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1 Introduction
A simple pendulum has an unstable equilibrium state in the upright position. The
horizontal movement of the supporting point according to state feedback control is often
treated as a good example of the application of modern control theory (for example
[1] $)$ . In the present study, we focus on another stabilization method without feedbadc
control. Vertical high-frequency excitation of the supporting point (Fig. 1) realizes
the stabilization of the unstable upright position without feedbadc control, which is
the s0-called “dynamic stabilzation,” and the stabilized pendulum is called “Kapitza
pendulum” [2] [3]. In this study, nonlinear characteristics of a pendulum under high-
frequency excitation are theoretically examined based on bifurcation theory. In the
analytical approach, it is necessary to separate the motion into components depending
on a slow time scale and a fast time scale[4]. The dynamics expressed by the slow time
scale dominates the stability of the high-frequency excited pendulum. Therefore, it is
essential in the theoretical analysis to separate the components consistently. Under the
suitable scaling for the parameters of the system, we introduce three time scales and
seek an approximate solution. We transform the equation of motion which is a non-
autonomous system into an autonomous system (averaged equation). Then bifurcation
analysis is performed by using this autonomous system.

2 Analytical model and equation of motion
We consider a pendulum whose supporting point is excited in the $x’$ direction as shown
in Fig. 2. When the excitation displacement is expressed as

$x_{e}’=\beta\cos\omega t$, (1)

the equation of motion with respect to the angle $\theta$ is expressed as

$\frac{d^{2}\theta}{dt^{2}}+c\frac{d\theta}{dt}+\frac{g}{l}\sin\theta+\frac{\beta}{l}\omega^{2}\mathrm{c}$os $\omega t$ $\sin(\theta-\gamma)=0,$ (2)

where $c$ , $g$ , $l$ , $\beta$ , and $\omega$ are viscous damping coefficient, gravity acceleration, length of the
pendulum, excitation amplitude, and excitation frequency. For seeking an analytical
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solution under the high-ffequency excitation, the inverse of the excitation frequency
$1/\omega$ is introduced as the representative time and then the dimensionless equation of
motion is obtained as follows:

$\ddot{\theta}+\mu\dot{\theta}+\sigma\sin\theta+a\cos t^{*}\sin(\theta-\gamma)=0,$ (3)

where $($

.
$)$ denotes the derivative with respect to the dimensionless time, $t^{*}=\omega t,$ and

the dimensionless parameters, $a$ , $\sigma$ , and $\mu$ , are expressed as follows:

$a=\beta/l$ , $\sigma=(g/l)/\omega^{2}$ . $\mu=c/\omega$ . (4)

For the excitations in the neighborhood of horizontal and vertical directions, i.e.,
$\gamma=\pi/2$ $+$ A7 and $\gamma=0+$ A7, Eq. (3) are expressed respectively as follows:

04 $\mu\dot{\theta}+\sigma\sin\theta-a\cos t^{*}\cos$ ( $\theta$ -A7) $=0$ (5)

$\ddot{\phi}+\mu\dot{\phi}-\sigma\sin 6$ $-a\cos t^{*}\sin(\phi-\Delta\gamma)=0,$ (6)

where $6=\theta-\pi$ . Letting A7 $=0$ for Eq. (6) leads to the equation of motion of
Kapitza pendulum.

2.1 Theoretical analysis
We average Eqs. (5) and (6) by using the method of multiple scales. It is essential for
obtaining the consistent result to do the suitable scaling based on the physical insight.
In the case when bifurcations are produced under the high-ffequency excitation, i.e.
in the case when the pendulum does not point to the gravity direction, it is expected
that the second order derivative term (inertia term) does not balance any terms in
the equation of motion. The damping term $\mu\dot{\theta}(\mu\dot{\phi})$ should be the same order as the
effect of the gravity $\sigma\sin\theta(\sigma\sin\phi)$ to include the damping effect in the slow time scale

Figure 1: Vertically excited pendulum
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dynamics. Taking into account the above physical insight, we perform the scaling of
parameters as follows:

a\equiv \epsilon \^a $(0<\epsilon<<1)$ , $\sigma\equiv\epsilon^{2}\hat{\sigma}$, $\mu\equiv\epsilon\hat{\mu}$ . (7)

Furthermore, for Eqs. (5) and (6), we assume the approximate solutions as follows:

$\theta(t;\epsilon)=\theta_{0}(t_{0}, t_{1}, t_{2})+\epsilon\theta_{1}(t_{/0}, t_{1}, t_{2})+\epsilon^{2}\theta_{2}(t_{0}, t_{1}, t_{2})+\cdot$ . . , (8)
$,(t;\epsilon)=$ $6_{0}(t_{0}, t_{1}, t_{2})$ $+\epsilon\phi_{1}(t_{0}, t_{1}, t_{2})+\epsilon^{2}’ 2(t_{(\mathrm{h}}t_{1}, t_{2})+\cdot$ . . . (9)

Introducing the multiple time scales:

$t_{0}=t$ , $t_{1}=et$ , $t_{2}=\epsilon^{2}t$ , (10)

we seek an approximate solutions, Eqs. (8) and (9).
Hereafter, we show the analytical procedure for Kapitza pendulum (Eq. (6) with

$\Delta\gamma=0)$ , i.e. ,

$\dot{\phi}+\mu\dot{\phi}-(\sigma+a\cos t^{*})\sin 6$ $=0.$ (11)

Substituting Eq. (9) into Eq. (11) and equating the coefficients of like powers of $\epsilon$

yield the following equations for orders:

$O(1)$ : $D_{0}^{2}\phi_{0}=0$ (12)
$\mathrm{O}(\mathrm{e})$ : $D_{0}^{2}\phi_{1}=-2D_{0}D_{1}\phi_{0}-\hat{\mu}D_{\mathrm{o}cl\mathrm{o}}$ +\^a $\sin\phi 0\cos t_{0}$ (13)

$O(\epsilon^{2})$ : $D_{0}^{2}\phi_{2}=-2D_{0}D_{1}(l_{1}$ $-2D_{0}D_{2}\phi_{0}-D_{1}^{2}\phi_{0}-\hat{\mu}(D_{0}\phi_{1}+D_{1}\phi_{0})$

$+$ $\mathrm{i}$ $\sin\phi_{0}$ +\^a $(\mathrm{j})_{1}\cos\phi_{0}\cos t_{0}$ , (14)

where $D_{i}=\partial/\partial t$ :. The solution of Eq. (12) is expressed as follows:

$\phi_{0}=c_{1}(t_{1}, t_{2})t_{0}+c_{0}(t_{1}, t_{2})$ , (15)
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Figure 2: Periodically excited pendulum
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where $\mathrm{c}_{0}$ and $c_{1}$ are integral constants. We note that the first term is a secular term of
Eq. (15). For a uniform expansion, this term must be eliminated by setting $c_{1}$ to zero.
Then the general solution becomes

$\phi_{0}=c_{0}(t_{1}, t_{2})$ . (16)

We substitute Eq. (16) into (13) and obtain

$D_{0}^{2}\phi_{1}=-2D_{0}D_{1}\phi_{0}-\hat{\mu}D_{0}\phi_{0}$ +\^a $\sin 6_{0}\cos t_{0}$ =\^a $\sin c_{0}\cos t_{0}$ . (17)

The right-hand side does not contain any terms produce secular terms in $\phi_{1}$ . The
particular solution of Eq. (17) is

$\phi_{1}$ =-\^a $\sin \mathrm{c}_{0}\cos t_{0}$ . (18)

Furthermore, substituting Eqs. (18) and (16) into Eq. (14) yields

$D_{0}^{2} \phi_{2}=-D_{1}^{2}c_{0}-\hat{\mu}D_{1}c\mathrm{f}\hat{\sigma}\sin c_{0}-\frac{\hat{a}^{2}}{4}\sin 2c_{0}$

-\^a $(2D_{1} \sin c_{0}+\hat{\mu}\sin c_{0})\sin t_{0}-\frac{\hat{a}^{2}}{4}\sin 2c_{0}\cos 2t_{0}$ . (19)

Because the terms which do not explicitly contain $t_{0}$ produce a secular term in /2, the
sum of these terms must be set to zero as follows:

$D_{1}^{2}c_{0}+\hat{\mu}D_{1}c-\hat{\sigma}$ si$\cdot$
$c_{0}+ \frac{\hat{a}^{2}}{4}\sin 2c_{0}=0.$ (20)

Then, multiplying both sides by $\epsilon^{2}$ yields the following equation:

$\dot{c}_{0}+\mu\dot{c}_{0}-\sigma\sin c_{0}+\frac{a^{2}}{4}\sin 2c_{0}=0.$ (21)

Because ffom Eqs. (9) and (16), $\phi$ is equal to $c_{0}(=\phi_{0})$ in neglecting the error of $O(\epsilon)$ ,
we can approximately replace $c_{0}$ in Eq. (21) by 6. Therefore, the equation governing
the motion of the pendulum can be approximately described as follows:

$\ddot{\phi}+\mu\dot{\phi}$ $-$ a $\sin\phi+\frac{a^{2}}{4}\sin 2\phi=O(\epsilon)$ . (22)

As a result, the governing equation (11), which is nonautonomous, is transformed into
the autonomous differential equation, i.e., averaged equation (22) by using the method
of multiple scales. It is very easy to perform bifurcation analysis for Eq. (22).

By the similar analytical procedure, the averaged equations for Eqs. (5) and (6)
axe expressed as follows:

$\dot{\theta}+\mu\dot{\theta}+ct$ $\sin\theta-\frac{1}{4}a^{2}\sin 2(\theta-\Delta\gamma)=0$ (23)

$\ddot{\phi}+\mu\dot{\phi}-\sigma\sin\phi+\frac{1}{4}a^{2}\sin 2$ ( $\phi$ -A7) $=0.$ (24)
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Figure 3: Bifurcation diagram under vertical high frequency excited pindulum (solid
line: stable, dashed line: unstable)

2.1.1 Vertical excitation

Neglecting $O(\phi^{5})$ , $\Delta\gamma 2$ , and $\mathrm{I}\mathrm{S}\gamma\phi$ , in Eq. (24), we obtain

$\mathrm{j}_{\dagger \mathrm{t}^{\mathrm{e}\dot{\phi}-}}(\sigma-\frac{a^{2}}{2})\phi-(\frac{a^{2}}{3}-\frac{\sigma}{6})\phi^{3}-\frac{a^{2}}{2}\Delta\gamma=0.$ (25)

The bifurcation equation is

$-(y- \frac{a^{2}}{2}$) $\phi-(\frac{a^{2}}{3}-\frac{\sigma}{6})\phi^{3}+\frac{a^{2}}{2}\Delta\gamma=0.$ (26)

In the case of A7 $=0$ which indicates the completely vertical excitation, the bifurcation
diagram is a complete subcritical pitchfork bifurcation as Fig. $3(\mathrm{a})^{1}$ In the case of
A7 $\neq 0$ which indicates the excitation tilted from the vertical direction, the subcritical
pitchfork bifurcation is perturbed as Fig. $3(\mathrm{b})$ .

2.1.2 Horizontal excitation

Neglecting $O(\phi^{5})$ , $\Delta\gamma 2$ , and $\Delta\gamma\phi_{1}$ in Eq. (23), we obtain

$\ddot{\theta}t$ $\mu\dot{\theta}+(\sigma-\frac{a^{2}}{2})\theta+(\frac{a^{2}}{3}-\frac{\sigma}{6})\theta^{3}+\frac{a^{2}}{2}\Delta\gamma=0.$ (27)

The bifurcation equation is

($\sigma-\frac{a^{2}}{2}$ ) $\theta+(\frac{a^{2}}{3}-\frac{\sigma}{6})\theta^{3}+\frac{a^{2}}{2}\Delta\gamma$ $=0.$ (28)

In the case of $\Delta\gamma=0$ which indicates the completely horizontal excitation, the bifur-
cation diagram is a complete supercritical pitchfork bifurcation as Fig. $4(\mathrm{a})2$ In the
case of A7 $\neq 0$ which indicates the excitation tilted from the horizontal direction, the
supercritical pitchfork bifurcation is perturbed as Fig. $4(\mathrm{b})$ .
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Figure 4: Bifurcation diagram under horizontal high-frequency excited pendulum (solid
line: stable, dashed line: unstable)

3 Conclusions
This paper addresses the bifurcation of a high-frequency excited pendulum. Utilizing
the method of multiple scales with the suitable scaling of the parameters based on
the physical insight, the averaged equation governing the slow time scale dynamics is
obtained. Vertical and horizontal high-ffequency excitations induce subcritical and su-
percritical pitchfork bifurcations, respectively. Furthermore, the title of the excitation
direction perturbs the above complete subcritical and supercritical pitchfork bifurca-
tions. The validity of analytical results in this paper is experimentaly confirmed in
[8] and an application of the high-frequency excitation to the motion control of an
underactuated manipulator without state feedbadc is shown in [9].
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