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1. Introduction

A fair amount of previous work have been appeared on modeling stage-structured
population growth consisting of immature and mature individuals for species (see [1, 2,
8, 10, 11] and the references cited therein). In most of the studies, stage-structure is
modeled by the introduction of a time delay, which leads to systems of retarded func-
tional differential equations. [1] proposed a model of single species growth incorporating
stage-structure as a reasonable generalization of the logistic model, which takes the form

$y’(t)=-\gamma y(t)+\alpha Y(t)-\alpha e^{-\gamma\tau}Y(t-\tau)$ ,
(1)

$Y’(t)=-\mathrm{v}\}\mathrm{Y}(\mathrm{t})$ $+\alpha e^{-\gamma\tau}Y(t-\tau)$ .

Here, $y$ and $Y$ denote the densities of immature and mature populations for single
species, respectively, where $\tau$ represents a const ant time to maturity. $\gamma>0$ is the death
rate in immature stage and $\alpha>0$ denotes the birth rate of the species. $\beta>0$ is the
mature death that reflects overcrowding effect. The term $aze^{-\gamma\tau}Y(t-\tau)$ of the first
expression of (1) represents the immatures born at time $t-$ $\tau$ (with the mature birth
rate $\alpha$ ) that survive to time $t$ (with the immature death rate $\gamma$). This suggests that
those immatures exit from the immature population and enter the mature population at
time $t$ . For (1), it is known that there exists a unique global asymptotic stable interior
equilibrium for solutions with the initial condition $y(0)>0$ and $Y(t)>0\mathrm{o}\mathrm{n}-\tau$ $\leq t\leq 0$

(see [1, Theorem 2]).
In the real world, it is often observed that, for example, predatory plankton eaten by

mature fish is predatory to the immature – which is called inverse trophic relationship
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(see, for example [3, 4, 6, 7]). The authors, in [9], considered a stage structured prey-
predator model based on (1) as follows:

$\mathrm{x}’(t)=x(t)[r_{1}-a_{11}x(t)-a_{13}Y(t)]$ ,

$y’(t)=-r_{2}y(t)$ $+-$ $a_{31}x(t)Y(t)-a_{31}e^{-r\underline{\circ}\tau}x(t-\tau)Y(t-\tau)$ , (2)

$Y’(t)=-r_{3}Y^{2}(t)$ $+a_{31}e^{-r_{2}\tau}x(t-\tau)Y(t-\tau)$ .

Here, $x$ is the density of prey, and $y$ and $Y$ denote the densities of the immature and
mature predator populations, respectively, where $\tau$ represents a constant time to matu-
rity for predator. [9] has been established sufficient conditions for the local asymptotic
stability and global attractivity of an interior equilibri um of the model. In this paper,
to discuss the effect of inverse trophic relationship on population dynamics, we $\mathrm{p}\mathrm{r}(\succ$

pose a time-delay model for (‘prey counterattack” against predator, based on the model
(2). We believe that this is the first time such a population model has appeared in the
literature.

In the next section, we present our model alld results. The proof of our theorems are
given in Sections 3 and 4. In the final section, we give some discussion and future work.

2. The Model and Main Results

We propose the following time-delay model for inverse trophic relationship:

$x’(t)=x(t)[r_{1}-a_{11}x(t)+\alpha_{1}y(t)-a_{13}Y(t)]$

$y’(t)=$ $[-r_{2}-\alpha_{2}x(t)]y(t)+a_{31}x(t)Y(t)$

$-a_{31},x(t-\tau)Y(t-\tau)e^{\int_{t-\tau}^{t}[-r\cdot-\alpha_{2}x(e)]ds}2$
(3)

$Y’(t)=-r_{3}Y^{2}(t)$ $+a_{31}x(t-\tau)Y(t-\tau)e^{\int_{t-\tau}^{t}[-r_{2}-}$ ”x(s) $]$”,

where $\alpha_{1}$ and a2 are nonnegative constants that reflect inverse trophic relationship, alld
all the rest of parameters are positive, $x$ is the prey of $Y$ but eats $y$ , which we may
also call prey counterattack with time delay. We assume that the growth rate of $x$ is of
a Lotka-Volterra nature, and that the mature predator population cannot give birth to
immatures without prey $x$ (i.e. $a_{31}x(t)Y(t)$ and $a_{31}e^{-r_{2}\tau}x(t-\tau)Y(t-\tau)$ ).

The initial condition of (3) is given as $x(s)$ $\geq 0$ aatd $Y(s)\geq 0$ on $-\tau\leq s\leq 0$ , and
$x(0)>0$ , $y(0)>0,$ and $Y(0)>0.$ For (3), it is straightforward to see that there exist
two boundary equilibria (0, 0, 0) and $(_{\hat{a_{11}}}^{r},0,0)$ which are always unstable. However, one
cannot immediately see the existence, uniqueness, and stability of an interior equilibrium
for (3). In fact, let $(x^{*}, y^{*}, Y^{*})$ be possible interior equilibria of (3). Then, they satisfy

$r_{1}-a_{11}x^{*}+\alpha_{1}y^{*}-a_{13}Y^{*}=0,$

$(-r2-\alpha_{2}x^{*})y^{*}+a_{31}x^{*}Y^{*}$ $(1-e(-” 2”)_{\mathrm{T}})$ $=0,$

$-r_{3}Y’+a_{31}x$’ $e^{(-r_{2}-\alpha_{2}x^{*})\tau}=0.$
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One cannot solve $(x^{*}, y^{*}, Y^{*})$ in any explicit forms of parameters since the third expres-
sion has transcendental relationship between $x^{*}$ and $Y^{*}$ .

When there is no inverse trophic relationship, that is, $\alpha_{1}=$ a2 $=0,$ the model (3)
is reduced to (2). In this case, the system has a unique interior equilibri un expressed
in an explicit form of parameters and qualitative properties that (i) all solutions of (3)
tend to the interior equilibrium as $tarrow+\circ \mathrm{p}$ if $o_{11}r_{3}>a_{13}a_{31}e^{-r_{2}\tau}$ ,$\cdot$ (ii) the interior
equilibrium is locally asymptotically stable for all $\tau>0\iota f$ $3\mathrm{a}\mathrm{n}\mathrm{r}3\geq a_{13}a_{31}$ (see [9]).
In order to clarify the effect of inverse trophic relationship, it may be natural to think
that we should discuss qualitative properties for inverse trophic relationship under those
conditions which ensure global attractivity or local asymptotic stability for the system
with $\alpha_{1}=$ a2 $=0.$

Our final goal is to find some global bifurcation caused by the effect of inverse trophic
relationship for (3). In this paper, we consider the case when $\alpha_{1}=0$ and a$2>0,$ which
is unrealistic from a biological point of view but may be a first step to reaching the goal.
We have the following two theorems, which show that the case $\alpha_{1}=0$ and $\alpha_{2}>0$ has
completely the same global properties as $\alpha_{1}=$ a2 $=0:$

Theorem 1. Suppose $\alpha_{1}=0.$ Then, system (3) has a unique interior equilibrium to
which all the solutions tend as $t” \mathrm{p}$ $+\mathrm{o}\mathrm{o}$ if $a_{11}r_{3}>a_{13}a_{31}e^{-}$” holds.

Theorem 2. Suppose $\alpha_{1}=0$ and that $\tau_{0}$ is a positive value determined by $a_{11}r_{3}=$

$a_{13}a_{31}e^{-\tau_{-}\tau_{\mathrm{O}}}’$ . Then, the interior equilibrium of (3) is globally asymptotically stable for
all $\tau>$ $\mathrm{r}_{0}$ if $3a_{11}r_{3}\geq a_{13}a_{31}$ holds.

3. Global Attractivity of an Interior Equilibrium

In this section, we will prove Theorem 1.

Proof. We first focus on the system of the first and third expressions of (3);

$x’(t)=x(t)$ $[r_{1}-a_{11}x(t)-a_{13}Y(t)]$ ,
(4)

$Y’(t)=-r_{3}\}2(t)+a_{31}x(t-\tau)Y(t-\tau)e^{f_{t-\tau}^{t}1-r\mathrm{o}-\alpha_{2}}\vee x(""$ .

From the first expression of (4) we have $x’(t)\leq x(t)[r_{1}-a_{11}x(t)]$ for $t\geq 0.$ By compar-
is , for ally sufficiently small $\epsilon_{1}^{x}>0,$

$x(t) \leq\frac{r_{1}}{a_{11}}+\epsilon_{1}^{x}$

holds for all large $t>0.$ We then have from the second expression of (4) that for all
large $t>0,$

$Y’(t)\leq-r_{3}Y^{2}(t)+a_{31}$ A$f_{1}^{x}e^{-\mathrm{r}_{2}\tau}Y(t-\tau)$ , (5)

where $\Lambda,f_{1}^{xr}=a_{11}"+\epsilon_{1}^{x}$ . Now consider the scalar delay differential equation

$z’(t)=-r_{3}z^{2}(t)$ $+a_{31}M_{1}^{x}e^{-r_{2}\tau}z(t-\tau)$ .
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It is known that all solutions $z(t)$ of the equation tend to $\frac{a_{31}e^{-\mathrm{r}_{2^{\mathcal{T}}}}\Lambda f_{1}^{1}}{r_{3}}$ as $tarrow+(\mathrm{K})$ (see
[1] $)$ . Therefore, by comparison and (5), for any sufficiently small $\epsilon_{1}^{1’}>0,$

$Y(t) \leq\frac{a_{31}\Lambda f_{1}^{x}e^{-r_{2}\tau}}{r_{3}}+\epsilon_{1}^{Y}$

holds for all large $t$ .
Let $AlJ^{Y}= \frac{a_{31}\Lambda I_{1}^{x}e^{-r_{2^{\mathcal{T}}}}}{r\mathrm{s}}+\epsilon_{1}^{Y}$ Then, from (4) we have for all large $t$ ,

$x’(t)\geq x(t)[r_{1}-a_{13}\Lambda f_{1}^{Y}-a_{11}x(t)]$

Here, one call make $r_{1}-a_{13}\Lambda/I_{1}^{Y}$ positive by choosing $\epsilon_{1}^{x}$ and $\epsilon_{1}^{Y}$ such that

$0< \epsilon_{1}^{x}<’\frac{\prime r_{1}(a_{11}r_{3}-a_{13}a_{31}e^{-r\tau})}{a_{11}a_{13}a_{31}e^{-r_{2}\tau}}\underline’$,

$0<\epsilon_{1}^{1’}<\underline{\prime r_{1}(a_{11}r_{3}-a_{13}a_{31},e^{-r_{2}\tau})-a_{11}a_{13},a_{31}e^{-r_{-}\tau}’\epsilon_{1}^{x}}$

$a_{11}a_{13}r_{3}$

since $a_{11}r_{3}>a_{13}a_{31}e^{-r_{2}\tau}$.. By comparison, there exists sufficiently small $\delta_{1}^{x}>0$ such
that

$x(t) \geq\frac{r_{1}-a_{13}A\prime I_{1}^{Y}}{a_{11}}-\delta_{1}^{x}>0$

for all large $t$ . We then have from (4) that for all large $t$ ,

$Y’(t)\geq-r_{3}\}$ $2(t)+a_{31}L_{1}^{x}e^{\tau(-r-\alpha_{2}\Lambda I_{1}^{x})}\underline’ Y(t-\tau)$,

where $L_{1}^{x}= \frac{r_{1}-a_{13}\Lambda P^{11’}}{a_{11}}-\delta_{1}^{x}$. Similarly, comparison implies that there exists sufficiently
small $\delta_{1}^{Y}>0$ such that for all large $t$ ,

$Y(t) \geq\frac{a_{31}L_{1}^{x}e^{\tau(-r_{2}-\alpha_{2}\Lambda I_{1}^{x})}}{r_{3}}-\delta_{1}^{Y}>0.$

Let $L_{1}^{Y}= \frac{a_{31}L^{x}e^{\tau(-\mathrm{r}\mathrm{o}\mathrm{o}-\alpha_{2}\mathrm{A}I_{1}^{x}\rangle}}{r3}-\delta_{1}^{Y}$ Hence, for all large $t$ , all solutions $(x(t), Y(t))$ satisfy

$L_{1}^{x}\leq$ $\mathrm{r}(t)$ $\leq\Lambda\prime I_{1}^{x}$ ,
$L_{1}^{Y}\leq Y(t)\leq M_{1}^{Y}$

From (4) again, for all large $t$ ,

$x’(t)\leq x(t)[r_{1}-a_{13}L_{1}^{Y}-a_{11}x(t)]$

holds, which implies that there exists sufficiently small $\epsilon_{2}^{x};\epsilon_{1}^{x}>\epsilon_{2}^{x}>0$ such that

$x(t) \leq\frac{r_{1}-a_{13}L_{1}^{Y}}{a_{11}}+$ $\epsilon_{2}^{x}$

for all large $t$ . Then, fr nm (4) we have for all large $t$ ,

$Y’(t)\leq-r_{3^{\}}}$ $2(t)+a_{31}M_{2}^{x}e^{\tau(-r_{2}-\alpha_{2}L_{1}^{x})}Y(t-\tau)$,
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where $\mathbb{J}I_{2}^{x}=r_{1}-a_{13}L^{\mathrm{Y}’}\vec{o_{11}}+\epsilon_{2}^{x}$ . Comparison implies that there exists sufficiently small $\epsilon_{2}^{Y}$ ;
$\epsilon_{1}^{1’}>$ $\epsilon_{2}^{Y}>$ $0$ such that for all large $t$ ,

$Y(t) \leq\frac{a_{31}\mathcal{N}I_{2}^{x}e^{\tau(-r_{2}-\alpha_{2}L_{1}^{x})}}{r_{3}}+\epsilon_{2}^{Y}$ .

Let $\Lambda I_{2}^{Y}=’\frac{a_{31}\Lambda P^{x}e^{\tau(-r\underline{9}^{-\alpha_{2}L_{1}^{x})}}}{?\mathrm{a}}+\epsilon_{2}^{Y}$. Repeating the above procedure gives the four sequences
$\{\Lambda,l_{n}^{x}\}$ , $\{\lambda\prime I_{n}^{Y}\}$ , $\{L_{n}^{x}\}$ , and $\{L_{n}^{Y}\}$ satisfying

A $f_{n}^{x}= \frac{r_{1}-a_{13}L_{n-1}^{1’}}{a_{11}}+\epsilon_{n}^{x}$ , $\epsilon_{1}^{x}>\cdots>\epsilon_{n-1}^{x}>\epsilon_{n}^{x}>\cdots>0$ ,

$I \prime I_{n}^{Y}=\frac{a_{31}M_{n}^{x}e^{\tau(-r_{2}-\alpha_{2}L_{n-1}^{x})}}{r_{3}}+EnY,$ $\epsilon_{1}^{Y}>\cdots>\epsilon_{n-1}^{Y}>\epsilon_{n}^{Y}>\cdots>0$,
(6)

$L_{n}^{x}= \frac{r_{1}-a_{13}NI_{n}^{Y}}{\mathit{0}\downarrow 11}-\mathit{6}nx,$ $\delta_{1}^{x}>\cdots>$ $\delta_{n-1}^{x}>\mathit{6}nx$ $>$ . . . $>0$ ,

$L_{n}^{Y}= \frac{a_{31}L_{n}^{x}e^{\tau(-r_{2}-\alpha_{2}\Lambda J_{n}^{x})}}{r_{3}}-$ (5nY, $\delta_{1}^{Y}>\cdot$ . . $>\delta_{n-1}^{Y}$ $>\mathit{6}nY$ $>$ . . . $>0,$

where the case $n=1$ for $M_{n}^{x}$ and I$f_{n}^{\mathrm{y}}$ corresponds to $\Lambda f_{1}^{x}=\frac{r_{1}}{a_{11}}+\epsilon_{1}^{x}$ and $AI_{1}^{1’}=$

$\frac{a_{31}\Lambda \mathrm{f}_{1}^{x}e^{-r_{\vee}\tau}}{r3},+\epsilon_{1}^{Y}$ Furthermore, all solutions $(x(t), Y(t))$ of (4) satisfy

$L_{n}^{x}\leq$ x(t) $\leq\Lambda f_{n}^{x}$ , $L_{n}^{Y}\leq Y(t)\leq\Lambda I_{n}^{Y}$ (7)

for all large $t$ . We may assume that all of sequences $\{\epsilon_{n}^{x}\}$ , $\{\epsilon_{n}^{Y}\}$ , $\{\delta_{n}^{x}\}$ , aatd $\{\delta_{n}^{Y}\}$ tend
to 0 as $n$ $arrow\infty$ . Since $L_{1}^{x}>0,$ we can show that $\{\Lambda f_{n}^{x}\}$ , $\{\Lambda f_{n}^{Y}\}$ are bounded decreasing
sequences and $\{L_{n}^{x}\}$ , $\{L_{n}^{Y}\}$ are bounded increasing sequences. Thus, there exist $\Lambda f_{*}^{x}$ ,
$\Lambda$t$*Y$ . $L_{*}^{x}$ , and $L_{*}^{1’}$ such that $\lim_{narrow\infty}\mathbb{J}I_{n}^{x}=\mathrm{A}f_{*}^{x}$ , $\lim_{narrow\infty}$ $\mathrm{A}f_{n}^{Y}=\Lambda I_{*}^{Y}$ , $\lim_{narrow\infty}L_{n}^{x}=L_{*}^{x}$ ,
and $1\mathrm{i}\mathrm{n}\iota_{narrow\infty}L_{n}^{Y}=/$ $*Y$ Letting $narrow$ oo for (6), we have

I$f_{*}^{x}= \frac{r_{1}-a_{13}L_{*}^{Y}}{a_{11}}$ , $\lambda I_{*}^{1’}=\frac{a_{31}\mathrm{J}f_{*}^{x}e^{\tau(-r_{2}-\alpha_{2}L_{*}^{x})}}{r_{3}}$ ,

$L_{*}^{x}= \frac{r_{1}-a_{13}\mathrm{J}\prime I_{*}^{Y}}{a_{11}}$ , $L_{*}^{Y}= \frac{a_{31}L_{*}^{x}e^{\tau(-r-\alpha_{2}hJ_{*}^{x})}\underline{9}}{r_{3}}$.

We can show that

$\lambda\prime I_{*}^{x}=L_{*}^{x}$ , $\Lambda f_{*}^{Y}=L_{*}^{Y}$ (8)

Let $x^{*}=M_{*}^{x}=L_{*}^{x}$ and $Y^{*}=\mathbb{J}f_{*}^{Y}=L_{*}^{Y}$ Then, we can easily check that these satisfy

$r_{1}-a_{11}x^{*}-a_{13}Y^{*}=0,$

$-r_{3}Y’+a_{31}x^{*}e^{\tau(-r_{2}-\alpha_{2}}")=0.$

This, together with (7) and (8), implies that $(x^{*}, Y^{*})$ is a unique interior equilibrium
point which attracts all solutions $(x(t), Y(t))$ of (4) as $tarrow+$-oo.

Since (4) has a unique interior equilibrium $(x^{*}, Y^{*})$ , (3) has a unique interior equi-
librium that corresponds to $(x^{*}, Y^{*})$ . Define $(x^{*}y^{*})$

’
$Y^{*}$ ) as such an interior equilibrium
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point of (3). It is easy to prove that the interior equilibri un $(x^{*}, y^{*}, Y^{*})$ attracts all
solutions of (3) if $(x_{\backslash }^{*}Y^{*})$ attracts all solutions of (4). In fact, for any $\epsilon>0,$

$|x(t)-x^{*}|<\epsilon$ , $|x(t)Y(t)-x^{*}Y^{*}|<\epsilon$

hold for all sufficiently large $t>0.$ From the second expression of (3) we have for all
sufficiently large $t$ ,

$y’(t)\leq[-r_{2}-\alpha_{2}(x^{*}-\epsilon)]y(t)+a_{31}(x^{*}Y^{*}+\epsilon)-a_{31}(x^{*}Y^{*}-\epsilon)e^{[-r_{2}-\alpha_{2}(x^{\mathrm{r}}-\epsilon)]\tau}$

and
$y’(t)\geq[-r_{2}-\alpha_{2}(x^{*}+\epsilon)]y(t)+a_{31}(x^{*}Y^{*}-\epsilon)-a_{31}(x^{*}Y^{*}+\epsilon)e^{[-r_{2}-\alpha_{2}(x+\epsilon)}$

’ ] $\tau$ .

Hence, it follows fro$\mathrm{m}$ comparison and the arbitrariness of $\epsilon$ that

$\lim_{tarrow+}\sup_{\infty}y(t)\leq\frac{a_{31}x^{*}Y^{*}[1-e^{(-r_{2}-\alpha_{2}x^{\mathrm{r}})\tau}]}{r_{2}+\alpha_{2}x}*=y^{*}$ .

Similarly, we have $\lim\inf_{tarrow+\infty}y(t)\geq y^{*}$ . Therefore,

$y^{*} \leq\lim \mathrm{i}\mathrm{n}tarrow+\infty$f $y(t) \leq\lim_{tarrow+}\sup_{\infty}y(t)\leq y^{*}$.

which implies $\lim_{tarrow+\infty}y(t)=l^{*}$ . The proof is thus completed.

Remark 1. Although one cannot solve interior equilibria of (3) in any explicit forms
of parameters when $\alpha_{1}=0$ and $\alpha_{2}>0,$ the method used in the proof above makes it
possible to show that (3) has a unique global attractive interior equilibrium.

3. Local Stability of an Interior Equilibrium

In this section, we will prove Theorem 2.

Proof. By Theorem 1, (3) has a unique interior equilibrium that attracts all the solu-
tions for all $\tau>\tau_{0}$ . Let $(x^{*}, y^{*}, Y^{*})$ be such a unique interior equilibrium of (3). Then,
obviously, $(x^{*}, Y^{*})$ is a unique interior equilibrium of (4). To prove that $(x^{*}, y^{*}, Y^{*})$ is
locally stable for (3), we have to be concerned with the local stability of $(x^{*}, Y^{*})$ for (4).

Linearizing (4) around $(x^{*}, Y^{*})$ we have

$x’(t)=x^{*}[-a_{11}x(t)-a_{13}Y(t)]$ ,

$Y’(t)=-2r_{3}\mathrm{i}*\mathrm{y}(\mathrm{t})$

$+a_{31}e^{(-r_{2}-\alpha_{2}x^{*})\tau}[Y^{*}x(t-\tau)1$ $x^{*}Y(t- \tau)-\alpha_{2}x^{*}Y^{*}\int_{t}$i$\tau x(s)ds]$ :

and we get the characteristic equation of the form
$\lambda^{2}+(a_{11}x^{*}+2r_{3}Y^{*})\lambda+2a_{11}r_{3}x^{*}Y^{*}+[r_{3}Y^{*}(a_{13}Y^{*}-a_{11}x^{*})-r_{3}Y^{*}\lambda]e^{-\lambda\tau}$

$-a_{13} \alpha_{2}r_{3}x^{*}(Y^{*})^{2}e^{-\lambda t}\int_{t}$i$\tau e^{\lambda s}ds$
$=0.$

$\cdot(9)$
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One can see that 0 is not a root of the characteristic equation. In fact, otherwise, we
obtain

$\frac{a_{11}r_{3}}{a_{13}a_{31}e^{-r_{\sim}}\circ \mathcal{T}}=(\alpha_{2}x^{*}\tau-1)e^{-\alpha x^{*}\tau}\underline’$ .

The right-hand side is less than 1, but the left-hand side is greater than 1 for all $\tau>\tau_{0}$

because of our assumption. This is a contradiction. Hence, the characteristic equation
(9) is reduced to

$\lambda^{2}+p\lambda+q+\frac{r}{\lambda}+[s\lambda+u+\frac{v}{\lambda}$ ] $e^{-\lambda\tau}=0,$ (10)

where $p=a_{11}x^{*}+\underline{9}r_{3}Y$ ’. $q=2a_{11}r_{3}x^{*}Y^{*}$ , $r=-a_{13}\alpha_{2}r_{3}x$
” $(Y^{*})^{2}$ , $s=-r_{3}Y^{*}$ , $u=$

$r_{3}Y^{*}(a_{13}Y^{*}-a_{11}x^{*})$ , and $v=a_{13}\alpha_{2}r_{3}.x^{*}(Y^{*})^{2}$ since

$e^{-\lambda t} \int_{t-\tau}^{t}e^{\lambda s}ds=\frac{1}{\lambda}(1-e^{-\lambda\tau})$ .

When $\alpha_{2}=0,$ one can show that all characteristic roots of (10) have negative real
parts for all $\tau>0$ since $3a_{11}r_{3}\geq a_{13}a_{31}$ (see [9]). We will prove that all the characteristic
roots have negative real parts for $\alpha_{2}>0$ and all $\tau>$ $7\mathrm{g}$ , which implies that $(x^{*}, Y^{*})$ is
locally asymptotically stable for (4). Assuming the contrary, there exists a characteristic
root of (10) on the imaginary axis of the complex plane for some $\alpha_{2}=\alpha>0$ (see [5]).
Let A $=i\omega$ $(\omega \mathit{4}0)$ be such a characteristic root. Substituting $(\lambda, \alpha_{2})=(i\omega, \alpha)$ into
(10) and separating the real and imaginary parts, we obtain

$[(-s\omega^{2}+v)^{2}+(u\omega)^{2}]\cos(\omega\tau)=(p\omega^{2}-r)(-s\omega^{2}+v)+\prime u\omega^{2}(\omega^{2}-q)$

$[(-s\omega^{2}+v)^{2}+(u\omega)^{2}]\sin(\omega\tau)=\omega(s\omega^{2}-v)(\omega^{2}-q)+u\omega(\mathrm{y}p\omega^{2}-r)$ .

Squaring alld adding the two equations yields

$[(-s\omega^{2}+v)^{2}+(u\omega)^{2}]^{2}=[(\mu v^{2}-r)(-s\omega^{2}+v)+u\omega^{2}(\omega^{2}-q)]^{2}$

(11)
$+[\omega(s\omega^{2}-v)(\omega^{2}-q)+u\omega(\mu_{J^{2}}-r)]^{2}$

Define the function
$f(\Omega)=[(-s\Omega+v)^{2}+u^{2}\Omega]^{2}-$ $[(p\Omega-r)(-s\Omega+v)+u\Omega(\Omega-q)]^{2}$

(10)
$-\Omega$ $[(s\Omega-v)(\Omega-q)+u(p\Omega-\cdot r)]^{2}$

Then $f$ is a quintic function such that $farrow$ $-\mathrm{o}\mathrm{o}$ as $|\Omega|arrow+\mathrm{o}\mathrm{o}$ aaxd must have a positive
zero $\Omega=\omega^{2}$ because of (11) and $\omega$ $\neq 0.$ Note that $r=-v$ . Computing $f$ , we have

$f(\Omega)=\Omega[F(\Omega)G(\Omega)+H(\Omega)]$ ,

where

$F(\Omega)=(s^{2}+u-ps)\Omega^{2}+(u^{2}-2sv+pv+rs-uq)\Omega+v(v-r)$ ,

$G(\Omega)=$ ( $s^{2}-$ 1f, $+ps$)$\Omega+u^{2}-2sv-pv-rs+uq,$

$H(\Omega)=-[s\Omega^{2}+(up-sq-v)\Omega+vq-ur]^{2}$
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Clearly, $H(\Omega)\leq 0.$ It is shown that $F(\Omega)>0$ for $\Omega>0$ because

$F(\Omega)=r_{3}(Y^{*})^{2}(a_{13}+3r_{3})\Omega^{2}$

$+r_{3}(Y^{*})^{2}[r_{3}(a_{13}Y^{*}-a_{11}x^{*})(a_{13}Y^{*}-3a_{11}x^{*})+a_{13}\alpha_{2}x^{*}(a_{11}x^{*}+5r_{3}Y^{*})]\Omega$

$+2[a_{13}\alpha_{2}r_{3}x^{*}(Y^{*})^{2}]_{:}^{2}$

alld

$a_{13}Y^{*}-3a_{11}x^{*}<a_{13}Y^{*}-a_{11}x^{*} \leq\frac{x^{*}}{r_{3}}$ $(a_{13}a_{31}e^{-r’\tau}-r_{3}a_{11})<0.$ (13)

It is also shown that $G(\Omega)<0$ for $\Omega>0$ because

$G(\Omega)=-r_{3}(Y^{*})^{2}(a_{13}+r_{3})\Omega$

$+r_{3}(Y^{*})^{2}[r_{3}\{(a_{13}Y^{*})^{2}-(a_{11}x^{*})^{2}\}-a_{13}\alpha_{2}x^{*}(a_{11}x^{*}+r_{3}Y^{*})]$ .

and $(a_{13}Y^{*})^{2}-(a_{11}x^{*})^{2}<0$ by (13). Hence, 7 $(\Omega)$ $<0$ for $\Omega>0.$ This implies that
there are no positive roots of $f(\Omega)=0,$ which is a contradiction. Therefore, $(x^{*}, Y^{*})$ is
locally asymptotically stable for (4).

We can easily prove that the interior equilibrium $(x^{*}, y^{*}, Y^{*})$ of (3) is locally stable if
$(x^{*}, Y^{*})$ is locally stable for (4). In fact, for any $\epsilon>0,$ suppose that $y(0)$ satisfies

$|y(0)-y*|< \frac{\epsilon}{3}$ .

Then, there exists a sufficiently small $\epsilon$ $>\epsilon_{1}>0$ such that

$|y(0)-y_{\epsilon_{1}+}^{*}|< \frac{\epsilon}{2}$ , $|y(0)-y_{\epsilon_{1}-1}^{*}< \frac{\epsilon}{2}$ , (14)

alld also such that

$|y_{\epsilon_{1}+}^{*}-y^{*}|< \frac{\epsilon}{2}$ , $|y_{\epsilon_{1}-}^{*}-y^{*}|< \frac{\epsilon}{2}$ , (15)

where

$y_{\epsilon_{1}+}^{*}= \frac{a_{31}(x^{*}Y^{*}+\epsilon_{1})-a_{31}(x^{*}Y^{*}-\epsilon_{1})e^{[-r_{2}-\alpha_{2}(x^{*}+\epsilon_{1})]}}{r_{2}+\alpha_{2}(x-\epsilon_{1})}$, ,

$y_{\epsilon_{1}-}^{*}= \frac{a_{31}(x^{*}Y^{*}-\epsilon_{1})-a_{31}(x^{*}Y^{*}+\epsilon_{1})e^{[-r_{2}-\alpha_{2}(x^{*}-\epsilon_{1})]}}{r_{2}+\alpha_{2}(x^{*}+\epsilon_{1})}$.

Since $x(t)$ and $Y(t)$ are locally asymptotically stable to $x^{*}$ and $Y^{*}$ respectively, we call

choose $\delta_{1}>0$ alld $\delta_{2}>0$ such that for $t\geq 0,$

$|x(t)-x$’ $|<$ $\epsilon_{1}$ , $|Y(t)-Y^{*}|<\epsilon_{1}$ , $|x(t)Y(t)-x^{*}Y^{*}|<\epsilon_{1}$

hold if $|\mathrm{G}(\mathrm{Q})$ $-x^{*}|<\delta_{1}$ and $|\mathrm{y}(0)$ $-Y^{*}|<\delta_{2}$ . Thus, from the second expression of (3)
we have for any $t\geq 0,$

$y’(t)\leq[-r_{2}-\alpha_{2}(x^{*}-\epsilon_{1})]y(t)+a_{31}.(x^{*}Y^{*}+\epsilon_{1})-a_{31}(x^{*}Y^{*}-\epsilon_{1})e^{[-r_{2}-\alpha_{2}(x^{*}+\epsilon_{1})]\tau}$

$y’(t)\geq[-r_{2}-\alpha_{2}(x’+\epsilon_{1})]y(t)+a_{31}(x^{*}Y^{*}-\epsilon_{1})-a_{31}(x^{*}Y^{*}+\epsilon_{1})e^{[-r_{2}-\alpha_{2}(x-\epsilon_{1})]}$
’

$\tau$
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if $|x(0)$ – $\mathrm{r}$

’
$|<\delta_{1}$ alld $|Y(0)-Y^{*}|<\delta_{2}$ hold. Hence, it follows from comparison that

for $t\geq 0,$

$|y(t)-y^{*}| \leq\max_{t>0}\{B_{\epsilon_{1}+}(t), B_{\epsilon_{1}-}(t)\}$

where

$B_{\epsilon_{1}+}(t)=|y(0)-y-1+|e^{[-r_{2}-\mathrm{a}_{2}(x}*-\epsilon[])\mathrm{E}$ $+|$y-$1+-y^{*}$$B_{\epsilon_{1}+}(t)=|y(0)-y_{\epsilon_{1}+}^{*}|e^{\lfloor-r_{2}-\alpha.(x^{\sim}-\epsilon_{1})\mathrm{J}^{t}}’+|y_{\epsilon_{1}+}^{*}-y^{*}|$ ,

$B_{\epsilon_{1}-}(t)=|y(0)-y_{\epsilon_{1}-}^{*}|e^{[-r_{2}-\alpha\underline{\mathrm{o}}(x^{*}+\epsilon_{1})]t}+|y_{\epsilon_{1}-}^{*}-y^{*}|$ .

From (14) and (15), we obtain for $t\geq 0,$

$|y(t)-y^{*}|< \frac{\epsilon}{2}\max_{t\geq 0}\{e^{[-r_{2}-\alpha_{2}(x^{*}-\epsilon_{1})]t}, e^{[-r_{2}-\alpha_{2}(x^{*}+c_{1})]t}\}+\frac{\epsilon}{2}<\epsilon$.

This completes the proof.

From (14) alld (15), we obtain for $t\geq 0,$

$|y(t)-y^{*}|< \frac{\mathrm{c}}{2}\max_{t\geq 0}\{e^{[-r_{2}-\alpha_{2}(x^{*}-\epsilon_{1})]t}, e^{[-r_{2}-\alpha_{2}(x^{*}+c_{1})]t}\}+\frac{\mathrm{c}}{2}<\epsilon$ .

This completes the proof.

5. Discussion

We considered a time-delay model for inverse trophic relationship based on the model
proposed in $[1, 9]$ . Global attractivity and local stability were discussed for an interior
equilibrium of the system with $\alpha_{1}=0$ and $\alpha_{2}>0.$ To prove Theorem 1 we used two
kinds of co mparison and constructed four sequences corresponding to eventual upper
and lower bounds of solutions. The positiveness of $L_{x}^{1}$ is essential to global attractivity
for the interior equilibrium. We also obtained a condition under which the interior
equilibri um is globally $\mathrm{a}\mathrm{s}\mathrm{y}$ mptotically stable. Theorem$1\mathrm{S}$

$1$ and 2 show that a2 is not
destabilizer for global properties of the interior equilibrium under the conditions that
ensure global attractivity or global asymptotic stability in the case $\alpha_{1}=$ a2 $=0.$ This
may suggest that $\alpha_{2}$ maintains global properties and does not cause global bifurcation
of solutions for (3).

Taking $\alpha_{1}>0$ into consideration, we actually conjecture that a new interior equilib-
rium will appear to become stable and the originary interior equilibrium will be desta-
bilized. A more sophisticated mathematical approach and more tedious calculation are
required to solve the conjecture, which is left for future work.
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