On dense subsets of the boundary of a Coxeter system

字都官大学教育学部

保坂 哲也 (Tetsuya Hosaka)

The purpose of this note is to introduce main results of my recent paper [10] about dense subsets of the boundary of a Coxeter system.

A Coxeter group is a group W having a presentation

$$(S \mid (st)^{m(s,t)} = 1 \text{ for } s, t \in S),$$

where S is a finite set and $m : S \times S \to \mathbb{N} \cup \{\infty\}$ is a function satisfying the following conditions:

1. $m(s,t) = m(t,s)$ for each $s, t \in S$,
2. $m(s,s) = 1$ for each $s \in S$, and
3. $m(s,t) \geq 2$ for each $s, t \in S$ such that $s \neq t$.

The pair (W, S) is called a Coxeter system. Let (W, S) be a Coxeter system. For a subset $T \subset S$, W_T is defined as the subgroup of W generated by T, and called a parabolic subgroup. If T is the empty set, then W_T is the trivial group. A subset $T \subset S$ is called a spherical subset of S, if the parabolic subgroup W_T is finite. For each $w \in W$, we define $S(w) = \{s \in S \mid \ell(ws) < \ell(w)\}$, where $\ell(w)$ is the minimum length of word in S which represents w. For a subset $T \subset S$, we also define $W^T = \{w \in W \mid S(w) = T\}$.

Let (W, S) be a Coxeter system and let S' be the family of spherical subsets of S. We denote WS' as the set of all cosets of the form wW_T, with $w \in W$ and $T \in S'$. The sets S' and WS' are partially ordered by inclusion. Contractible simplicial complexes $K(W, S)$ and $\Sigma(W, S)$ are
defined as the geometric realizations of the partially ordered sets S^f and WS^f, respectively ([7, §3], [5]). The natural embedding $S^f \to WS^f$ defined by $T \mapsto WT$ induces an embedding $K(W, S) \to \Sigma(W, S)$ which we regard as an inclusion. The group W acts on $\Sigma(W, S)$ via simplicial automorphism. Then $\Sigma(W, S) = WK(W, S)$ ([5], [7]). For each $w \in W$, $wK(W, S)$ is called a chamber of $\Sigma(W, S)$. If W is infinite, then $\Sigma(W, S)$ is noncompact. In [12], G. Moussong proved that a natural metric on $\Sigma(W, S)$ satisfies the CAT(0) condition. Hence, if W is infinite, $\Sigma(W, S)$ can be compactified by adding its ideal boundary $\partial\Sigma(W, S)$ ([6, §4], [8]). This boundary $\partial\Sigma(W, S)$ is called the boundary of (W, S). We note that the natural action of W on $\Sigma(W, S)$ is properly discontinuous and cocompact ([5], [6]), and this action induces an action of W on $\partial\Sigma(W, S)$.

A subset A of a space X is said to be dense in X, if $\overline{A} = X$. A subset A of a metric space X is said to be quasi-dense, if there exists $N > 0$ such that each point of X is N-close to some point of A.

Let (W, S) be a Coxeter system. Then W has the word metric d_w defined by $d_w(w, w') = \ell(w^{-1}w')$ for each $w, w' \in W$.

Here we obtained the following theorems in [10].

Theorem 1. Let (W, S) be a Coxeter system. Suppose that $W^{\{s_0\}}$ is quasi-dense in W with respect to the word metric and $m(s_0, t_0) = \infty$ for some $s_0, t_0 \in S$. Then there exists $\alpha \in \partial\Sigma(W, S)$ such that the orbit $W\alpha$ is dense in $\partial\Sigma(W, S)$.

Suppose that a group Γ acts properly and cocompactly by isometries on a CAT(0) space X. Every element $\gamma \in \Gamma$ such that the order $o(\gamma) = \infty$ is a hyperbolic transformation of X, i.e., there exists a geodesic axis $c : \mathbb{R} \to X$ and a real number $a > 0$ such that $\gamma \cdot c(t) = c(t + a)$ for each $t \in \mathbb{R}$ ([3]). Then, for all $x \in X$, the sequence $\{\gamma^i x\}$ converges to $c(\infty)$ in $X \cup \partial X$. We denote $\gamma^\infty = c(\infty)$.

Theorem 2. Let (W, S) be a Coxeter system. If the set

$$\bigcup \{W^{\{s\}} | s \in S \text{ such that } m(s, t) = \infty \text{ for some } t \in S\}$$
is quasi-dense in \(W \), then \(\{ w^\infty \mid w \in W \text{ such that } o(w) = \infty \} \) is dense in \(\partial \Sigma(W, S) \).

Remark. For a negatively curved group \(G \) and the boundary \(\partial G \) of \(G \),

1. we can show that \(G\alpha \) is dense in \(\partial G \) for each \(\alpha \in \partial G \) by an easy argument, and
2. it is known that \(\{ g^\infty \mid g \in G \text{ such that } o(g) = \infty \} \) is dense in \(\partial G \) ([2]).

Example. Let \(S = \{ s, t, u \} \) and let
\[
W = \langle S \mid s^2 = t^2 = u^2 = (st)^3 = (tu)^3 = (us)^3 = 1 \rangle.
\]
Then \((W, S) \) is a Coxeter system and \(W^{\{s\}} \) is quasi-dense in \(W \). On the other hand, for any \(\alpha \in \partial \Sigma(W, S) \), \(W\alpha \) is a finite-points set and not dense in \(\partial \Sigma(W, S) \) which is a circle. Thus we can not omit the assumption "\(m(s_0, t_0) = \infty \)" in Theorem 1.

We showed the following lemma in [10].

Lemma 3. Let \((W, S) \) be a Coxeter system. Suppose that there exist a maximal spherical subset \(T \) of \(S \) and \(s_0 \in S \) such that \(m(s_0, t) \geq 3 \) for each \(t \in T \) and \(m(s_0, t_0) = \infty \) for some \(t_0 \in T \). Then \(W^{\{s_0\}} \) is quasi-dense in \(W \).

As an application of Theorems 1 and 2, we can obtain the following corollary from Lemma 3.

Corollary 4. Let \((W, S) \) be a Coxeter system. Suppose that there exist a maximal spherical subset \(T \) of \(S \) and an element \(s_0 \in S \) such that \(m(s_0, t) \geq 3 \) for each \(t \in T \) and \(m(s_0, t_0) = \infty \) for some \(t_0 \in T \). Then

1. \(W\alpha \) is dense in \(\partial \Sigma(W, S) \) for some \(\alpha \in \partial \Sigma(W, S) \), and
2. \(\{ w^\infty \mid w \in W \text{ such that } o(w) = \infty \} \) is dense in \(\partial \Sigma(W, S) \).

Example. The Coxeter system defined by the diagram in Figure 1 is not hyperbolic in Gromov sense, since it contains a copy of \(\mathbb{Z}^2 \), and it satisfies the condition of Corollary 4.
REFERENCES

DEPARTMENT OF MATHEMATICS, UTSUNOMIYA UNIVERSITY, UTSUNOMIYA, 321-8505, JAPAN
E-mail address: hosaka@cc.utsunomiya-u.ac.jp