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1. INTRODUCTION

The purpose of this report is to announce the principal results of authors’ recent
paper [15] on extensions of continuous mappings. We give only theorems and their
corollaries omitting all proofs and most auxiliary lemmas. For the details, the reader
is referred to [15], which will be published elsewhere.

Let A be an inffnite cardinal number. A subset $A$ of a space $X$ is $P^{\lambda}$ -embedded in
$X$ if for every locally finite cozer0-set cover & of $A$ of cardinality $|2/|\leq\lambda$ , there is a 10-
cally finite cozer0-set cover ) of $X$ such that $\mathcal{U}$ is reffned by )” $A=\{V " A : V\in \mathcal{V}\}$ .
The notion “7 $\lambda$-embedded” in this sense is the same as “7 $\lambda_{-}$embedded” in the sense
of Shapiro [33] which was introduced by Arens [3] under the name “A-normally em-
bedded”, see [33].

Our interest in $P^{\lambda}$-embedding was motivated by the following result in [24, Corol-
lary 10] (see, also, [1, Corollary 2.4] and [30, Proposition 3.1]).

Theorem 1.1. If A is an infinite $cardinal_{f}$ then a subset $A$ of a space $X$ is $P^{\lambda}-$

embedded in $X$ if and only if for every Banach space $Y$ of weight $w(Y)\leq\lambda$ , every
continuous map $g:Aarrow Y$ can be extended to a continuous map $f$ : $Xarrow Y$

In the present report, we are concerned with some other embedding-like properties
and their possible impact to the extension theory in the light of the above result. To
become more specific, let us recall that a subset $A$ of a space $X$ is C’-embedded in $X$

if every bounded real-valued continuous function on A is continuously extendable to
the whole of $X$ . If this holds for all real-valued continuous functions on $A$ , then $A$ is
called $C$ -embedded in $X$ .

Another special embedding we are interested in is given by uniformly locally finite
fan ilies of sets. A family $\mathcal{U}$ of subsets of a space $X$ is unifo rmly locally finite in $X$

$[17,25,29]$ if there exists a locally finite cozer0-set cover $\mathcal{V}$ of $X$ such that every
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$V\in \mathcal{V}$ meets at most finitely many members of $\mathcal{U}$ . Now, a subset $A$ is $U^{\lambda}$ -embedded
in $X[16]$ if every uniformly locally finite collection $\mathcal{U}$ of subsets of $A$ , with $|u|\leq\lambda$ ,
is uniformly locally finite in $X$ .

It should be mentioned that every $C$-embedded set is C’-embedded but the converse
fails [8]. In fact, a subset $A\subset X$ is $C$-embedded in $X$ if and only if it is both $U^{\omega}-$

and C’-embedded in $X[26]$ (see [1, Proposition 1.6]), which can be expressed in an
abstract setting as $” C=U^{\omega}+C^{*}$ ”. Here, $\omega$ denotes the first infinite ordinal. On the
other hand, a subset $A\subset X$ is $C$-embedded in $X$ if and only if it is P’-embedded
in $X[7]$ , hence we always have that $P^{\omega}=U^{\omega}+C^{*}$ . As the reader may expect, the
relation $P^{\lambda}=U^{\lambda}+C$ ’ holds for any infinite cardinal $\lambda$ , it was actually stated in [16]
and shown in [26].

Going back to Theorem 1.1, we become especially interested to subdivide the prop-
erty of a subset $A\subset X$ that “every continuous map $g:Aarrow Y$ in a Banach space $Y$ ,
with $w(Y)\leq\lambda$ , can be continuously extended to the whole of $X$” into two components
corresponding to $U^{\lambda}$-embedding and, respectively, $C$ ’-embedding.

Turning to this problem, we need a bit more terminology related to set-valued
mappings. For a space $Y_{:}$ we use $2^{Y}$ to denote the set of all subsets of $Y$ (not
necessarily non-empty), and $\mathrm{C}(Y)$ that of all non-empty compact subsets of $Y$ A set
valued mapping $\varphi$ : $Xarrow 2^{Y}$ is low er (upper) semi-continuous, or l.s.c. (respectively,
$\mathrm{u}.\mathrm{s}.\mathrm{c}.)$ , if the set $\varphi$ $-1(U)=\{x\in X : \varphi(x)\cap U\neq\emptyset\}$ is open (respectively, closed) in
$X$ for every open (respectively, closed) $U\subset Y.$ Note that $\varphi$ : $Xarrow 2^{Y}$ is u.s.c. if and
only if $\varphi(\# U)=\{x\in X : \varphi(x)\subset U\}$ is open in $X$ for every open $U\subset Y$ A mapping
$\varphi$ : $Xarrow 2^{Y}$ is continuous if it is both l.s.c. and u.s.c. Finally, let us recall that a map
$f$ : $Xarrow t$ $Y$ (respectively, $\psi$ : $Xarrow 2^{Y}$ ) is a selection for $\varphi$ : $Xarrow 2^{Y}$ if $f(x)\in\varphi(x)$

(respectively, $\psi(x)\subset\varphi(x)$ ) for every $x\in X.$ In this case, we also say that $\varphi$ is an
expansion of $f$ (respectively, $\psi$).

The following two theorems will be obtained in this report.

Theorem 1.2. Let A be an infinite cardinal Then, a subset $A$ of a space $X$ is $U^{\lambda_{-}}$

embedded in $X$ if and only if for every Banach space $Y$ , with $w(Y)\leq\lambda$ , and every
continuous map $g$ : $Aarrow Y$ , there exists a continuous mapping $\varphi$ : $Xarrow \mathrm{C}(Y)$ such
that $\varphi|A$ is an expansion of $g$ .
Theorem 1.3. A subset $A$ of a space $X$ is C’-embedded in $X$ if and only if whenever
$Y$ is a Banach space and $\varphi$ : $Xarrow$ C(Y) is a continuous rnapping, every continuous
selection $g$ : $Aarrow$r $Y$ for $\varphi|A$ can be extended to a continuous rnap $f$ : $Xarrow Y$

Let us stress the reader attention that, in Theorem 1.3, the extension $f$ is not
necessarily a selection for $\mathrm{A}$ , but an extension of $g$ which is a selection for ? does
exist provided / is convex-valued, see Theorem 4.1. It should be mentioned that the
report provides also mapping-characterizations of some other $\mathrm{e}\mathrm{m}\mathrm{b}\mathrm{e}\mathrm{d}\mathrm{d}\mathrm{i}\mathrm{n}\mathrm{g}_{\urcorner}1\mathrm{i}\mathrm{k}\mathrm{e}$ property
ties (such as $C$-embedding, 2-embedding, etc.) which are in a good accordance with
Theorem 1.1, see Sections 3 and 4. Some possible applications are demonstrated in
Sections 5 and 6.
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2. COVERING PROPERT1ES OF $\mathrm{S}\mathrm{E}\mathrm{T}-\mathrm{V}\mathrm{A}\mathrm{L}\mathrm{U}\mathrm{E}\dot{\mathrm{D}}$ MAPPINGS

Throughout this section, we will work with indexed families. In their terms, a family
$\{A_{\gamma} : \gamma \mathrm{E}\Gamma\}$ of subsets of a space $X$ is unifo rmly locally finite in $X[17,25,29]$ if
there exists a locally finite cozer0-set cover $\mathrm{p}$ of $X$ such that { $\gamma\in\Gamma$ : $A_{\gamma}\cap V\neq$ GO}
is finite for every $V\in \mathcal{V}$ . Also, we shall say that $\{A_{\gamma} : \gamma\in\Gamma\}$ is uniformly r-locally
finite in $X$ (for some cardinal $\tau\geq 1$ ) if for every $\alpha<\tau$ there exists a uniformly locally
finite family $\{A(\gamma,\alpha) : \gamma\in\Gamma\}$ of subsets of $X$ such that $1_{\gamma}\subset\cup\{A(\gamma,\alpha) : \alpha<\tau\}$ for
every $\gamma\in$ \Gamma r

Let $X$ and $Y$ be spaces, $A$ be a subset of $X$ , and $\tau\geq 1$ be a cardinal number. We
shall say that $\varphi$ : $Aarrow 2^{Y}$ is a uniformly $\tau$ -locally finite lift if $\{\varphi^{-1}(A_{\gamma}) : \gamma\in\Gamma\}$

is uniformly $\tau$-locally ffnite in $X$ for every locally finite family $\{A_{\gamma} : \gamma\in\Gamma\}\subset 2^{Y}$

Actually, we will use the same term for single-valued maps as we may consider every
$f$ : $Aarrow Y$ as a set-valued mapping that carries every $x\in A$ to the corresponding
singleton $\{f(x)\}$ .

We are now ready to state the main result of this section which provides the fol-
lowing characterization of uniformly $\tau$-locally ffnite lifts in terms of “continuous ex-
pansions”.

Theorem 2.1. Let $X$ be a space, $A$ be a subset of $X$ , $Y$ be a connected and locally
connected completely metrizable space, $\varphi$ : $Aarrow 2_{j}^{Y}$ and let $\tau\geq 1$ be a cardinal
number. Then $\varphi$ is a uniformly r-locally finite lift if and only if for every $\alpha<\tau$ there
exists a continuous mapping $\varphi_{\alpha}$ : $Xarrow \mathrm{C}(Y)$ such that

$\varphi(x)\subset\cup\{\varphi_{\alpha}(x) : \alpha<\tau\}$ , for every $x\in A.$

To prove Theorem 2.1 we need the following theorem, which was proved by Nepom-
nyashchii [28] when $A=\emptyset$ . In fact, we prove more than we need but our arguments
are simpler and demonstrate that it follows from another result of Nepomnyashchii’s
in [27].

Theorem 2.2. Let $X$ be a paracompact space, $Y$ be a completely metrizable space,
and let (I) : $Xarrow$ $\mathrm{F}(Y)$ be an $l.s.c$ . mapping such that the family $\{\Phi(x) : x\in X\}$

is equi-LCC in $Y$ and each $\Phi(x)$ , $x\in X,$ is connected. Also, let 0: $Xarrow \mathrm{C}(Y)$ be
a $u.s.c$ . selection for $\Phi$ , $A\subset X$ be closed, and let $\psi$ : $Aarrow C$ (Y) be a continuous
selection for $\Phi|A$ such that $\mathit{0}(x)\subset\psi(x)$ for every $x\in A$ . Then, $\psi$ can be extended to
a continuous selection $\varphi$ : $Xarrow \mathrm{C}(Y)$ for $\Phi$ such that $\mathit{0}(x)\subset\varphi(x)$ for every $x\in X.$

Since every connected and locally connected completely metrizable space is locally
pathwise connected [5, 6.3.11], we have the following corollary which is a special case
of Theorem 2.2 when $\Phi(x)=Y$ , $x\in X,$ and $A=\emptyset$ .
Corollary 2.3 ([28]). Let $X$ be a paracompact space, $Y$ be a connected and locally
connected, completely metrizable space, and let 0 : $Xarrow \mathrm{C}(Y)$ be a $u.s.c$ . mapping.
Then, there exists a continuous mapping $\varphi$ : $Xarrow \mathrm{C}(Y)$ such that $\mathit{0}(x)\subset\varphi(x)$ for
every $x\in X.$
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We conclude this section demonstrating that, in Theorem 2.1 (and hence, in Corol-
lary 2.3), the requirements on $Y$ to be connected and locally connected are essential.
To this end, let us observe that every u.s.c. and compact-valued (briefly, usco) map-
ping, with a metrizable domain, is a uniformly locally finite lift.

Proposition 2.4. Let X be a metrizable space, Y be a space, and let 0: X $arrow \mathrm{C}(Y)$

be an usco mapping. Then, 0 is a uniformly locally finite lift.
In view of Proposition 2.4, our first example demonstrates that Theorem 2.1 fails

if $Y$ is supposed to be only locally connected.

Example 2.5. Let $X$ be a connected space which has an infinite closed discrete set
$Y$ Then, there exists an usco mapping 41 : $Xarrow \mathrm{C}(Y)$ which is not a selection of
any continuous mapping $\varphi$ : $Xarrow \mathrm{C}(Y)$ . In particular, there exists an usco mapping
0: $\mathbb{R}arrow \mathrm{C}(\mathrm{N})$ which is not a selection of any continuous mapping $\varphi$ : $\mathbb{R}arrow \mathrm{C}(\mathrm{N})$ .

In the same way, Theorem 2.1 fails if $Y$ is supposed to be only connected which is
the purpose of our next example.

Example 2.6. Let $X$ be a connected and locally connected space having an infinite
discrete closed subset (for instance, the real line $\mathbb{R}$), and let $L$ be the long topologist’s
sine curve. Then, there exists an usco mapping 0 : $Xarrow \mathrm{C}(L)$ which is not a selection
of any continuous mapping $\varphi$ : $Xarrow$ C(L).

Let us recall that the long topologist’s sine curve $L$ is the subspace

$L=\{p_{0}\}\cup\cup\{K_{n} : n\in \mathrm{N}\}$

of the Euclidean plane $\mathbb{R}^{2}$ , where $p_{0}=(0,0)$ and
$K_{n}=\{(x+n-1, \sin(\pi/x)) : 0<x\leq 1\}$

for each $n\in$ N. Then, the space $L$ is connected and completely metrizable.

3. EMBEDDING PROPERTIES AND EXPANSIONS

In this section, in fact, we provide some further examples of uniformly r-locally
finite lifts. To this end, let us recall that a subset $A$ of a space $X$ is weakly $z_{\lambda}$ -embedded
in $X[34]$ if every uniformly locally finite collection $\mathcal{U}$ of subsets of $A$ , with $|$& $|\leq\lambda$ ,
is uniformly $\omega$-locally finite in $X$ . Note that $A\subset X$ is weakly $z_{\lambda}$-embedded in $X$ iff
for every uniformly locally finite collection {Up : $\beta<\lambda$ } of subsets of $A$ there are
uniformly locally finite collections $\{H_{(\beta,n)} : \beta<\lambda\}$ , $n<\omega$ , of subsets of $X$ such that
$Up\subset\cup\{H(\beta,n) : n<\omega\}$ for every $\mathrm{d}$ $<$ A. For some other characterizations of weakly
$z)$-embedded sets we refer the interested reader to [34].

Now, we consider the following common point of view of both weak $z_{\lambda}$-embedding
and $U^{\lambda}$-embedding which will play more technical role simplifying our arguments.
Namely, we shall say that a subset $A$ of a space $X$ is $U^{\lambda}L^{\tau}$

- embedded in $X$ (suggesting
“A-Uniformly $\tau$ locally ) if every uniformly locally finite collection { $U\beta$ : $\mathrm{d}$ $<$ A} of
subsets of $A$ is uniformly $\tau$-locally finite in $X$ . Then, $A$ is $U^{\lambda}$-embedded in $X$ iff it is
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$U^{\lambda}L^{1}$ -embedded in $X$ , while $A$ is weakly $z_{\lambda}$ -embedded in $X$ iff it is $U^{\lambda}L^{\omega}$ -embedded
in X.

For a cardinal number $\lambda$ , let $c_{0}(\lambda)$ be the Banach space of all real-valued functions
$s$ on A such that, for each $\epsilon$ $>0,$ the set {a $<$ A : $|\mathrm{s}(\mathrm{a})$ $|\geq\epsilon$ } is finite, where the
linear operations on $c_{0}(\lambda)$ are defined pointwise, and $||s||= \sup\{|s(\alpha)| : \alpha<\lambda\}$ for
every $s\in c_{0}(\lambda)$ . It is well-known that $w(c_{0}(\lambda))\leq\omega.$ $\lambda$ . Note that we may consider
a natural partial order in $c_{0}(\lambda)$ defined for points $s$ , $t\in c_{0}(\lambda)$ by $s\leq t$ if $s(\alpha)$ $\leq t(\alpha)$

for every $\alpha<$ A. Finally, for a subset $T\subset c_{0}(\lambda)$ and a point $s\in c_{0}(\lambda)$ , let us agree
to write that $s \leq\lim\sup T$ (respectively, $\lim$ inf $T\leq s$ ) if for every $\mathit{6}>0$ there exists
$t\in T,$ with $s(\alpha)$ $<t(\alpha)+\epsilon$ (respectively, $t(\alpha)-\epsilon$ $<s$ ( $\alpha$)) for every a $<$ A.

Our first result unifies both $U^{\lambda}$-embedding and weak $z_{\lambda}$-embedding via expansion
of mappings, and provides one of our basic examples of uniformly $\tau$-locally finite lifts.

Theorem3.1. Let A be an infinite cardinal, and $\tau\geq 1$ be a cardinal. For a subset
$A$ of a space $X$ , the following conditions are equivalent:

(a) $A$ is $U^{\lambda}L^{\tau}$ -embedded in $X$ .
(b) Whenever $Y$ is a Banach space, with $w(Y)\leq\lambda$ , every continuous mapping

$\psi$ : $Aarrow \mathrm{C}(Y)$ is a uniformly $\tau$ -locally finite lift.
(c) Every continuous map $g$ : $Aarrow c_{0}(\lambda)$ is a uniformly $\tau$ -locally finite lift.
(d) Whenever $g$ : $Aarrow c_{0}(\lambda)$ is a continuous map, there are continuous maps

$\ell_{\alpha}$ , $u_{\alpha}$ : $Xarrow c_{0}(\lambda)$ , a $<\tau$ , with $\lim\inf_{\alpha<\tau}\ell_{\alpha}(x)\leq g(x)\leq\lim\sup_{\alpha<\tau}u_{\alpha}(x)$ for
every $x\in A.$

(e) Whenever $g$ : $Aarrow c_{0}(\lambda)$ is a continuous map, there are continuous maps
$f_{\alpha}$ : $Xarrow c_{0}(\lambda),$ $\alpha<\tau$ , with $g(x) \leq\lim\sup_{\alpha<\tau}f_{\alpha}(x)$ for every $x\in A.$

Note that if $T=\{t\}\subset c_{0}(\lambda)$ is a singleton and $y\in c_{0}(\lambda)$ , then $y \leq\lim\sup T$

(respectively, $\lim$ inf $T\leq y$ ) implies $y\leq t$ (respectively, $t\leq y$). Hence, by Theorem
2.1 and the case $\tau=1$ of Theorem 3.1, we have the following immediate result. In
particular, it provides the proof of Theorem 1.2 stated in the Introduction.

Corollary 3.2. Let A be an infinite cardinal. For a subset $A$ of a space $X$ , the
following conditions are equivalent:

(a) $A$ is $U^{\lambda}$ -embedded in $X$ .
(b) Whenever $Y$ is a Banach space, with $w(Y)\leq\lambda$ , and $\psi$ : $Aarrow \mathrm{C}(Y)$ is $a$

continuous mapping, there exists a continuous mapping $\varphi$ : $Xarrow \mathrm{C}(Y)$ such
that $\psi(x)\subset p$ (x) for every $x\in A.$

(c) Whenever $Y$ is a Banach space, with $w(Y)\leq\lambda$ , and $g:Aarrow Y$ is a continuous
map, there exists a continuous mapping $\varphi$ : $Xarrow \mathrm{C}(Y)$ such that $g(x)\in\varphi(x)$

for every $x\in A.$

(d) Whenever $g$ : $Aarrow c_{0}(\lambda)$ is a continuous map, there $ex\dot{i}St$ continuous maps
$\ell$ , $u:Xarrow c_{0}(\lambda)$ such that $\ell(x)\leq g(x)\leq u(x)$ for every $x\in A.$

(e) Whenever $g$ : $Aarrow c_{0}(\lambda)$ is a continuous map, there exists a continuous map
$f$ : $Xarrow c_{0}(\lambda)$ such that $g(x)\leq f(x)$ for every $x\in A.$
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As usual, we write $c_{0}$ for $c_{0}(\omega)$ . The equivalence of (a) and (c) of the following
partial case of Corollary 3.2 was proven in [13].

Corollary 3.3. For a subset A of a space X, the following conditions are equivalent:
(a) $A$ is $U^{\omega}$ -embedded in $X$ .
(b) Whenever $g$ : $Aarrow c_{0}$ is a continuous map, there exists a continuous map

$f$ : $Xarrow c\circ$ such that $g(x)\leq f(x)$ for every $x\in A.$

(c) Whenever $g:Aarrow \mathbb{R}$ is a continuous function, there exists a continuous func-
tion $f$ : $Xarrow \mathbb{R}$ such that $g(x)$ $\leq f(x)$ for every $x\in A.$

In what follows, let us agree to say that a set-valued mapping $\psi$ : $Xarrow$ $7(Y)$ is
lower $\sigma$-continuous if there exists a sequence $\{\varphi_{n} : n<\omega\}$ of continuous mappings
$\varphi_{n}$ : $Xarrow \mathrm{C}(Y)$ such that

$\psi(x)=\cup\{\varphi_{n}(x) : n<\omega\}$ , for every $x\in X.$

Note that every lower $\sigma$-continuous mapping is l.s.c. as a union of l.s.c. mappings, see
[5, 1.7.17]. Concerning the inverse relation, we refer the reader to the next section
where we provide a characterization of lower $a$-continuous mappings in terms of “l.s.c
factorizations” through metrizable spaces.

By Theorem 2.1 and the case $\tau=\omega$ of Theorem 3.1, we also have the following
mapping-characterization of weak $z_{\lambda}$-embedding.

Corollary 3.4. Let A be an infinite cardinal. For a subset A of a space X, the
following conditions are equivalent:

(a) A is weakly $z_{\lambda}$ -embedded in $X$ .
(b) Whenever $Y$ is a Banach space, with $w(Y)\leq\lambda$ , and $\psi$ : $Aarrow \mathrm{C}(Y)$ is a contin-

uous mapping, there exists a lower $\sigma$ -continuous mapping $\varphi$ : $Xarrow F$(Y) such
that $\psi(x)\subset\varphi(x)$ for every $x\in A.$

(c) Whenever $Y$ is a Banach space, with $w(Y)\leq\lambda$ , and $g:Aarrow Y$ is a continuous
map, there exists a lower $\sigma$ -continuous mapping $\varphi$ : $Xarrow \mathrm{F}(Y)$ such that
$g(x)\in$ $\varphi(x)$ for every $x\in A.$

(d) Whenever $g$ : $Aarrow c_{0}(\lambda)$ is a continuous map, there are continuous maps
$\ell_{n}$ , $u_{n}$ : $Xarrow c_{0}(\lambda)$ , $n<\omega$ , such that $\lim\inf_{n}\ell_{n}(x)\leq g(x)\leq\lim\sup_{n}u_{n}(x)$ for
every $x\in A.$

(e) Whenever $g$ : $4arrow c_{0}(\lambda)$ is a continuous map, there are continuous maps
$f_{n}$ : $Xarrow c_{0}(\lambda)$ , $n<\omega$ , such that $g(x) \leq\lim\sup_{n}f_{n}(x)$ for every $x\in A.$

Remark. The reader might be wonder if, in Corollary 3.4, for every continuous map
$g$ : $Aarrow c_{0}(\lambda)$ there exists a sequence $\{f_{n} : n<\omega\}$ of continuous maps $f_{n}$ : $Xarrow$} $c_{0}(\lambda)$

such that for every $x\in A$ one can find an $n(x)$ $<\omega$ , with $g(x)\leq f_{n(x)}(x)$ . In
general, this is not true which is demonstrated by the following example: Let $D(c_{0})$

be the set $c_{0}=c_{0}(\omega)$ endowed with the discrete topology, and let $X$ be the one-point
compactification of $D(c_{0})$ . Also, consider the identity map $g$ : $D(c_{0})arrow c_{0}$ from the
discrete space $D(c\circ)$ to the Banach space $c_{0}$ .
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For an infinite cardinal $\lambda$ , a space $X$ is said to have the property $(U^{\lambda})$ if every
locally finite collection $T$ of subsets of $X$ , with $|$ $\mathrm{F}|\leq\lambda$ , is uniformly locally finite,
see [16]. Also, let us recall that a map $g:Xarrow c_{0}(\lambda)$ is upper semi-continuous if for
every $x\in X$ and every $\Xi$ $>0,$ there exists a neighbourhood $G$ of $x$ in $X$ such that if
$x’\in G,$ then $g(x’)(\alpha)<$ $\mathrm{g}(\mathrm{x})(\mathrm{a})$ $+\epsilon$ for every $\alpha\in c_{0}(\lambda)$ , see [14].

As another application of Theorem 2.1, we have the following expansion character-
ization of the property $(U^{\lambda})$ .

Theorem 3.5. For an infinite cardinal $\lambda$ , the following conditions on a space $X$ are
equivalent:

(a) $X$ has the property $(U^{\lambda})$ .
(b) Whenever $Y$ is a Banach space, with $w(Y)\leq\lambda$ , and $\psi$ : $Xarrow \mathrm{C}(Y)$ is $a$

$u.s.c$ . mapping, there exists a continuous mapping $\varphi$ : $Xarrow \mathrm{C}(Y)$ such that
$\psi(x)\subset p$ (x) for each $x\in X.$

(c) Whenever $g$ : $Xarrow c_{0}(\lambda)$ is an upper semi-continuous map, there exists $a$

continuous map $f$ : $Xarrow c_{0}(\lambda)$ such that $g(x)\leq f(x)$ for each $x\in X.$

The next corollary follows from Theorem 3.5 and [14, Corollary 5.6].

Corollary 3.6. For an infinite cardinal $\lambda$ , a normal space $X$ has the properry $(U^{\lambda})$

if and only if $X$ is $\lambda$ -collectionwise normal and countably parac$\mathit{0}$ ompact.

As it was shown in [16], a space $X$ has the property $(U^{\omega})$ if and only if $X$ is a
c&space in the sense of Mack [19]. Thus, the following corollary is a special case
of Theorem 3.5, where the equivalence of (a) and (c) was proven by Mack in [18,
Theorem 1].

Corollary 3.7. The following conditions on a space $X$ are equivalent:
(a) $X$ is a cb-space.
(b) For every upper semi-continuous map $g$ : $Xarrow c_{0}$ , there exists a continuous

map $f$ : $Xarrow c_{0}$ such that $g(x)\leq f(x)$ for every $x\in X.$

(c) For every upper semi-continuous map $g$ : $Xarrow \mathbb{R}$, there exists a continuous
map $f$ : $Xarrow l$ such that $g(x)\leq f(x)$ for every $x\in X.$

4. EMBEDDING PROPERTIES AND SELECTIONS

Here, we deal with another component of $P^{\lambda}$-embedding providing characteriza-
tions of weakly embedding properties in terms of controlled extensions of maps with
values in arbitrary Banach spaces.

In what follows, a subset $A$ of a space $X$ is $z$ -embedded in $X$ if each zer0-set of $A$

is the restriction to $A$ of a zer0-set of $X$ . Also, for a Banach space $Y$ , we use $\mathrm{C}_{c}(Y)$

(respectively, $\mathrm{F}_{c}(Y)$ ) to denote all convex members of $\mathrm{C}(Y)$ (respectively, $\mathrm{F}(Y)$ ).
The following provides, in particular, Theorem 1.3 stated in the Introduction.

Theorem 4.1. For a subset $A$ of a space $X$ , the following are equivalent:
(a) $A$ is C’-embedded in $X$ .
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(b) Whenever $Y$ is a Banach space and $\varphi$ : $Xarrow \mathrm{C}_{c}(Y)$ is continuous, every con-
tinuous selection $g:Aarrow Y$ for $\varphi|A$ can be extended to a continuous selection
$f$ : $Xarrow Y$ for $\varphi$ .

(c) Whenever $Y$ is a Banach space and $\varphi$ : $Xarrow \mathrm{C}(Y)$ is continuous, every con-
tinuous selection $g$ : $Aarrow Y$ for $\varphi|A$ can be extended to a continuous map
$f$ : $Xarrow Y$

(d) Whenever A is a cardinal and $\ell_{\}}u:Xarrow c_{0}(\lambda)$ are continuous maps such that
$\ell(x)\leq u(x)$ for every $x\in$ A, every continuous map $g$ : $Aarrow c_{0}(\lambda)$ , with
$\ell(x)\leq g(x)\leq u(x)$ for every $x\in A,$ can be extended to a continuous map
$f$ : $Xarrow c_{0}(\lambda)$ .

Our next purpose is to characterize $C$-embedding in a similar way. To prepare for
this, we first establish a result that sheds some light about the proper place of lower
a-continuous mappings.

Let $Y$ be a metrizable space, $\mathrm{P}$ be a property of set-valued mappings, and let
1 : $Xarrow \mathrm{r}(Y)$ have the property 7, brieffy $\psi$ $\in 7"$ . A triple $(Z, h, \Psi)$ is a P-
factorization for $\psi$ (see [10]) if

(i) $Z$ is a metrizable space, with $w(Z)\leq w(Y)$ ,
(ii) $h:Xarrow Z$ is a continuous map,
(iii) $\Psi$ : $Z$ - $\mathrm{F}(Y)$ is a mapping, with $\Psi\in P$ and $\psi$ $=It$ $\circ h$ .

Finally, for a Banach space $Y_{:}$ we let $5_{c}(Y)$ $=$ { $S\in$ $\mathrm{F}(\mathrm{Y})$ : $S$ is separable}.

Lemma 4.2. Let Y be a Banach space. For a set-valued mapping $\psi$ : X $arrow 5c$ (Y)
the following conditions are equivalent:

(a) $\psi$ is lower a-continuous.
(b) $\psi$ has a lower $\sigma$ -continuous factorization $(Z, h, \Psi)$ .
(c) $\psi$ has an 1. $s.c$. factorization $(Z, h, \Psi)$ .
(d) TAere exists a countable set $\mathcal{T}\subset C(X, Y)$ such that $\{f(x) : f\in 7 \}$ is dense in

$\psi(x)$ for every $x\in X.$

It is probably the place to remark that Lemma 4.2 may have some independent
interest being a typical selection-factorization result. In fact, natural applications
of that lemma could be related to the existence of continuous selections with some
special properties which is demonstrated in this report as well. Towards this end,
let us observe that lower a-continuity is preserved by the usual operation of convex-
closure.

Proposition 4.3. Let $X$ be a space, $Y$ be a Banach space, and let $\varphi$ : $Xarrow$ $\mathrm{F}(\mathrm{Y})$

be lower $\sigma$-continuous. Define $\psi(x)=\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{v}(\varphi(x))$ for every $x\in X$ . Then, $\psi$ is lower
$\sigma$ continuous too.

We are now ready for the promised characterization of C-embedding.

Theorem 4.4. For a subset A of a space X, the following conditions are equivalent:
(a) $A$ is $C$ -embedded in $X$ .
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(b) Whenever $Y$ is a Banach space and $\varphi$ : $Xarrow$ FciY) is lower a-continuous,
every continuous selection $g:Aarrow Y$ for $\varphi|A$ can be extended to a continuous
selection $f$ : $Xarrow sr$ $Y$ for /’.

(c) Whenever $Y$ is a Banach space and 1 : $Xarrow$ $\mathrm{C}(\mathrm{Y})$ is low er a-continuous,
every continuous selection $g:Aarrow Y$ for $\varphi|A$ can be extended to a continuous
map $f$ : $Xarrow Y$

(d) If A is a cardinal and $g$ : $Aarrow c_{0}(\lambda)$ is a continuous map such that there
are continuous maps $\ell_{n}$ , $u_{n}$ : $Xarrow c_{0}(\lambda)$ , $n<\omega$ , with the property that
$\lim\inf_{n<\omega}\ell_{n}(x)\leq g(x)\leq\lim\sup_{n<\omega}u_{n}(x)$ for every $x\in A$ , then $g$ can be
extended to a continuous map $f:Xarrow c_{0}(\lambda)$ .

(e) If A is a cardinal and and $g$ : $Aarrow c_{0}(\lambda)$ is a continuous rnap such that there
are continuous maps $\ell_{n}$ , $u_{n}$ : $Xarrow c_{0}(\lambda)$ , $n<\omega$ , with the property that for
every $x\in A$ there is an $n(x)<\omega$ , with $\ell_{n(x)}(x)\leq g(x)\leq u_{n(x)}(x)$ , then $g$ can
be extended to a continuous map $f$ : $Xarrow c_{0}(\lambda)$ .

A few words about the proper place of Theorems 4.1 and 4.4 should be mentioned.
First of all, let us stress the reader’s attention that in the speacial case of a dense
subset $A\subset X,$ the equivalence (a) ? $(\mathrm{b})\Rightarrow(\mathrm{c})\Rightarrow(\mathrm{a})$ of Theorem 4.1 was established
by Sanchis in [32, Theorem 3.1], similarly for Theorem 4.4 (see [32, Theorem 4.1]).
Also, let us stress the attention that both Theorems 4.1 and 4.4 remain valid if in
(b) and (c) of these theorems the partial selection $g$ is merely supposed to be non-
empty compact-valued and continuous, i.e. $g:Aarrow \mathrm{C}(Y)$ . In this case, the resulting
extension will be a continuous mapping $f$ : $Xarrow \mathrm{C}(Y)$ such that $f|A=g.$ In fact,
taking in mind that $g$ : $Aarrow \mathrm{C}(Y)$ is a continuous mapping if and only if $g$ is a
continuous map of $A$ into the space $(\mathrm{C}(Y), \tau v)$ , we can obtain this as a consequence
of the corresponding statements for single-valued maps.

We complete this section with a similar selection-extension characterization of z-
embedding. To this end, we shall say that a set-valued mapping 0 : $Xarrow \mathrm{C}(Y)$ is
upper 6 - continuous if there exists a sequence $\{\varphi_{n} : n<\omega\}$ of continuous mappings
$\varphi_{n}$ : $Xarrow \mathrm{C}(Y)$ such that $\mathit{0}(x)=\cap\{\varphi_{n}(x) : n<\omega\}$ , for every $x\in X.$ Let us
stress the reader’s attention that every upper $\delta$-continuous mapping is u.s.c. as an
intersection of usco mappings (see [5, 3.12.28]). In fact, modulo factorizations through
metrizable spaces, the converse holds as well.

Lemma 4.5. Let $Y$ be a Banach space. For a set-valued mapping 0 : $Xarrow \mathrm{C}_{c}(Y)$ ,
the following conditions are equivalent:

(a) 0 is upper 8-c0ntinu0us
(b) 9 has an upper 6-continuous factorization $(Z, h, \ominus)$ .
(c) 0 has a $u.s.c$ . factorization $(Z, h, \Theta)$ .

Here is an important example of upper $\delta$-continuous mappings.

Proposition 4.6. Let $Y$ be a Banach space, $\varphi$ : $Xarrow \mathrm{C}(Y)$ be continuous, and let
$\theta$ : $Xarrow \mathrm{C}_{c}(Y)$ be a selection for / such that $\theta^{-1}(F)$ is a zerO-set of $X$ for every
closed $F\subset Y$ Then, 0 is upper 8-c0ntinu0us
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We are now ready for our characterization of z-embedding.

Theorem 4.7. For a subset $A$ of a space $X$ , the following conditions are equivalent’.
(a) $A$ is $z$ -embedded in $X$ .
(b) Whenever $Y$ is a Banach space and $\varphi$ : $Xarrow \mathrm{C}_{c}(Y)$ is continuous, every con-

tinuous selection $g$ : $A$ - $Y$ for $\varphi|A$ can be extended to an upper 5-c0ntinu0us
selection 0 : $Xarrow \mathrm{C}_{c}(Y)$ for /’ in sense that $\theta(x)=\{g(x)\}$ for every $x\in A.$

(c) Whenever $Y$ is a Banach space and $\varphi$ : $Xarrow \mathrm{C}(Y)$ is continuous, every con-
tinuous selection $g:Aarrow Y$ for $\varphi|A$ can be extended to an upper 5-c0ntinu0us
mapping 0 : $Xarrow \mathrm{C}_{c}(Y)$ .

(d) Whenever A is a cardinal and $\ell$ , $u:Xarrow c_{0}(\lambda)$ are continuous maps such that
$\ell(x)\leq u(x)$ for every $x\in A,$ every continuous map $g$ : $Aarrow c_{0}(\lambda)$ , with
$\ell(x)\leq g(x)\leq u(x)$ for every $x\in$ A, can be extended to an upper 5-c0ntinu0us
mapping $\theta$ : $Xarrow \mathrm{C}_{c}(c_{0}(\lambda))$ .

(e) Every bounded continuous function $g$ : $Aarrow \mathbb{R}$ can be extended to an upper
6-continuous mapping 0 : $Xarrow \mathrm{C}_{c}(\mathbb{R})$ .

Theorem 4.7 provides also a factorization property of $z$-embedding. Namely, it im-
plies the following simple consequence which demonstrates that, with respect to con-
tinuous maps controlled by continuous compact-valued expansions, the z-embedded
subsets are, in fact, subsets of metrizable spaces.
Corollary 4.8. For a subset $A$ of a space $X$ , the following conditions are equivalent:

(a) A is $z$ -embedded in $X$ .
(b) Whenever $Y$ is an infinte metrizable space, $\varphi$ : $Xarrow \mathrm{C}(Y)$ is continuous, and

$g$ : $Aarrow Y$ is a continuous selection for $\varphi|A$ , there exists a metrizable space
$Z$ , with $w(Z)\leq w(Y)$ , a continuous map $h$ : $Xarrow Z_{f}$ and a continuous map
$f$ : $h(A)arrow Y$ such that $g=f\circ(h|A)$ .

(c) Whenever $g:Aarrow \mathbb{R}$ is a continuous bounded function, there exists a separable
metrizable space $Z$ , a continuous map $h$ : $Xarrow Z$, and a continuous function
$f$ : $h(A)arrow \mathbb{R}$ such that $g=f\circ(h|A)$ .

5. SUBDIVIDING AND GENERAT1NG EXTENSIONS BY MEANS OF EXPANSIONS AND
SELECTIONS

In this section we provide some possible applications of our extension results for
weakly-embedding properties. In fact, we have the following three results suggesting
the genesis of the extension property given by $P^{\lambda}$-embedding. The first one is an
immediate consequence of Theorem 1.1, Corollary 3.2 and Theorem 4.1.
Corollary 5.1. Let A be an infinite cardinal, and $A$ be a subset of a space X. Then,
$A$ is $P^{\lambda}$ -embedded in $X$ if and only if it is both $U^{\lambda}$ -embedded and C’-embedded in $X$ ,
$i.e$ .

$P^{\lambda}=U^{\lambda}+$ $C’$ .

In the same way, by Theorem 1.1, Corollary 3.4 and Theorem 4.4, we get the
following consequence.



46

Corollary 5.2. Let $\lambda$ be an infinite cardinal, and $A$ be a subset of a space X. Then,
$A$ is $P^{\lambda}$ -embedded in $X$ if and only if it is both weakly $z_{\lambda}$

- embedded and C-embedded
in $X$ , $i.e$ .

$P^{\lambda}=wz_{\lambda}+C.$

To prepare for our third consequence, we ffrst provide the following further exten-
sion property of $P^{\lambda}$ -embedding.

Theorem 5.3. Let A be an infinite cardinal. For a subset $A$ of a space $X$ , the
following conditions are equivalent:

(a) $A$ is $P^{\lambda}$ -embedded in $X$ .
(b) Whenever $Y$ is a Banach space, with $w(Y)\leq\lambda$ , every continuous map $g:Aarrow$

$Y$ can be extended to an upper $\delta$ -continuous mapping 0 : $Xarrow \mathrm{C}_{c}(Y)$ .

Combining Theorem 5.3 with Corollary 3.2 and Theorem 4.7, we finally get also
the following result.

Corollary 5.4. Let A be an infinite cardinal, and $A$ be a subset of a space X. Then,
$A$ is $P^{\lambda}$ -embedded in $X$ if and only if it is both $U^{\lambda}$ -embedded and $z$ -embedded in $X$ ,
$i.e$ .

$P^{\lambda}=U^{\lambda}+z.$

6. BOUNDARY AVOIDING SELECT1ONS AND C-EMBEDD1NG

In this section, we provide some further applications of our mapping-characteriza-
tions of weakly-embedding properties. Towards this end, we first establish the follow-
ing improvement in Theorem 4.4.

Theorem 6.1. For a subset $A$ of a space $X$ , the following conditions are equivalent:
(a) $A$ is $C$ -ernbedded in $X$ .
(b) If $Y$ is an open convex subset of a Banach space $E$ , $\varphi$ : $Xarrow Fc$ ($\gamma Y$ is lower

$\sigma$ -continuous, and $g:Aarrow E$ is a continuous selection for $\varphi|A$ , with $g^{-1}(Y)=$

$\varphi^{-1}(Y)\cap A,$ then $g$ can be extended to a continuous selection $f$ : $Xarrow E$ for $\varphi$

such that $f^{-1}(Y)=\varphi^{-1}(Y)$ .
(c) If $Y$ is an open convex subset of a Banach space $E$ , $\varphi$ : $Xarrow$p $\mathrm{C}_{c}$ \cap Y is con-

tinuous, and $g$ : $Aarrow E$ is a continuous selection for $\varphi|A$ , with $g^{-1}(Y)=$

$\varphi^{-1}(Y)\cap A,$ then $g$ can be extended to a continuous selection $f$ : $Xarrow E$ for ?
such that $f^{-1}(Y)=$ $\varphi$

$-1$ $(Y)$ .

To prepare for the proof of Theorem 6.1, we need the following lemma which was
actually proven in [4]. We can give a simple proof and demonstrate that it is, in fact,
a consequence of the Michael’s technique stated in [23].

Lemma 6.2. Let $X$ be a paracompact space, $Y$ be an open convex subset of a Banach
space $E$ , $\varphi$ : $Xarrow Fc\mathit{7}$ be 1. $s.c.$ , and let $B$ be an $F_{\sigma}$ -subset of $X$ , with $B\subset\varphi^{-1}(Y)$ .
Then, ? has a continuous selection $\ell$ : $Xarrow Y$ such that $B\subset\ell^{-1}(Y)$ .
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In what follows, let us recall that a subset $A$ of a space $X$ is well-embedded if
it is completely separated from any zer0-set of $X$ disjoint from $A$ . The next result
completes the preparation for the proof of Theorem 6.1, and, in particular, provides
a mapping-like characterization of well-embedding.

Theorem 6.3. For a subset $A$ of a space $X$ , the following conditions are equivalent:
(a) $A$ is well-embedded in $X$ .
(b) If $Y$ is an open convex subset of a Banach space $E,$ $\varphi$ : $Xarrow 2_{\mathrm{C}}’(\overline{Y})$ is

lower $\sigma$-continuous, and $g$ : $Xarrow E$ is a continuous selection for $\varphi_{f}$ with
$g^{-1}(Y)\cap A=\varphi^{-1}(Y)\cap A,$ then there exists a continuous selection $f$ : $Xarrow E$

for $\varphi$ such that $f|A=g|A$ and $f^{-1}(Y)=$ $\varphi$

$-1$ $(Y)$ .
(c) If $Y$ is an open convex subset of a Banach space $E$ , $\varphi$ : $Xarrow \mathrm{C}_{c}(\overline{Y})$ is con-

tinuous, and $g$ : $Xarrow E$ is a continuous selection for $\mathrm{A}$ , with $g^{-1}(Y)\cap A=$

$\varphi^{-1}(Y)\cap A$ , then there exists a continuous selection $f$ : $Xarrow E$ for $\varphi$ such that
$f|A=g|A$ and $f^{-1}(Y)=\varphi^{-1}(Y)$ .

We complete this report with two consequences. The first one demonstrates a
generalization of a result in [6] which was established in [35].

Corollary 6.4 ([35]). Let $X$ be a space, $A$ be a $C$ -ernbedded subset of $X$ , $Z_{0}$ and $Z_{1}$ be
disjoint zerO-sets in $X$ , and let $g:Aarrow$) $[0,1]$ be a continuous function, with $Z_{i}\cap A=$

$g^{-1}(i)$ , $i=0,1$ . Then, $g$ can be extended to a continuous function $f$ : $Xarrow[0,1]$ such
that $Z_{i}=f^{-1}(i)$ , $i=0,1$ .

Our second consequence follows immediately from Theorems 4.1, 6.1 and 6.3. It
demonstrates as the principle difference between the $C^{*}-$ and $C$-embedding as an
alternative proof of the formula $C=C’+$ ”well-embedded” (e.g. [2, Theorem 6.7] or
[8, pp. 19] $)$ .

Corollary 6.5. A subset $A$ of a space $X$ is $C$ -embedded in $X$ if and only if it is both
$C^{*}-$ and nell-embedded in $X_{f}i.e$ .

$C=C’+$ “$well$-ernbedded”.
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