn =1 and arbitrary m > 0, we choose d € R, k > 1, and set
8, =1+ 1/k. Then the formal solution i(t,z,w) is k-summable in the direction d if, and only if, there
exist p1,p2,8 > 0 so that the series(5.3) converges for |t| < p1 and |w| < p2, and the function #(t,w), for
fized w, can be holomorphically continued into the two sectors Sq2,5 and Sy a/2,5, and is of exponential
growth at most of order 2k there.

Proof: The function #(f,w) has the properties stated if, and only if, the same properties hold for its
odd and even parts, and according to the definition of summability this is equivalent to (2k)-summability
in the directions d/2 and 7 + d/2 of the series

o0 tg +1
?;7, r(1 T o, o) Z <T@ +s,072+7) ).
The general theory then implies that this is equivalent to condition (c) of Theorem 1. o

Remark 8: Using (3.2) for the case of n = 1, one can show that

wnw) = 1 Y Betul®) ) oy Betunl® oy iy, s

iy u! V|
> £
MR ‘l‘4+[>;‘}
Hence for n = 1,m = 0, we find ujo = ¢aj, %51 = Paj+1, s0 H(t) = St ¢ /T(1 + 8,j/2), which is equal

to ¢(t) for k=1, i. e., 8, = 2. So in these cases, Theorem 2 comcl es with the results obtained in [15]
for k =1, resp. m[l]fork)l



101

In the general case we can, in principle, compute the auxiliary function #(¢,w) in terms of the initial
condition ¢(z,w), and then verify whether or not the conditions for k-summability of #(t, z, w) given in
Theorem 2 are satisfied. Vice versa, it it also possible to start with a function #(¢, w) that satisfies these
conditions, and from its coefficients 4i;(w) find the functions ¢, (w), for v > 0, using the relations (5.4).
Doing so, one can (theoretically) find examples of initial conditions ¢(z, w) leading to k-summable series
4(t, 2,w). Unfortunately, the authors have not been able (except for the case of m = 0 and n = 1) to
determine explicitely those cases of ¢(z,w) for which k-summability holds. ]
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