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Algebraic invariants preserved by Bohr homeomorphisms’

Dikran Dikranjan

$”/n$ these days the angel of topology and the
devil of abstract algebra fight for the soul of
every individual discipline of mathematics”

Hermann Weyl

1 Introduction

The encounter of Algebra and Topology in the field of Topological Groups is the best instance to
observe how these disciplines can interact in a strong way. This is witnessed, in particular, by the
remarkable (algebraic) $\mathrm{p}\mathrm{r}$|roperties of the homeomorphisms in the Bohr topology.

1.1 The Bohr topology

A Hausdorff abelian group $G$ is totally bounded iff every non-empty open subset $U$ of $G$ admits a
finite subset $F$ of $G$ such that $G=U+F$ . In particular, the compact groups and their subgroups are
totally bounded. It was proved by A. Weil that these are all totally bounded groups, i.e., the totally
bounded groups are precisely the subgroups of the compact groups. On the other hand, the class of
totally bounded groups is closed under arbitrary products. Hence every group topology of an abelian
group $G$ induced by a family $H$ of homomorphisms $Garrow$ T is totally bounded. The proof of the much
deeper fact that every totally bounded group topology of $G$ has this form can be attributed to Folner
(see [11] for a reasonably elementary exposition). For an abelian Hausdorff group $(G, \mathcal{T})$ let $\hat{G}$ be
the group of all continuous characters of $(G,\mathcal{T})$ . The topology induced on $G$ by the diagonal map
$Garrow$ $\mathrm{J}[’$ is called the Bohr topology of $(G, \mathcal{T})$ . The group $G$ equipped with this topology is denoted
by $G^{+}$ . The group $G$ is maximally almost periodic (brifely MAP) if $G^{+}$ is Haudorff. The completion
$bG$ of $G^{+}$ is widely known as the Bohr compactification of $G([28])$ . The continuous inclusion map
$\rho G$ : $Garrow bG$ is universal with respect to all continuous homomorphisms $f$ : $Garrow K,$ where $K$ is a
compact group (i.e., there exists a unique continuos homomorphism $\tilde{f}:bGarrow K$ such that $f=\tilde{f}\circ\rho c$).

In this survey we shall be interested mainly in the Bohr topology of a discrete abelian group $G$ .
Clearly, this is the maximal totally bounded group topology of $G$ . In this case the notation $G^{\neq}$ is
used instead of $G^{+}$ . Hence this is the initial topology of all homomorphisms $Garrow$ T. Since every
discrete abelian group $G$ is MAP, one has an embedding $G^{\neq}\mapsto \mathrm{T}^{Hom(G,\mathrm{T})}$ . We keep the notation $bG$

for the Bohr compactification of $G$ . Clearly, this is the closure in $\mathrm{T}^{Hom(G,\mathrm{T})}$ of the image of $G$ under
this embedding.
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Now we list some properties of $G^{\neq}$ in the next theorem. The first two are due to Comfort and
Saks [4] :

Theorem 1.1 Let $G$ be an infinite abelian group. Then:

1. $G^{\neq}is$ not pseudocompact.

2. every subgroup of $G^{\neq}is$ closed.

3.
$G^{\neq}IfH$

).
is a subgroup of $G$ , then $H^{\neq}is$ a topological subgroup of $G^{\neq}(i.e.,$

$H\mapsto Galg$.
yields $H^{\neq}\mathrm{c}arrow$

For further properties of the Bohr topology the reader may see [18, 31, 32, 27, 24, 25, 29, 30, 6, 8,
16, 5].

1.2 The Bohr topology of the bounded abelian groups

The group $G$ is bounded, if $mG=0$ for some integer $m>1,$ where $mG=\{mx : x\in G\}$ . A typical
example to this effect is the group $\mathrm{V}_{m}^{\kappa}=\oplus_{\kappa}\mathbb{Z}_{m}$ , where is is cardinal and $\mathbb{Z}_{m}$ is the cyclic group
of order $m$ . Now the homomorphisms $Garrow \mathbb{Z}_{m}$ suffice to describe the Bohr topology of $G$ and a
typical neighborhood of 0 in $G^{\neq}$ is a finite-index subgrv up of $G$ (see [6, 8, 29, 16] for a more detailed
descrition of the Bohr topology of $\mathrm{V}_{m}^{\kappa}$). It is not clear how much this specific fact has determined the
best level of knowledge of the Bohr topology for the class of bounded abelian groups.

By Priifer’s theorem [20, Theorem 17.2] every abelian group $G$ of finite exponent is a direct sum
of cyclic groups, so has the form

$G=\oplus\oplus p\in \mathrm{P}k\in\omega l_{p}h^{:^{k}}$
,

where only finitely many of the cardinals $\kappa_{p,k}$ are non-zero. The cardinals $\kappa_{p,k}$ are known as Ulm-
Kaplansky invariants of $G$ (for the definition of the Ulm-Kaplansky invariants of arbitrary abelian
groups see [20, \S 37] $)$ .
For a bounded group $G$ the essential order $eo(G)$ of $G$ is the smallest positive integer $m$ with $mG$

finite (e.g., $eo$($\mathrm{V}_{91}^{2}\mathrm{x}\mathrm{V}_{7}^{3}\mathrm{x}$ $\mathrm{V}_{2}^{\omega}\mathrm{x}\mathrm{V}_{3}^{d_{1}})=6$). Then, $G=F\mathrm{x}H$ , with $mH=0$ and $F$ finite.

1.3 van Douwen’s homeomorphism problem

In the sequel we write $G\approx H(G\approx_{u}H)$ for topological groups $G$ and $H$ to denote that they are
(uniformly) homeomorphic as topological (resp., unform) spaces. Since we are considering only abelian
groups, all three uniformities appearing usually in the framework of topological groups coincide in
this case.

E. van Douwen [19] posed the following challenging problem in 1987 [1, Question 515]:

Problem 1.2 (van Douwen) Does $|G|=|H|$ for abelian groups $G$ , $H$ imply $G^{\neq}\approx H^{\neq g}$

It is easy to see that most of the currently used topological cardinal invariants of a group of the
form $G\#$ depend only on the size $|G|$ (i.e., $w(G^{\neq})=\chi(G^{\neq})=2^{|G|}$ , $d(G^{\neq})=|\mathrm{C}|,$ $\psi(G^{\neq})=\log|G|$ ,
$\dim G^{\neq}=indG^{\neq}=0,$ etc.). Hence topological cardinal invariants cannot help to answer this
question. This suggests the idea to check whether some algebraic invariants of the group $G$ are
preserved by Bohr homeomorphisms. This turned out to be the right clue later on ([7]). Before
touching this specific point we recall the relevant steps towards the solution of the problem.
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The first instance of a pair of non-isomorphic groups that are Bohr homeomorphic was given by
Trigos [32, Theorem 6.33] – if an abelian group $G$ has a subgroup $H$ of index $n$ and $G\cong H,$ then
$G\#$ $\approx G^{\neq}\cross \mathbb{Z}_{n}$ :

Theorem 1.3 (Trigos) For $n<\omega$ if $G$ admits a monomorphism $f$ : $Garrow G$ such that $[G:f(G)]=n,$
then $G^{\neq}\approx G^{\neq}\mathrm{x}\mathbb{Z}_{n}$ . In particular, $\mathbb{Z}^{\neq}\approx \mathbb{Z}^{\neq}\mathrm{x}\mathbb{Z}_{n}$.

As a matter of fact, it is easy to see that for the subgroup $H=f(G)$ the obvious homeomorphism
$G^{\neq}\approx H^{\neq}\mathrm{x}\mathbb{Z}_{n}$ is actually uniform (this holds true for every subgroup $H$ of index $n$ and makes no
use of the monomorphism $\mathrm{f}$). So $G^{\neq}\approx_{u}H^{\neq}\mathrm{x}$ Zn, allong with the topological group isomorphism
$G^{\neq}\cong H^{\neq}$ (due to the isomorphism $f$ : $Garrow H$) gives $G^{\neq}\approx_{u}G^{\neq}\mathrm{x}\mathbb{Z}_{n}$ . Hence $\mathbb{Z}^{\neq}\approx_{u}\mathbb{Z}^{\neq}\mathrm{x}\mathbb{Z}_{n}$ .

A negative solution to van Douwen’s Problem was obtained in November 1996 by Kunen [29] and
independently, almost at the same time, by Watson and the author [15] (even if the paper appeared
in printed form somewhat later [16] $)$ .

Theorem 1.4 (Kunen [29]) $\mathrm{V}_{p}^{\omega\#}$ \neq $\mathrm{V}_{q}^{\omega\#}$ for primes $p\neq q.$

Watson and the author [16] proved that $\mathrm{V}_{2}^{\kappa\#}\beta$ $\mathrm{V}_{m}^{\kappa\#}$ for $m\neq 2$ and $\kappa$
$>2^{2^{\mathrm{c}}}$

Following Hart and Kunen [24] , call a pair $G$ , $H$ of abelian groups almost isomorphic if $G$ and $H$

have isomorphic finite index subgroups. The next theorem generalizes Theorem 1.3:

Theorem 1.5 (Hart and Kunen [24]) If $G$ , $H$ are almost isomorphic abelian groups, then $G^{\neq}\approx H\#$ .

We give a detailed proof of this theorem in \S 2.1. Since the above theorem presents the only known
positive general result on Bohr homeomorphisms, the next question, posed by Kunen [29], seems very
natural:

Question 1.6 Is the implication in Theorem 1.5 reversible $q$

The answer to this question will be discussed in \S 2.2. In the same section we discuss also the
following uniform version of van Douwen’s Problem

Problem 1.7 When $|G|=|H|$ for abelian groups $G$ , $H$ implies $G^{\neq}\approx_{u}H^{\neq_{2}}$

Clearly, the condition $G^{\neq}\approx_{u}H^{\neq}$ is more restrictive than just $G^{\neq}\approx H^{\neq}$ . Hence Theorem 1A
already gives the first answer “not always” . On the other hand, $\mathbb{Z}^{\neq}\approx_{u}\mathbb{Z}\#\cross$ $\mathbb{Z}_{n}$ shows that non-
isomorphic groups may be uniformly homeomorphic in the Bohr topology.

We are not discussing here another intersting van Douwen’s problem concerning retracts in the
Bohr topology (see [23, 21, 2, 9, 5]).

1.4 Group properties invariant under Bohr homeomorphisms

The negative solution of van Douwen’s problem 1.2 makes the first three items in the following
definition meaninglful. Call a pair $G$ , $H$ of infinite abelian groups:

1. Bohr-equivalent if $G^{\neq}\approx H^{\neq}$ ;

2. strongly Bohr-equivalent if $G^{\kappa}$ and $H^{\kappa}$ are Bohr-equivalent for every cardinal $\kappa$ ;

3. unifo rmly Bohr-equivalent if $G\#$ $\approx_{u}H^{\neq};$
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4. weakly Bohr-equivalent if there exist embeddings $G^{\neq}\sim+H^{\neq}$ and $H^{\neq}arrow\succ G^{\neq};$

5. weakly isomorphic if $|mG|\cdot$ $|mH|\geq\omega$ implies $|mG|=|mH|$ for every $m\in$ N.

6. $c$-equivalent if $G$ admits a compact group topology iff $H$ does.

7. $cc$-equivalent if $G$ admits a countably compact group topology iff $H$ does.

8. $psc$-equivalent if $G$ admits a pseudocompact group topology iff $H$ does.

In these terms Kunen [29] proved that $\mathrm{V}_{p}^{\omega}$ and $\mathrm{V}_{q}^{\omega}$ are not even weakly Bohr-equivalent for distinct
primes $p$ , $\mathrm{g}$ , while Theorem 1.5 asserts that almost isomorphic groups are always Bohr-equivalent.
Our purpose will be to clarify the relations between these properties.

2 Around almost isomorphism

2.1 Proof of Theorem 1.5

According to van Douwen [17], if $X$ is a regular countable homogeneous space, then every pair $U$ and
$V$ of non-empty clopen sets of $X$ are homeomorphic. For the sake of completeness we give a proof of
a slightly more precise version of this fact in the case when $X=G^{\neq}$ for a countable abelian group $G$ .
Claim 1. If $G$ is a countably infinite abelian group and $U$ , $V$ are a non-empty clopen set of $G^{\neq}$ ,
then there exist clopen partitions $U= \bigcup_{m}A_{m}$ and $V=Jn$ $B_{m}$ , and a homeomorphism $h$ : $Uarrow V$

such that for every $m$ the restriction $h_{m}$ of $h$ to $A_{m}$ is a translation $t_{m}$ of the group $G$ carrying $A_{m}$

onto $B_{m}$ .

Proof Let $U=\{g_{1}$ , $\ldots$ , $g_{n}$ , $\ldots$
$\}$ and $V=\{x1, \ldots,x_{n}, \ldots\}$ . Let $h_{1}$ be the translation carrying $g_{1}$ to

$x_{1}$ . Since $G^{\neq}$ is zer0-dimensional and $U$ , $V$ are clopen, there exist proper clopen subsets $g_{1}\in A_{1}\subset U$

and $x_{1}\in B_{1}\subset V$ such that $h_{1}(A_{1})=B_{1}$ . Then $U_{1}=U$ ’ $A_{1}$ and $V_{1}=V\backslash B_{1}$ are non-empty clopens
sets. Let $n_{1}$ and $k_{1}$ be minimal such that $g_{n_{1}}\in U_{1}$ and $x_{k_{1}}\in V_{1}$ . Choose analogously clopen proper
clopen subsets $g_{n_{1}}\in A_{2}\subseteq U_{1}$ and $xk_{1}\in B_{2}\subseteq V_{1}$ so that the translation $x\mapsto’ x+x_{n_{1}}-g_{n_{1}}$ carries
A2 onto $B_{2}$ . Build analogously $A_{3}$ , .. . ’

$A_{m}$ , $\ldots$ and $B_{3}$ , $\ldots$ , $B_{m}$ , $\ldots$ and note that $\bigcup_{=1}^{k}.\cdot A_{i}$ contains
at least $g_{1}$ , $\ldots$ , $g_{k}$ and $\bigcup_{i=1}^{k}B_{i}$ contains at least $x_{1}$ , . . . , $xk$ , therefore, $U= \bigcup_{m}A_{m}$ and $V=)_{m}B_{m}$ .
QED

It follows from the above claim that if $G,H$ are countably infinite abelian groups that are not
weakly Bohr-equivalent, then one can find either a non-empty clopen set of $G^{\neq}$ that cannot be
embedded in $H^{\neq}$ , or a non-empty clopen set of $H^{\neq}$ that cannot be embedded in $G^{\neq}$ .

The proof given below follows the lines of the proof [24].

Proof of Theorem 1.5. If $G$ is a countably infinite abelian group and $H$ is a finite index sub-
group of $G$ , then $H$ is clopen (being a closed subgroup of finite index). So the above claim gives a
homeomorphism $h:G^{\neq}arrow H^{\neq}$ with the above mentioned properties.

If the group $G$ is uncountable, then there exists a subgroup $N$ of $H$ such that the quotient $G/N$

is countably infinite. Let $f$ : $Garrow G/N$ be the canonical homomorphism. Then $f(H)$ is a finite
index subgroup of $\mathrm{G}/\mathrm{N}$ . By Claim 1 there exists clopen partitions $G/N$ $= \bigcup_{m}A_{m}$ , $f(H)= \bigcup_{n}B_{m}$

and a family of elements $a_{m}$ of $G/N$ such that the translation $t_{m}$ : $x\vdash+x+a_{m}$ of $G/N$ carries $A_{m}$

onto $B_{m}$ . For every $m$ let $b_{m}$ be an element of $G$ such that $f(b_{m})=a_{m}$ . Let $A_{m}’=f^{-1}(A_{m})$ and
$B_{m}’=f^{-1}(B_{m})$ . Then $G= \bigcup_{m}A_{m}$

’ and $H= \bigcup_{n}B_{m}$
’ are clopen partitions. Finally, let $s_{m}$ be the
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traslation $y-iy+b_{m}$ of the group G. Then $f\mathrm{o}s_{m}=t_{m}\mathrm{o}f$, and consequently $s_{m}(A_{m}’)=B_{m}’$ .
Therefore the family $(s_{m})$ defines a homeomorphism $h$ : $G^{\neq}arrow H^{\neq}$ in the usual way (for every $m$

define $h$ to coincide on $A_{m}’$ with $s_{m}$ ). QED

Example 2.1 It is easy to see that Theorem 1.5 cannot be extended to uniform homeomorphisms.
It suffices to see that there exists no uniform homeomorphism $h$ : $\mathbb{Q}^{\#}arrow(\mathbb{Q}\cross \mathbb{Z}_{2})\#$ . Indeed, if such
an $h$ exists, then it can be extended to the completions to give a homeomorphism between $b\mathbb{Q}$ and
$b(\mathbb{Q}\mathrm{x}\mathbb{Z}_{2})$ . Since $b\mathbb{Q}$ is connected and $b$ ( $\mathbb{Q}\mathrm{x}$ Z2) $=b\mathbb{Q}\mathrm{x}$ Z2 is not, we arrive at a contradiction.

The same argument proves

Theorem 2.2 If $D$ is a divisible abelian group and $G^{\neq}\approx_{u}D^{\neq}$ , then also $G$ is divisible.

Inspired by the above example and by Theorem 1.3 let us consider for infinite abelian groups $G$

and $H$ the following conditions:

(a) there exist finite groups $F$, $F$’ such that $G\mathrm{x}F’\cong H\mathrm{x}F$ ;

(b) $G$ and $H$ are almost isomorphic, denoted by $G\sim H$ in the sequel;

(c) all infinite Ulm-Kaplanski invariants of $G$ coincide with the respective Ulm-Kaplanski invariants
of $H$ .

In general these conditions need not be equivalent. It is easy to see that (a) is equivalent also to
the following

$(\mathrm{a}’)$ there exist finite subgroups $F$, $F$’ of $G$ and $H$ respectively, such that $G=G_{1}\mathrm{x}F$ , $H=H_{1}\mathrm{x}F’$

and $G_{1}\cong H_{1}$ .

Lemma 2.3 Let $G$ and $H$ be infinite abelian groups. Then always $a$) $\Rightarrow b$) $\Rightarrow c$) $\Rightarrow d$). If the groups
$G$ , $H$ are bounded, all they are equivalent.

The easy proof of the lemma is based on the fact that all binary relations defined above are
equivalence relations (in the larger sense) satisfying the following easy to check propeties:

(i) all three conditions $(\mathrm{a})-(\mathrm{c})$ are preserved under taking finite products;

(ii) all three conditions are local (i.e., if $G$ and $H$ satisfy some of them, then also their pprimary
components do).

(iii) if $G$ and $H$ satisfy (a), then $t(G)$ and $t(G)$ satisfy (a) and $G\prime t(G)\cong H/t$(H) (where $t(G)$

denotes the torsion subgroup of the group $G$);

(iv) if $G\sim H,$ then $t(G)\sim t(H)$ and $G/t(G)$ $\sim$ H/t(H);

(v) $G\sim H$ implies $t_{p}(G)\cong tp(H)$ for almost all $p$ and $tp\{G$) $\sim t_{p}(H)$ for all $p$ (where $t(G)$ denotes
the torsion subgroup of $G$). If $H$ and $G$ are torsion, the conjunction of these two properties
implies $G\sim H.$

(vi) $G\sim H$ iff their maximal divisible subgroups $d(G)$ , $d(H)$ are isomorphic and the reduced groups
$G/d(G)$ and $H/d(H)$ are almost isomorphic (it suffices to note that every finite index subgroup
contains the maximal divisible subgroup).
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By means of these properties one can complete Lemma 2.3 and determine the precise relations
between the properties $(\mathrm{a})-(\mathrm{c})$ in various classes of groups.

(A) For divisible abelian groups the relations (a) and (b) coincide with the usual $\cong$ , while any pair
of divisible abelian groups vacuously satisfies (c).

(B) For torsion-free groups (a) coincides with $\mathrm{S}$ (by (iii)), while $G\sim H$ need not imply $G\cong H.$

Indeed, there exist (finite rank) torsion-free abelian group $G$ non-isomorphic to its subgroups
of finite index. Hence, (b) is a weaker condition than (a) in the class of torsion-free abelian
groups. Finally, any pair of torsion-free abelian groups vacuously satisfies (c).

(C) Combining the properties $(\mathrm{i})-(\mathrm{v}\mathrm{i})$ , one can limit the torsion case to the reduced $p$ torsion one.
More precisely, if for all pairs of reduced ptorsion group $G$ , $H(\mathrm{b})$ implies (a), then also for
all pairs of torsion groups $G$ , $H(\mathrm{b})$ implies (a). In particular, this gives: For all pairs $G$ , $H$ of
torsion abelian groups such that each primary component is bounded conditions (a) and (b)
are equivalent, while the condition (c) is properly weaker (just take the groups $G=\oplus_{p}\mathbb{Z}_{p}$ and
$H=G^{2})$ .

2.2 Answer to Question 1.6

The following theorem of Comfort, Hernandez and Trigos [2] opened new insights on Bohr home0-
morphisms :

Theorem 2.4 [2] Let $G$ be an abelian group and let $A$ be a subgroup of $G$ that is either finitely
generated or has finite index. Then $G^{\neq}\approx(G/A)^{\neq}\cross A\#.$

As a corollary it provides an immediate negative answer to Question 1.6.

Example 2.5 ([Comfort-Hern\’andez-Trigos [2]) $\mathbb{Q}^{\#}\approx(\mathbb{Q}/\mathbb{Z})^{\neq}\mathrm{x}\mathbb{Z}_{r}^{\neq}$ but $\mathbb{Q}\emptyset$ $\mathbb{Q}/\mathbb{Z}\mathrm{x}\mathbb{Z}$ , according to
(iv).

As another application of 2.4 we show how this theorem can be used as a formidable tool for
creating Bohr homeomorphisms “out of nothing”.

Since every abelian group $G$ having a subgroup $H$ of index $n<\omega$ satisfies $G^{\neq}\approx H\#$ $\mathrm{x}_{u}\mathbb{Z}_{n}$ (see
the comment after Theorem 1.3), clearly Theorem 1.5 follows from the next:

Claim 2. If $H$ is a abelian group then $H^{\neq}\approx H^{\neq}\cross \mathbb{Z}_{n}$ for every $n<\omega$ .
We do not know whether Claim 2 has a proof simpler than Hart-Kunen’s proof of Theorem 1.5

given above. The next observation shows that this is the case for non-torsion $H$ .

Observation 2.6 If $n<\omega$ and $H$ is a non-torsion abelian group then $H^{\neq}\approx G^{\neq}\mathrm{x}$ Zn. Indeed, let
$c$ be a generator of $\mathbb{Z}_{n}$ and let $a$ be a non-torsion element of $H$ . Then $(a, c)$ is a non-torsion element
of $G=H\mathrm{x}$ Zn. The cyclic subgroup of $G$ generated by $(a, c)$ is infinite, so also $C_{1}=C" i$ $H$ is an
infinite cyclic group with $C\cong C_{1}$ and $C/C_{1}\cong \mathbb{Z}_{n}$ . By Theorem 2.4 $G^{\neq}\approx(G/C)\#\mathrm{x}$ C#, while
$GfC=(H+$ G/C $\cong$ H/Ci. Hence, Theorem 2.4 applied to $H$ gives

$G^{\#}\approx(H/C_{1})^{\#}\mathrm{x}C^{\#}\approx(H/C_{1})^{\#}\cross C_{1}^{\neq}\approx H^{\neq}$ .
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2.3 Kunen’s conjecture in the realm of bounded groups

Here we give evidence to support the hope for a positive answer to Question 1.6 in the realm of
bounded groups.

Using the fact that a discrete abelian group $G$ has a totally disconnected Bohr compactification
iff $G$ is bounded torsion, one obtains an immediate proof of the following fact:

Theorem 2.7 If $H$ is bounded and $G^{\neq}$ admits a uniform embedding into $H^{\neq}$ , then also the group
$G$ is bounded. Uniform Bohr-equivalence preserves boundedness.

Using appropriate “hypergraph spaces” (in the line of a similar approach exploiting the chromatic
number of graphs from [30] $)$ Givens and Kunen [22] obtained the following much stronger statement
as well as a series of important results that we give below.

Theorem 2.8 (Givens and Kunen [22]) If $H$ is bounded and $G^{\neq}\mathrm{C}arrow H^{\neq}$ , then also $G$ is bounded.
Consequently, the weak Bohr-equivalence preserves boundedness.

Theorem 2.9 (Givens and Kunen [22]) If $p$ is a prime and $K$ is an infinite abelian group of exponent
$p$ , then the following are equivalent for an abelian group $G$ :

(a) $G^{\neq}is$ homeomorphic to a subset of $K^{\neq};$

(b) $G$ is almost isomor phic to a subgroup of $Kj$

Clearly, if $|G|=|H|$ in the above theorem, then the equivalent conditions imply $G^{\neq}\approx H^{\neq}$ .

Theorem 2.10 (Givens and Kunen [22]) $eo(G)=eo(H)$ for weakly Bohr-equivalent bounded groups
$G$ , $H$ such that one of them is either countable or has a prime exponent.

3 The full power of the weak Bohr-equivalent

Here we see that Theorem 2.10 can be strenthened as follows (see also Corollary 3.5).

Theorem 3.1 For bounded abelian groups $G$ , $H$

“Weakly isomorphic” 9 “weakl$y$ Bohr-equivalent” $\Rightarrow eo(G)=$ eo(H).
All three properties coincide in the case of countable groups.

3.1 The Straightening Law and its corollaries

The proof of Theorem 3.1 is based on the following Straightening Law (a preliminary form was
announced by the author in Prague 2001 [8] $)$ :

Straightening Law Theorem. Let $m>1$ and $\pi:\mathrm{V}_{m}^{\kappa\#}arrow ttH^{\neq}be$ an embedding with $\pi(0)=0$ into
an abelian group H. If either $H$ is bounded or $\kappa$ $>\supset_{2m-1}$ , then there exists an infinite subset $A$ of

$\mathrm{V}_{m}^{\hslash}$ such that:

(a) $\langle A\rangle\cong \mathbb{V}_{m}^{\kappa}$ ;

(b) $\pi \mathrm{r}_{A}=f$ $\lceil_{A}$ for some injective homomorphism $\ell$ : $\langle A\ranglearrow H.$
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Let us underline the importance of the fact that the continuous embeddings covered by the Straight-
ening Law have domain v3$\#$ . In fact, the homeomorphism from Example 2.5 provides an embedding
$\pi$ : $(\mathbb{Q}/\mathbb{Z})\#\llcornerarrow\}$ $\mathbb{Q}^{\neq}$ s$\mathrm{u}\mathrm{c}\mathrm{h}$ that for no non-empty subset $A$ $ {0} of $\mathbb{Q}/\mathbb{Z}$ the restriction $\pi \mathrm{r}_{A}$ may
coincide with the restriction $\ell \mathrm{r}_{A}$ of some injective homomorphism $\ell$ : $\langle A\ranglearrow$ Q.

For a prime $p$ and $s\in\omega$ let

$\gamma_{p,s}(G):=\sup\{\kappa_{p,l}(G) : l\geq s\}$ .

This cardinal invariant captures perfectly weak isomorphisms. Indeed, it is easy to see that $)_{p,s}(G)\geq\kappa$

alg.
if and only of $\mathrm{V}_{p^{\epsilon}}^{\kappa}arrow’ G$

The next lemma ensures the first implication in Theorem 3.1:

Lemma 3.2 For bounded abelian groups $G$ and $H$ the following are equivalent:

(a) $G,H$ are weakly isomorphic;

(b) $\gamma_{p,\epsilon}(G)=\gamma_{p,s}(H)$ for every prime $p$ and every $s<\omega j$

alg. alg.
(c) $G\mathrm{C}arrow H$ and $H\llcornerarrow*G.$

The next claim is proved in [10] by means of the Straightening Law:

Claim 3. If $\mathrm{V}_{p^{s}}^{\kappa\#}\mapsto H^{\neq}$ with $\kappa$ $\geq J$) and $0<s<\omega$ , then $\mathrm{V}_{p}^{\kappa}\mathrm{x}\mathrm{V}_{p^{s}}^{\omega}arrow Ha_{\mathrm{C}}lg$

. .
alg.

Now, to prove the second implication in Theorem 3.1 note that $p^{\epsilon}|eo(G)$ if and only if $\mathrm{V}_{p^{s}}^{\omega}\mathit{4}$ $G$ .
Hence $G^{*}arrow+H^{\neq}$ implies $\mathrm{V}_{p^{\epsilon}}^{\omega\#}\epsilonarrow G^{\neq}$ \sim k $H^{\neq}$ , so by the Claim $\mathrm{V}_{p^{s}}^{\omega}\mapsto Halg$

. , and consequenlty $p^{s}|\mathrm{e}\mathrm{o}(\mathrm{H})$

whenever $p^{\theta}|eo(G)$ .
Lemma 3.3 $G^{\neq}\mapsto H^{\neq}\Rightarrow r_{p}(G)\leq r_{p}(H)$ if $r_{p}(G)\geq\omega$ .

alg.
Note that $r_{p}(G)\geq\kappa$ $\Rightarrow \mathrm{V}_{p}^{\kappa}\mapsto G,$ so $\mathrm{V}_{p}^{\kappa\#}‘arrow G^{\neq}\mathrm{c}arrow H^{\neq}$ when $\kappa$ $\geq\omega$ , hence the Claim gives

$\mathrm{V}_{p}^{\kappa}\mapsto Halg$

. .
This next corollary answers (for $p=2$ and $q=3$) a question from [22].

Corollary 3.4 $\mathrm{V}_{p}^{\omega_{1}\#}\neq*(\mathrm{V}_{p}^{w}\mathrm{x}\mathrm{V}_{q^{1}}^{\mathrm{t}d})^{\neq}for$ distinct primes $p$ , $q$ .
Indeed, $r_{p}(\mathrm{V}_{p}^{\omega_{1}})=\omega_{1}>\omega=r_{p}(\mathrm{V}_{p}^{\omega}\mathrm{x}\mathrm{V}_{q}^{\omega_{1}})$ , so Lemma 3.3 applies.

Corollary 3.5 If $G$ and $H$ are bounded weakly Bohr-equivalent groups, then $eo(G)=eo(H)$ and
$r_{p}(G)=r_{p}(H)$ whenever at least one of these cardinals is infinite.
Theorem 3.6 If $G$ and $H$ are strongly Bohr-equivalent abelian groups, then they are simultaneously
torsion-ffee (resp. p-torsion-free, for any prime $p$).

alg.
Indeed, assume that $r_{p}(G)>0.$ Then $\mathrm{V}_{p}^{\omega}\llcornerarrow G^{\omega}$ , so $\mathrm{V}_{p}^{\omega\neq}\sim*\nu$

$G^{\omega\#}\approx H^{\omega\#}$ , hence Corollary 3.5
applies to give $r_{p}(G))=r_{p}(H)$ .

In case $G$ and $H$ are not bounded torsion, $\omega$ has to be replaced by $\supset_{2p-1}$ $[6]$ .

Example 3.7 Almost isomorphic abelian groups need not be strongly Bohr-equivalent. Indeed, take
$G=\mathrm{V}_{2}^{\omega}$ , $H=\mathbb{Z}_{3}\cross \mathrm{V}_{2}^{\omega}$ and apply Corollary 3.5 to the groups $G^{\omega}$ and $H^{\omega}$ to conclude that $G^{\omega}$ and
$H^{\omega}$ cannot be Bohr homeomorphic since $r3(G^{\omega})=0$ and $r_{3}(H^{\omega})=\omega$ .
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3.2 Almost homogeneous bounded abelian groups

Definition 3.8 A bounded abelian groups $G$ is almost homogeneous if for every prime $p$ at most one
$\kappa_{p,s}(G)\geq\omega(0<s<\omega)$ .

Example 3.9 (a) Bounded groups of square-free essential order are almost homogeneous $(i.e.$ ,
groups of the form $G=H\mathrm{x}F$, where $F$ is finite and $p_{1}p_{2}\ldots$ $p_{n}H=0$ for distinct primes
$p_{1},p_{2}$ , . . . , $p_{n}$ ).

(b) An infinite $p$ -group $G$ is almost homogeneous $if$ $G=F\mathrm{x}\mathrm{V}_{p^{\epsilon}}^{\kappa}$ for some finite $p$ -group $F$, $s\in\omega$

and $\kappa$ $=|G|$ .
(c) Every almost homogeneous bounded abelian group is almost isomor phic to a group of the $fom$

$\oplus_{i=1}^{n}\mathrm{V}_{p^{*}}^{\kappa}.\cdot.\cdot$ . , where $p_{1}$ , $p_{2}$ , . . . , $p_{n}$ are distinct primes

Theorem 3.10 For almost homogeneous abelian groups $G$ , $H$ TFAE:

(a) $G$ and $H$ are Bohr-equivalent,

(b) $G$ and $H$ are weakly Bohr-equivalent;

(c) $G$ and $H$ are weakly isomorphic,

(d) $G$ and $H$ are almost isomorphic;

(e) $eo\{G$) $=eo\{H$) and $rp(G)=rp(H)$ whenever $rp(G)+rp(G)\geq\omega$ .

This gives:

Corollary 3.11 If $G$ and $H$ are countably infinite abelian groups offinite square-free essential erpO-

nent, then there eists a homeomorphism $\pi$ : $G^{\neq}arrow H^{\neq}iff$ $G\sim H.$

Example 3.7 shows that strong Bohr-equivalence cannot be added to this list.

4 c equivalent, $\mathrm{p}\mathrm{s}\mathrm{c}$-equivalence and cc-equivalence

Conjecture 1 If G and H are almost isomor phic abelian groups, then G and H are c-equivalent.

By $d(G)\cong d(H)$ , the conjecture is restricted to the case of reduced groups $(d(G)=d(H)=0)$ .

Theorem 4.1 Weakly isomorphic bounded abelian groups are psc-equivalent.

This follows immediately from the description of the torsion abelian groups admitting pseud0-
compact group topologies obtained by Shakhmatov and the author in [12]. Indeed, this description
depends only on the invariants $\gamma_{p,\epsilon}(G)$ , so that Lemma 3.2 applies.

Corollary 4.2 If $G$ and $H$ are almost homogeneous and weakly Bohr-equivalent, then they are psc-
equivalent. In particular, if $G^{\neq}\approx H\#$ and $G$, $H$ are almost homogeneous, then they are psc-equivalent.

Question 4.3 Does $G^{\neq}\approx H^{\neq}and$ G, H always imply that G and H are $psc- equivalent^{q}$

Recent results of Tkachenko and the author [14] imply
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Theorem 4.4 [MA] Weakly isomorphic bounded abelian groups of $size\leq$ c are cc-equivalent.

Indeed, one can derive from the description given in [14], under the assumption of MA, that a
group $G$ of size $\leq$ c admits a countably compact group topology if and only if all $\gamma_{p,s}(G)$ are either
finite or $\mathrm{c}$ .

Corollary 4.5 (MA) For almost homogeneous bounded abelian groups of $size\leq$ c weak Bohr-equivalence
yields cc-equivalence.

Shakhmatov and the author [13] introduced for every cardinal $\kappa\geq$ U2, a set-theoretic axiom $\nabla_{\kappa}$

consistent with ZFC and implying $\mathrm{c}$ $=\omega 1,$
$2^{\mathrm{c}}=\kappa$ (with $2^{\mathrm{c}}$ “arbitrarily larg\"e). From the the main

results of [13] it follows that, under the assumption of $\nabla_{\kappa}$ , an abelian group $G$ of size $\leq 2^{\mathrm{c}}$ admits
a countably compact group topology if and only if all $\gamma_{p,\epsilon}(G)$ are either finite or $\mathrm{c}$ . This description
gives these two corollaries:

Theorem 4.6 Under $\nabla_{\kappa}$ , weakly isomorphic bounded abelian groups of $size\leq 2^{\mathrm{c}}$ are cc-equivalent.

Corollary 4.7 Under $\nabla_{\kappa}$ , weak Bohr-equivalence yields $cc$-equivalence for almost homogeneous bounded
abelian groups of $size\leq 2^{\mathrm{c}}$ .

Corollary 4.8 Under $7_{\kappa}$ , if $G$ and $H$ are weakly Bohr-equivalent almost homogeneous abelian groups
and $G$ admits $a$ separable pseudocompact group topology then $H$ admits $a$ countably compact and
hereditarily separable group topology without infinite compact subsets.

It is not clear whether 4.4-4.8 remain true in ZFC.

5 Open questions

Fo$\mathrm{r}$ reader’s convenience we collect in the next diagram most of the relations between various levels
of Bohr-equivalence and the various levels of “weak” isomorphisms discussed in the paper. Arrows
accompanied by a property (e.g., “bounded”, “countabl\"e, etc.) are implications valid for pairs of
abelian groups with that specific property.

In spite of the results of \S 3, it still remais unclear where weak Bohr-equivalence should be placed.
Our open qeustions aim to clarify its real position with respect to the remaining three adjacent
conditions: Bohr-equivalence, weak isomorphism and

(’) $eo(G)=eo(H)$ and $r_{p}(G)=r_{p}(H)$ for all $p$ with $r_{p}(G)+r_{p}(H)\geq\omega$ .
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According to Theorem 3.1 and Corollary 3.5 weak Bohr-equivalence is captured between weak
isomorphism and the weaker condition $(*)$ . Since countable abelian group $G$ , $H$ with $eo(G)=eo(H)$
are weakly isomorphic, this yields that the three properties coincide for countable groups.

Obviously, weak Bohr-equivalence follows from Bohr-equivalence, this is why we start the questions
by discussing this (easiest) implication.

The groups V4 and $\mathrm{V}_{2}^{\omega}\cross \mathrm{V}_{4}^{\omega}$ are weakly isomorphic, hence weakly Bohr-equivalent by Theorem
3.1.

Question 5.1 (a) (Kunen $f\mathit{2}\mathit{9}]$) Are v3 and $\mathrm{V}_{2}^{\omega}\mathrm{x}$ V4 Bohr-equivalent 9

(b) Are weakly Bohr-equivalent groups always Bohr- equivalent $q$

A positive answer to (a) will answer negatively Question 1.6 for bounded abelian groups.
Let us discuss now the implication

weakly Bohr-equivalent $\Rightarrow$

? weakly isomorphic

The groups $\mathrm{V}_{4}^{\omega_{1}}$ and $\mathrm{V}_{2}^{\omega_{1}}\mathrm{x}\mathrm{V}_{4}^{\omega}$ are not weakly isomorphic, so it makes sense to ask

Question 5.2 Are $\mathrm{V}_{4}^{w_{1}}$ and $\mathrm{V}_{2}^{\omega_{1}}$ x $\mathrm{V}_{4}^{\iota v}$ weakly Bohr-equivalent (i.e., does $(\mathrm{V}_{4}^{\omega_{1}})^{\neq}\mapsto(\mathrm{V}_{2}^{\omega_{1}}\mathrm{x}\mathrm{V}_{4}^{\mathrm{I}d})^{\neq})^{g}$

Or the strongest form:

Question 5.3 Are $\mathrm{V}_{p^{s}}^{\kappa}$ and $\mathrm{V}_{p}^{\kappa}\mathrm{x}\mathrm{V}_{p^{\theta}}^{\omega}$ weakly Bohr-equivalent for all possible s $\in\omega,p\in P$ , $\kappa\geq\omega^{q}$

Can this depend on $p^{\rho}$

If the answer to Question 5.3 is positive, then for any pair $G,H$ of bouned abelian groups weak
Bohr-equivalence is equivalent to $(*)$ .

The next question is an equivalent form of the strongest negative answer to Question 5.3.

Question 5.4 Is it tme that for every prime p, for every $0<k<\omega$ and everry uncountable cardinal
$\kappa$

$(\mathrm{V}_{p^{k}}^{\kappa})^{\#}\mapsto(\mathrm{V}_{p^{k-1}}^{\kappa}\cross \mathrm{V}_{p^{k}}^{\lambda})^{\neq}$ $\Rightarrow$ $\lambda\geq\kappa^{7}$

Another equivalent form is the following

Question 5.5 Assume there exists an embedding $\pi$ : $G^{\neq}arrow*H^{\neq}for$ some bounded abelian group $H$ .
Is it true that $\gamma_{\mathrm{p},k}(G)\leq$ ci . $\gamma_{p,k}(H)$ for every prime $p$ and for every $0<k<\omega^{\mathit{9}}$

In particular, if $G$ and $H$ are weakly Bohr-equivalent and $H$ is bounded, are then $G$ and $H$ weakly
isomorphic 2
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