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Abstract

A method for proving the existence of periodic and heteroclinic
orbits in a singularly perturbed ODE system called a slow-fast system
is given by using the Conley index theory. This is a continuation of the
authors’ earlier work[l] which is now extended to systems with multi-
dimensional slow variables. As an application, we show, in a system
of reaction-diffusion equations studied by Gardner and Smoller[2], the
existence of periodic traveling waves solutions as well as the set of
traveling wave solutions that are encoded by symbolic sequences of
two symbols. This is based on joint works$[3, 5]$ with M. Gameiro, T.
Gedeon, H. Kokubu, and K. Mischaikow.
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1 Slow-fast system
Consider a family of differential equations on $\mathrm{R}^{n}=\mathrm{R}^{k}\cross \mathrm{R}^{l}$ of the form

$\dot{x}=f(x, y)$ , $\dot{y}=\epsilon g(x, y)$ , (1)

where $f$ : $\mathrm{R}^{k}\chi$ $\mathrm{R}^{l}arrow \mathrm{R}^{k}$ and $g$ : $\mathbb{R}^{k}\chi$ $\mathrm{R}^{l}arrow v$ $\mathrm{R}^{l}$ are $C^{1}$ functions and $\epsilon\geq 0.$ We
call this kind of differential equations a slow-fast system.

The solutions to this system generate a flow $p$
’ : $\mathrm{R}\chi$ $\mathrm{R}^{n}arrow \mathrm{R}^{n}$ . When

$\epsilon=0$ , (1) has a simpler form since $y$ becomes constant, hence $y$ can be viewed
as a parameter for the flow $\psi_{y}$ on $\mathrm{R}^{k}$ denoted for each $y\in \mathrm{R}^{l}$ by

$(\psi_{y}(t, x)$ , $y)=f0(t, x, y)$ . (2)

Another way to simplify the equation (1) is to first rescale the time by
$\tau=\epsilon t$ and then let $\epsilon=0$ in the new equations. We obtain

$0=f(x, y)$ , $\dot{y}=g(x, y)$ . (3)

The set of points $(x,y)\in \mathrm{R}^{k+l}$ with { $(\mathrm{x},\mathrm{y})=0$ is called a slow manifold
of the problem (1). If $\lrcorner\partial\partial x$ is invertible for $y$ in some bounded set $\mathrm{Y}$ , then
by the implicit function theorem, there is a function $x=m(y)$ such that
$f(m(y), y)=0.$ We call $M:=$ { $(x,$ $y)\in \mathrm{R}^{k+t}|x=$ m(y) $y\in \mathrm{Y}$} (a branch
of) the slow manifold over Y. Solutions of $\mathit{1}^{\cdot}=g(m(y),$ $y$ generate the slow
flow $\mathrm{P}\mathrm{r}$ : $\mathrm{R}$ $\mathrm{x}Marrow M.$

Although our theory applies to slow-fast systems of any dimension, in
this paper, we mainly illustrate the results by a specific example of slow-fast
system studied by Gardner and Smoller[2], which is the following system of
equations describing the traveling waves in a prey-predator model:

$\dot{u}$ $–w$, ti $=$ -$\theta w$ $-uh(u, v)$ ,
(4)

$\dot{v}$ $=$ $\epsilon z$ , $\dot{z}$ $=$ $\epsilon(-\theta z-vk(u, v))$ .

Here $\theta\in$ R represents the wave velocity, which we fix to -0.25. For simplicity
we consider the case $/\mathrm{i}(\mathrm{w}, v)=$ ( $1-$ u){u $-v$) and $(\mathrm{u}, \mathrm{w})=au$ - $b$ - $v$ with
$a=1.7$, $b=$ 0.25. This is an example of the slow-fast system of the form (1)
with $n=4$, $k$ $=t=2$ , $x=(u, w)$ and $y=(v, z)$ .

There are three equilibrium points $(u, w)=(0,0)$ , $(0, v)$ , $(0, 1)$ in the fast
system for any $\theta$ , and we consider two slow manifold branches given by

$\# 0$ $:=$ $(\mathrm{u},\mathrm{w})|(u, w)=(0,0)\}$ and $M_{1}:=\{(u, w)|(u, w)=(0,1)\}$ . When
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Figure 1: The slow flow for (4) with $\theta=-0.25$ . The very thin strips $R_{1arrow 0}$

and $\mathcal{R}_{0arrow 1}$ indicate the domains where the fast flow possibly has a connecting
orbit.

$\theta=-0.25$ , the fast flow has a connecting orbit from $M_{0}$ to $M_{1}$ at $v=\sigma_{1}\approx$

0.674 and another from $M_{1}$ to $M_{0}$ at $v=\sigma_{2}\approx$ 0.321.
In Figure 1, two vertical lines (each of which is in fact a very thin strip)

show the places where the connecting orbits exist in the fast flow, and the
several slow flow lines on the slow manifolds $M_{0}$ and $M_{1}$ are drawn and
superimposed simultaneously.

We obtain the following conclusions[5] by applying our general theory[3]
to the Gardner-Smoller system (4):

Theorem 1.1 (i) The $Ga$ rdner-Smoller system (4) with appropriate choice
of parameters has a periodic solution whose image under the projection $\Pi$ :

$\mathrm{R}^{k}\chi$ $\mathrm{R}^{l}arrow \mathrm{R}^{l}$ is contained in the set $E_{0}\cup E_{1}$ (or $E_{0}\cup E\mathrm{u}$) $.$ See Figure 1.
(ii) There is an uncountable set of bounded solutions in (4) which can

be encoded by $bi$-infinite sequences of trno symbols $E_{1}$ and $E_{1*}$ in such a way
that, given a symbol sequence, the projection of the corresponding orbit under
$\Pi$ passes through $E_{1}$ or $E_{1*}$ , and $E_{0}$ , alternatively in the prescribed order by
the symbol sequence.

Note that Gardner and SmoUer [2] obtained the existence of periodic trav-
eling waves also using the Conley index theory. However, their method uses
very concrete construction of homotopy between (4) and the van del Pol equa-
tion, and is hence limited to the specific form of the system (4). Our theory
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is, on the other hand, applicable to general slow-fast systems. The existence
of the set of solutions encoded by symbolic sequences is new, which shows
the existence of a rich variety of traveling wave solutions with complicated
behaviors.

2 Conley index theory for slow-fast systems
Consider a flow $\mathrm{y}$ defined on a locally compact metric space $X$ . A compact
set $N\subset X$ is called an isolating neighborhood if

Inv(AT, 7) $:=\{x\in X|7(\mathrm{R}, x)\subset N\}\subset$ IntAT.

The set $S=$ Inv(AT, 7) is called the isolated invariant set in $N$ . The Conley
index[4] is associated to isolating neighborhoods and provides a topological
invariant of the isolated invariant sets with the property that if Inv(AT, $\}$ ) $=$

Inv(N’, 7) then the corresponding Conley indices are identical. Here we use
the sO-called cohomological Conley index denoted by $CH^{*}(S)$ which takes
values in graded vector spaces over the finite field $\mathbb{Z}_{2}$ .

Given an isolating neighborhood its Conley index describes the dynamics
of the asociated isolated invariant set. In our case we will present theorems
which can be used to prove the existence of periodic orbits as well as the set
of orbits encoded by symbolic sequences.

We look for solutions which consist of pieces approximating slow mani-
folds and of pieces approximating heteroclinic orbits between these manifolds.
To prove such solutions exist, the first step is to find the appropriate isolating
neighborhoods. We do this in two steps. We choose sequence of flow boxes
$E_{i}$ of the flows $\varphi_{M}^{\mathrm{s}1\mathrm{o}\mathrm{w}}.\cdot$ on slow manifolds $M_{i}$ , called slow sheets. We assume
that adjacent pair of the slow sheets $E_{i}$ and $E_{i-1}$ are joined in such a way
that $P_{i}:=\Pi(E_{i})\cap\Pi(E_{i-1})\cap R\neq$ $1$ , where $74\subset \mathrm{R}^{l}$ is a domain in which the
fast flow possibly has a connecting orbit between the slow manifolds. Define
$P_{i}:=E_{\mathrm{i}}\cap\Pi^{-1}(P_{i})$ and $P_{i-1}’:=E_{i-1}\cap\Pi^{-1}(P_{i})$ , which are the places where
jump from $E_{i}$ to $E_{\dot{|}-1}$ by the fast flow may occur. We introduce (extension
of) boundary curves of $P_{i}$ and $Pj$ which are denoted by $\tilde{W}_{i}^{\mathrm{i}\mathrm{n}}$ and $\tilde{W}_{\dot{l}}^{\mathrm{o}\mathrm{u}\mathrm{t}}$, which
bound a region in $E_{1}$. denoted by $\tilde{W}_{i}$ . Let $W_{i}:=P_{}’\cup\tilde{W}_{\dot{\iota}}\cup P_{\dot{\iota}}$ . The sets $Z_{1}^{\pm}$.
are the entrance and exit sets of $W_{i}$ with respect to the slow flow on the
slow sheet $E_{\dot{l}}$ . See Figure 2. We construct a collecti of sets that consists
of parts of slow sheets $E_{i}$ such as $W_{i}$ and $P_{\dot{l}}$ , together with neighborhoods
$\mathrm{B}_{:}$ (called boxes) of connecting orbits between the slow manifolds. We call
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Figure 2: Explanation of various sets like $W_{i}$ , $P_{\dot{l}}$ , $Pj\subset E_{\dot{\iota}}$ . Note that by
script letters we denote the projection under $\Gamma \mathrm{I}$ of the unscripted objects.

the collection of sets $E_{1}$. $\subset M_{\dot{\iota}}$ and boxes $\mathrm{B}_{i}$ a periodic corridor, which is also
defined more precisely later. Finally, we construct the set $N$ by fattening
relevant pieces of slow manifolds in the corridor transversally into the fast
direction. This set $N$ is a candidate for an isolating neighborhood for $j)^{\epsilon}$ .

Definition 2.1 A set $\mathrm{B}\subset \mathrm{R}^{k}\mathrm{X}$ $\mathrm{R}^{l}$ is called a box, if:

(1) $\mathrm{B}$ is an isolating neighborhood for $\psi_{\mathcal{P}}$ where 7) $:=\Pi(\mathrm{B})$ , and the
parametrized flow $\psi_{P}$ : $\mathrm{R}$

$\mathrm{x}\mathrm{R}^{k}\mathrm{x}\mathrm{Y}arrow \mathrm{R}^{k}\mathrm{x}\mathrm{Y}$ is given by $\psi_{P}(t, x, y):=$

$(\psi_{y}(t,x)$ , $y)$ for $y\in P.$

(2) Let $\mathrm{S}(\mathrm{B})$ $:=$ Inv(B, $\psi_{p}$). Then there exists an attractor-repeller decomposition[4]
$\mathrm{A}/[(S(\mathrm{B})):=\{M(p,\mathrm{B})|p=1,2(2>1)\}$ .

(3) There are isolating neighborhoods $V(p, \mathrm{B})$ for $M(p, \mathrm{B})$ , $p=1,2$ , such
that $V(p,\mathrm{B})\subset$ Int $\mathrm{B}$ and $\mathrm{F}(1, \mathrm{B})\cap V(2,\mathrm{B})=\emptyset$ .

(4) FOT each $y\in P,$ the set $\mathrm{B}_{y}=\mathrm{B}\cap\Pi^{-1}(y)$ is a $k$-dimensional disc.

(5) Let $5y(B):=$ Inv(B, $\psi_{y}$ ) and let $\{M_{y}(p, \mathrm{B})|p=1,2\}$ be the cor-
responding attractor-repeller decomposition of $\mathrm{S}_{y}(\mathrm{B})$ . Then there are
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relatively open subsets $P^{0}$ , $P^{1}\subset P,$ such that for every $y\in P^{0}\cup P^{1}$ ,
$S_{y}( \mathrm{B})=\bigcup_{\mathrm{p}=1,2}M_{y}(p, \mathrm{B})$ , namely $\psi_{y}$ has no connecting orbit in $\mathrm{B}_{y}$ .

Given a box $\mathrm{B}$ , one can define a2 $\mathrm{x}2$ matrix $T_{\mathrm{B}}$ , called the transition
matrix[4], which carry the algebraic information of connecting orbits inside
the box $\mathrm{B}$ for the fast flow, in the sense that the non-zero $(2, 1)$ -entry of $T_{\mathrm{B}}$

implies the existence of some $y\in P$ for which the corresponding $\psi_{y}$ possesses
a connecting orbit from My(2, B) to $\#_{y}(1, \mathrm{B})$ .

Definition 2.2 A collection $\{E_{\dot{1}}\}_{\dot{l}=0}^{I}$ of slow sheets with $E_{0}=E_{I}$ , together
with subsets $W_{}$ , $P_{\dot{l}}$ , $P’\subset E_{i}$ and sets $Z_{i}^{\pm}\subset W_{i}$ , and a collection of boxes
$\{\mathrm{B}_{i}|i=1, \ldots, I\}$ form a periodic corridor, if

(1) $P_{i}=\Pi(\mathrm{B}_{i})$ for all $\mathrm{i}$ ;

(2) $P_{\dot{\iota}}^{\mathrm{s}\mathrm{i}\mathrm{d}\mathrm{e}}\backslash W_{\dot{1}}^{\mathrm{i}\mathrm{d}\mathrm{e}}\subset$ $\mathrm{g}_{\dot{l}}--1$

’ and $W_{\dot{l}}^{\mathrm{s}\mathrm{i}\mathrm{d}\mathrm{e}}\subset$ IntW*$\cdot$ Z$i+\cup \mathrm{I}\mathrm{n}\mathrm{t}_{W}.\cdot Z_{i}^{-}$ for each $i$ .

(3) Let $P_{i}^{\mathrm{i}\mathrm{n}}:=\Pi(P_{1}!^{\mathrm{n}}.)$ and $P_{\dot{l}}^{\mathrm{o}\mathrm{u}\mathrm{t}}:=\Pi(P_{\dot{\iota}-1}’\mathrm{o}\mathrm{u}\mathrm{t})$ . For each $i=1$ , .. ., I there
exist homotopy equivalences of pairs

$h_{0}$ : $(P_{i}^{\mathrm{i}\mathrm{n}}, P\mathrm{j}^{\mathrm{n}}\cap Z_{i-1}^{-})$ $arrow$ $(\mathcal{W}_{\dot{1}}^{\mathrm{o}\mathrm{u}\mathrm{t}}, \mathcal{W}_{i}^{\mathrm{o}\mathrm{u}\mathrm{t}}\cap Z_{\dot{1}}^{-})$

$h_{1}$ : $(P_{\dot{l}}^{\mathrm{o}\mathrm{u}\mathrm{t}}, P_{i}^{\mathrm{o}\mathrm{u}\mathrm{t}}\cap \mathcal{Z}_{\dot{\iota}-1}^{-})$ $arrow$ $(\tilde{\mathcal{W}}_{i-1}^{\mathrm{i}\mathrm{n}},\tilde{\mathcal{W}}_{i-1}^{\mathrm{i}\mathrm{n}}\cap Z_{i-1}^{-})$.

For more precise definition, see our forthcoming paper[3].
We furthermore define $\Theta$ $:=T_{I}\mathrm{o}1$ $\cdot\cdot \mathrm{o}T_{1}$ where $T_{i}$ $(i=1, \ldots, I)$ is the

$(2, 1)$-entry of the transition matrix $T_{\mathrm{B}}$:.
After constructing a periodic corridor $\{E_{i}\}_{\dot{\mathrm{a}}=0,\ldots,I}$ and $\{\mathrm{B}_{i}\}_{i=1,\ldots,I}$ , let

$N:=\cup^{I}\mathrm{B}_{1}$. $\cup\cup^{I}([-q, q]^{k}\mathrm{x}W_{\acute{1}})$ .
$:=1$ $\dot{\iota}=0$

Then for $q>0$ chosen sufficiently small, $N$ is an isolating neighborhood for
$/^{2}$

’ for sufficiently small $\epsilon>0.$

Theorem 2.3 Given a periodic corridor as above, assume that

(1) for each $i=1$ , $\ldots$ , $I$ , the index of $M(1,\mathrm{B}:)$ has the same Conley index
as that of a hyperbolic fixed point;
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(2) $H^{*}(\mathcal{W}, Z; \mathbb{Z}_{2})$ is the same as the Conley index of a hyperbolic periodic
orbit, where

$\mathcal{W}:=\cup^{I}\Pi(W_{i})$ , $\mathcal{Z}:=\cup^{I}\Pi(\mathcal{Z}_{i}^{-})$ ;
$:=1$ $i=1$

(3) $\mathrm{e}$ is an isomorphism.

Then, for suffgciently small $\epsilon>0,$ Inv(iV, $\varphi^{\epsilon}$ ) contains a periodic orbit.Then, for sufficiently small $\epsilon>0$ , Inv(iV, $\varphi^{\epsilon}$ ) contains a periodic orbit.

This general result can be applied to the Gardner-Smoller system (4) by
setting $I=2$ and taking two kinds of periodic corridors with the slow sheets
$\{E_{0}=E_{2}, E_{1}\}$ or $\{E_{0}=E_{2}, E_{1*}\}$ as in Figure 1. Therefore Theorem 1.1
in \S 1 follows from the above theorem and a similar construction of symbolic
coding in our previous paper
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