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A DIRECT METHOD FOR FINDING DUCKS IN $R^{4}$

KIYOYUKI TCHIZAWA

Dept. of mathematics, Musashi Institute of Technology

ABSTRACT. The singular perturbation problem in $Rn(n>3)$ includes a possibility
having a constrained surface with a 2-dimensional dfferentiable manifold. We will
take up the system in $R^{4}$ having such a constrained surface. Although it is difficult
to analyze these systems in general, we will show some sufficient conditions to make
it possible. We will reduce the system to the problem in $R^{3}$ (indirect method) or $R^{2}$

(direct one) and show the existence of the duck solutions.

1.INTRODUCTION
$\mathrm{S}.\mathrm{A}$ .Campbell, one of authors of [3], investigated first the coupled FitzHugh-

Nagumo equations as a bifurcation problem. On this system, we have already
proved the existence of the winding dudc solutions in $R^{4}([4])$ , reducing it to a
system in $R^{3}$ . This method uses an indirect way as using an approximated system.
In this paper, we will reduce it to the system in $R^{2}$ directly and get a duck solution,
which has a delayed jump along the vertical direction.

PRELIMINARIES

Let us consider a constrained system$(2,1)$ :
$dx/dt$ $=f(x,y, z,u)$ ,

(2.1) $dy/dt$ $=g(x,y, z,u)$ ,
$h(x,y, z, u)=0,$

where $u$ is a parameter (any fixed) and $f,g,h$ are defined in $R^{3}\cross R^{1}$ . Furthermore,
let us consider the singular perturbation problem of the system (2.1):

$dx/dt$ $=f(x,y, z,u)$ ,

(2.2) $dy/dt$ $=g(x,y,z,u)$ ,
$\epsilon dz/dt$ $=h(x,y,z,u)$ ,

where $\epsilon$ is infinitesimally small.
We assume that the system (2.1) satisfies the following conditions $(A1)-(A5)$ :
(A1) $f$ and $g$ are of class $C^{1}$ and $h$ is of class $C^{2}$ .
(A2) The set $S=\{(x,y, z)\in R^{3}|h(x,y, z,u)=0\}$ is a 2-dimensional differen-

tiable manifold and the set $S$ intersects the set
$T=\{(x,y, z)\in R^{3}|\partial h(x, y, z, u)/\partial z=0\}$ transversely so that the pli set $PL=$

$\{(x,y, z)\in S\cap T\}$ is a 1-dimensional differentiate manifold.
(A3) Either the value of $f$ or that of $g$ is nonzero at any point $p\in PL.$

(2.2) $dy/dt$ $=g(x, y, z, u)$ ,
$\epsilon dz/dt$ $=h(x, y, z, u)$ ,

where $\epsilon$ is $\mathrm{i}\mathrm{n}\mathrm{f}\mathrm{i}\mathrm{n}\cdot \mathrm{t}\mathrm{e}\mathrm{s}\mathrm{i}\mathrm{m}\mathrm{a}\mathrm{l}\mathrm{l}\mathrm{y}$small.
We assume that the system (2.1) satisfies the following conditions $(\mathrm{A}1)-(A5)$ :
(A1) $f$ and $g$ are of class $C^{1}$ and $h$ is of class $C^{2}$ .
(A2) The set $S=\{(x, y, z)\in R^{3}|h(x, y, z, u)=0\}$ is a2-dimensional differen-

tiable manifold and the set $S$ intersects the set
$T=\{(x, y, z)\in R^{3}|\partial h(x, y, z, u)/\partial z=0\}$ transversely so that the pli set $PL=$

$\{(x, y, z)\in S\cap T\}$ is a1-dimensional $\mathrm{d}$ fferentiable manifold.
(A3) Either the value of $f$ or that of $g$ is nonzero at any point $p\in PL.$
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Let $(x(t, u)$ , $y(t, u)$ , $z(t, u))$ be a solution of (2.1). By differentiating $h(x, y, z, u)$

with respect to the time $t$ , the following equation holds:

(2.3) $hx(x,y, z,u)f(x,y, \mathrm{z},\mathrm{u})+h_{y}(x, y, z,u)g(x,y, \mathrm{z},\mathrm{u})+hx(x, y, z,u)$ dz/dt $=0,$

where $h_{i}(x, y, z, u)=$ hx(x, $y,$ $z,u$) $/\partial i$ , $i=x,y$ , $z$ . The above system (2.1) becomes
the following system:

$dx/dt$ $=f(x,y, z,u)$ ,
$dy/dt$ $=g(x,y, z,u)$ ,

(2.4)
$dz/dt$ $=-\{h_{x}(x, y, z, u)f(x,y, z,u)+$

$h_{y}(x, y, z, e")g(x, y, z, u)\}/h_{z}(x, \mathrm{j}, z, u)$ ,

where $(x,y, z)\in S\backslash PL.$ The system (2.1) coincides with the system (2.4) at any
point $p\in S\backslash PL.$ In order to study the system (2.4), let consider the following
system:

$dx/dt$ $=$ $\mathrm{h}\mathrm{x}(\mathrm{x},\mathrm{y}, z,u)f(x, y, z, u)$,
(2.3) $dx/dt$ $=-h_{z}(x,y, z,u)g(x,y, z, u)$ ,

$dz/dt$ $=h_{x}(x,y, z,u)f(x,y, z,u)+h_{y}(x,y, z,u)g(x,y, z,u)$ .

As the system(2.5) is well defined at any point of $R^{3}$ , it is well defined indeed at
any point of $PL$ . The solutions of (2.4) coincide with those of (2.1) on $S\backslash PL$

except the velocity when they start from the same initial points.
(A4) For any $(x, y, z)\in S,$ either of the following holds;

(2.6) $h_{y}(x, y, z,u)\neq 0$ , $hx(x,y, z, u)\neq 0,$

that is, the surface $S$ can be expressed as $l$ $=$ ?(x, $z$ , $u$ ) or $x=\psi(y, z, u)$ in the
neighborhood of $PL$ . Let $y=$ $\mathrm{p}(x, z,u)$ exist, then the projected system, which
restricts the system (2.5) is obtained:

$dx/dt$ $=-h_{z}(x, \varphi(x, z, u), z, u)f(x, \varphi(x, z, u), \mathrm{z}, \mathrm{u})$ ,

(2.7) $dz/dt$ $=h_{x}(x, \varphi(x, z,u), z,u)f(x, \varphi(x, \mathrm{z},\mathrm{u})\mathrm{z},\mathrm{u})$

$h_{y}$ (x, $(\mathrm{p}(\mathrm{x},\mathrm{z},\mathrm{u}) \mathrm{u})\mathrm{g}(\mathrm{x}$ , $j$ $(x, ?(x, \mathrm{z},\mathrm{u})\mathrm{z},\mathrm{u})$ .

(A5) All the singular points of (2.7) are nondegenerate, that is, the matrix in-
duced from the linearized system of (2.7) at a singular point has two nonzero eigen-
values. Note that all the points contained in $PS=$ { $(x,y,z)\in$ PLldz/dt $=0$},
which is called pseudo singular points are the singular points of (2.5).

DefmitiOn2.1. Let $p\in PS$ and $\mu_{1}(u)$ , $\mu_{2}.(u)$ be two eigenvalues of the matrix
associated with the linearized system of (2.7) at $p$ . The point $p$ is called pseudo
singular saddle if $\mu_{1}(u)<0<\mu_{2}(u)$ and called pseudo singular node if $\mu_{1}(u)<$

$\mathrm{z},\mathrm{u})<0$ or $\mu_{1}(u)>$ $\mathrm{z},\mathrm{u})>0$ .
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DefinitiOn2.2. Solution $(\mathrm{z}(\mathrm{t}, u)$ , $y(t, u)$ , $z(t, u))$ of the systems(3.1), (3.2) are called
ducks, if there exist standard $t_{1}<t_{0}<t_{2}$ such that

(1) ” $(x(t_{0}, u),$ $y(t_{0}, u)$ , $z(t_{0}, u))\in S,$ where ’(X) denotes the standard part of $X$ ,
(2) for $t\in(t_{1},t_{0})$ the segment of the trajectory ( $x$ (t, $u$), $\mathrm{z}(\mathrm{t},$ $u)$ , $z(t,u)$ ) is infinitesi-

mally close to the attracting part of the slow curves,
(3) for $t\in(t_{0}, t_{2})$ , it is infinitesimally close to the repelling part of the slow curves,

and
(4) the attracting and repelling parts of the trajectory are not infinitesimally small.

TheOrem2.1(Ben0it). If the system has a pseudo singular saddle or node point
with no resonance, then it has duck solutions.

3.SLOW-FAST SYSTEM IN $R^{4}$

Let us consider the following slow-fast system:

$edx2/dt$ $=h1(x,y,u)$ ,
$edx2/dt$ $=h2(x,y,u)$ ,

(3.1)
$dy_{1}fdt=f1(_{X,\mathrm{j}},u)$ ,
$dy_{2}/dt=f2(x, y, u)$ ,

where $x^{t}=(x_{1},x_{2})$ , $y^{t}=(y_{1}, y_{2})$ , are variables, $u\in R$ is a parameter and $\epsilon$ is
infinitesimal in the sense of non-standard analysis of Nelson.

In the case we assume that rank[Jh] $=2$ with respect to $x$ , that is, there
exists $h_{x}^{-1}$ and therefore does a function $\psi$ such that $x=\psi(y)$ , where $\psi(y, u))^{t}=$

$(\psi_{1}(y, u))$ , $\psi_{2}(y, u)))$ . In this state, using a relation $x_{2}=\mathit{1}2(y, u)$ , the system (3.1)
is reduced to the following slow-fast system in $R^{3}$ :

$dyi/dt$ $=f1(x_{1},$ $(\mathrm{z}(\mathrm{t}, u),$ $/,$ $u)$ ,

(3.2) $dy_{2}/dt=f2(x_{1}, \mathrm{A}_{2}(’/,u),y, u)$ ,
$edx2/dt$ $=h1(x_{1}, \psi_{2}(y,u),y,u)$ ,

when $|clx_{1}/dt$ $-$ dx2/dt| is limited. Using the other relation $x_{1}=\psi_{1}(y, u)$ , we can
get the following:

$d$ $/1/”=f1(\psi_{1}(y, u)$ , $x_{2}$ , $y$ , $u)$ ,

(3.3) $dy_{2}/dt=f2(\psi_{1}(y,u),x_{2},y,$ $u)$ ,
$edx2/dt$ $=h2(\psi_{1}(y,u)$ , $x_{2},y,u)$ .
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DefinitiOn3.1. If the system is invariant for changing the coordinates with respect
to (A1) $x_{2})$ , and $(y_{1}, y_{2})$ , the system is called symmetric.

DefinitiOn3.2. If there exist ducks in the both systems (3.2) and (3.3) at the
common pseudo singular point, they are called ducks in $R^{4}$ . If there exists a duck
in only one of the systems, it is called a partial duck in $R^{4}$ .
Lemma3.1. Assume that the system (3.2), or the system (3.3) satisfies the generic
conditions. If they have pseudo singular saddle or pseudo singular node points
without resonance, they have partial ducks in $R^{4}$ . If the system (3.1) is symmetric
under the above conditions at the common pseudo singular point, they have a duck
in $R^{4}$ .

In order to introduce a direct method for analyzing ducks, we assume that
rank[Jh] $=2,$ where $h^{t}=(h1, h2)$ , with respect to $y$ , that is, there exists $h_{y}^{-1}$ .
Then, the implicit function theorem ensures that $y$ is uniquely described like as
$y=\phi(x,u)$ , using a smooth function $\phi$ . The constrained surface $S$ ; when $\epsilon$ equals
to zero, is as follows:

(3.4) $S=$ $\{(x, \phi(x,u))|h(x, \phi(x, u),u)=0\}$ .
In this state, let us define a generalized pli set, simply $GPL$ .

(3.5) $GPL=\{(x,\phi(x,u))\in S|det[h_{x}]=0\}$ .
On the set $S$ , differentiating both sides of $h=0$ by $x$ ,

(3.6) $[h_{x}]+[h_{y}]D\phi=0,$

where $D\phi$ is a derivative with respect to $x$ , therefore

(3.7) $D\phi(x)=-[h_{y}]^{-1}[h_{x}]$ .
On the other hand,

(3.8) $dy/dt$ $=D\phi(x)$dx/dt

notice that $y=\phi(x)$ . We can reduce the slow system to the following:

(3.9) $D\phi(x)dx/dt$ $=f(x,\phi(x))$ ,

where $f^{t}=$ (Al) $f2)$ .
Using (3.7), the system (3.9) is described by

(3.10) $[hx]dx/dt$ $=-[h_{y}]f(x, \phi(x))$ .
Put $[h_{x}]=A$ simply, then

(3.11) $dx/dt$ $=-B[h_{y}]f(x, \phi(x))$ ,

(3.6) $[h_{x}]+[h_{y}]D\phi=0,$

where $D\phi$ is aderivative with respect to $x$ , therefore

(3.7) $D\phi(x)=-[h_{y}]^{-1}[h_{x}]$ .
On the other hand,

(3.8) $dy/dt$ $=D\phi(x)$dx/dt

notice that $y=\phi(x)$ . We can reduce the slow system to the following:

(3.8) $D$[hx]dx/dt $=$ f{x, $\phi(x))$ ,

where $f^{t}=$ (Al) $f2)$ .
Using (3.7), the system (3.9) is described by

(3.10) $[hx]dx/dt$ $=-[h_{y}]f(x, \phi(x))$ .
Put $[h_{x}]=A$ simply, then

(3.11) $dx/dt$ $=-B[h_{y}]f(x, \phi(x))$ ,

where $AB=BA=$ (detA)I.
This is the time scaled reduced system projected into $R^{2}$ . Again, we assume

that a set $\{(x,y)|" tA=0\}$ is not empty and this system also satisfies the generic
conditions $(A1)-$ $(A5)$ in the sectiOn2.

Lemma3.2. If the system (3.11) has singular saddle or singular node points with-
out resonance, the system (3.1) has a partial duck.
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4.COUPLED FITZHUGH-NAGUIVIO SYSTEM

In the coupled FHN system,

$h1=y_{1}-x_{1}^{3}/3+x_{2}$ ,
r2 $=y_{2}-x_{2}^{3}/3+x_{1}$ ,

(4.1)
$f1=x_{1}^{3}-x_{2}$ .,
$f2=x_{2}^{\delta}-x_{1}$ .

Because of satisfying rank[Jh] $=2$ regarding especially $x_{1},x_{2}$ , the system (4.1)
can be reduced to the slow-fast system projected in $R^{3}$ :

$dy_{1}/dt=-(x_{1}+by_{1})/c$ ,

(4.2) $dyx/dt$ $=-(x?/3 -y_{1}+by_{2})/c$,
$\epsilon dx_{1}/"=y_{2}-(x_{1}^{3}/3-y_{1})^{3}/3+x_{1}$ ,

under the condition, that $|dx1/dt$ $-dx_{2}/dt|$ is Umited. On the constrained surface
in the system (4.1), we can get the time scaled reduced system:

$dyx/dt$ $=-$ ($x_{1}+$ 6y1) $(1-(x_{1}^{3}/3-y_{1})^{2}x_{1}^{2})$ ,

(4.3) $dyx/dt$ $=-$ ($x_{1}^{3}/3-y_{1}+$ bya) $(1-(x_{1}^{3}/3-y_{1})^{2}x_{1}^{2})$ ,
$dyx/dt$ $=(x_{1}^{3}/3-y_{1})^{2}(x_{1}+by_{1})+x_{1}^{3}-y_{1}+$ 6y2.

Then, the pseudo singular point, that is, the singular point of the system (4.3) is
determined by

$(x_{1}^{3}/3-y_{1})^{2}(x_{1}+by_{1})+x_{1}^{3}/3-y_{1}+by_{2}=0,$

(4.5)
$1-(x_{1}^{3}/3-y_{1})^{2}x_{1}^{2}=0.$

Note that the second equation in (4.5) can be expressed as $x_{1}^{3}/3-$ $111$ $=+(-)1/x_{1}$ .
In the case (-), there are 2 pseudo singular points $P_{0}=(x_{1\mathit{0}},y_{1\mathit{0}}, c_{2\mathit{0}},y_{2\mathit{0}})$ :

$(x_{1\mathit{0}}, y_{1\mathit{0}}, x_{2\mathit{0}}, y_{2\mathit{0}})=(1,4/3,$ $-1,$ $(4\cdot 3)$ , and $(-1,$ -4/3, 1, 4/3$)$ .
These points do not depend on the parameter $b$ , therefore they are structurally

stable.
As the characteristic equation of the linearized system is

(4.6) $\lambda$ ($\lambda-(2+8b$f$3$)) $(\lambda+ 86/3)$ $=0,$

we can conclude that these will be node if $-3/4<b<0.$ Then there are duck
solutions at the pseudO-singular node. This fact implies they are winding.

In the case $(+)$ , there are 4 pseudo singular points which depend on the param-
eter $b$ . The characteristic equation in this case is

(4.7) $\lambda(A\lambda^{2}+B\lambda+C)/(3+D)^{3}=0,$
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where

$A=-D^{3}-27D+36b^{2}-$ $108$

$B=2[(4b^{2}-9)D^{3}+(16b^{4}-90b^{2}+243))D-162b^{2}+ 486]$ /36

C–$4[405D3+(64b^{6}-720b^{4}+291b^{2}-3645)D+576b^{6}-3024b^{4}+3888b^{2}]/9b^{2}$

$D=\sqrt(3-2b)(3+2b)$ .

If $0<b<3/2,$ there exist the pseudo singular points, as

(4.8) $x_{1}=\pm\sqrt{(3/b\pm\sqrt{9/b^{2}-4})/2}$.

The eigenvalues of all four singular points are the same due to the symmetry.
They arise in some sort of pitchfork bifurcation from the singular points in the
$(-)\mathrm{e}\mathrm{q}\mathrm{u}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}$ at $b=3/2.$ If $0.388<b<$ 1.4489, there will be ducks at the pseudO-
singular node and spirals if $0<b<$ 0.388 or $1.4489<b<3/2.$

Therefore, the following theorem is established by Lemma3.1.
$\mathrm{T}\mathrm{h}\mathrm{e}\mathrm{o}\mathrm{r}\mathrm{e}\mathrm{m}4.\mathrm{L}$ There exists a partial duck in the system (4.1). Furthermore, it has
a duck in $R^{4}$ , as the system is symnietric.

Now turn back to the system (4.1). According to the direct method, we will
reduce the system further.

$[h_{y}]=I,$

$h1_{x_{1}}=-x_{1}^{2}$ ,
(4.9) $h1_{x_{2}}=1,$

$h2_{x_{1}}=1,$

$h2_{x_{2}}=-x_{2}^{A}$ ,

so, we can easily get the matrices A and B. The time caled reduced system is as
follows:

$dx_{1}/dt$ $=(x_{1}+by_{1})x_{2}^{2}+x_{2}+by_{2}=F1(x)$ ,
(4.10)

$dx_{2}/dt$ $=x_{1}+by_{1}+(x_{2}+by_{2})x_{1}^{2}=F2(x)$ ,

where

$y_{1}=x_{1}^{3}/3-x_{2}$ ,
(4.11)

$y_{2}=x_{2}^{3}/3-x_{1}$ .

$F1x_{1}=(1+bx_{1}^{l}.)x_{2}^{A}-b,$

$F1_{x_{2}}=-bx_{2}^{2}+$ $(x_{1}+by1)2x_{2}$ $+1+bx_{2}^{2}$ ,
(4.12)

$F2_{x_{1}}=1+bx_{1}^{2}-bx_{1}^{2}+(x_{2}+by_{2})2x_{1}$,
$F2_{x_{2}}=-b+(1+bx_{2}^{2})x_{1}^{2}$ ,
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and two pseudo singular points are

$P_{1}=$ $()$c1, $x_{2}$ , $y_{\mathit{1}}$ , $y_{2}$ ) $=(1, -1,4/3, -4/3)$ ,
(4.13)

$P_{2}=(-1,1, -4/3,4/3)$ ,

thus

(4.14) $JF(P_{1})=JF(P_{2})=(\begin{array}{ll}1 -1-8b/3-1-8b\oint 3 1\end{array})$

The corresponding characteristic equation is

(4.15) $(\lambda-1)^{2}-(1+8b/3)^{2}=0$ .

Lemma3.2 and Lemma3. 1 ensure the following theorem.

TheOrem4.2. The system (4.1) has a partial duck in $R^{4}$ . As the system is sym-
metric, it is a duck in $R^{4}$ .
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