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Coexistent Steady State of Sessile Metapopulation Model:
Case of Two Species and Two Habitats
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1 Introduction

A metapopulation such as barnacles is composed of many habitats for sessile
adults and the planktonic larvae. The larvae are produced from all the local
habitats, which are mixed in a common larval pool. The larvae then return to
settle on vacant space in a local habitat. The local population can be regulated
by the density dependent death rate of adult population and the settlement rate
of larval population, which is proportional to the amount of vacant space in the
each habitat and the density of larval population.

Iwasa and Roughgarden [1, 2] have proposed the sessile metapopulation
model with space-limited recruitment to investigate the regional competition
community between species. They have shown that the existence of steady
states of single species and its stabilities. And they have shown that at least n
kinds of habitats are necesarry for n kinds of species to coexist. Then in order
to investigate the competition community between species, they have treated
the special case that numbers of both species and habitats are two. But they
cannot obtain the sufficient condition for coexistence.

Here we also consider the basic model for two kinds of species and two kinds
of hatitats, and show the sufficient condition for the existence of coexistent
steady state. The basic tools to examine the above problem are the various
kind of basic reproduction numbers.

The Iwasa-Roughgarden’s basic model [2] is as follows:

d
dt

CLift) = —v t)—Zc,] Q; — S (u(t))) L t)+Zm,J (), (12)

Pyj(t) = —pij Pij (t) + 5 (@; — Sj (u(t))) Li(2), (1.1)

where S;(u) := Zle ¥ij Pij, w = (P11, P12, Pa1, P2z, L1, Ly)" and 7 denotes the
transpose of the vector. P;; denotes the number of adult population of species
i living in hatitat 7 and L; does the number of larvae of species 7 in the larval
pool. In the following we use the index ¢, to indicate species ¢ and habitat
J- Wij,vi, Ci5,7Yi; and m;; represent death rate of adult population, larval death
rate, accessibility to a local habitat and area occupied by a single individual and
birth rate. Q; — S;(u) denotes the vacant area of habitat j, respectively. The
settlement rate may vary in time and that induces nonlinearity into this model.
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2 Preliminary results

The steady states u* := (P}, Pyy, Pay, Py, L7, L3)7 are given as the roots of the
following system derived from (1.1)-(1.2):

0= uwP*+cz-j<Qj~ 8;(u))Li, (2.1)
2

0=-vL Zcu = S () LY + > mii P, (2:2)
j=1

where i,j = 1,2. Eliminating F; and S; (u*), and replacing (L7, L3)” by w =
(z,y)7, we obtam

T(w)=w, (2.3)
where

T(w) = (L1 (w), Ta(w))",

T1 (w) == ¥y ((aux +any)Q1 (a2 + 022y) Q2 x

14+ a2+ any’ 14+ oz + axny
(o112 + azly)Ql (ag22 + 012211)@2)

T: =
2(w) 2( 14+ a1z +any’ 14 a9z + gy
YijCij
Qgq = y
I Hij |
‘ SE_y THES(Q; — £)
W, (€1, 89) 1= —2 i

v+ 3imr (@) — &)

Here we deifne the basic reproduction number as a threshold parameter which
determines whether one of the species will succeed in invasion or not when a
small number of larvae invade into the completely vacant habitats. We consider
the initial invasion phase of the larvae. In the early stage of invasion, the
dynamics of metapopulation can be described by the linearized equation at the
trivial steady state as follows:

d
S P (&) = —pis Pi () + ¢ Q5 L(8), (2.4)

d 2
EEL — (’U, +ZC”Q-7) ) +ZmijPij(t)- (2.5)
Jj=1
By the variation of constants formula, (2.4)-(2.5) are reduced to
t
Pi;(t) = Pi; (0)e 4 + ¢;;Q; / Li(s)e~#3(t=2)ds, (2.6)
0

2 t
Li(t) = L,-(O)e_(“‘+23=1 ci;Q;)t +Zm"j/ P;;(s)e —(vit 3o, 045 Q3)(t-3) gs.
=1 0

(2.7)
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Substituting (2.6) into (2.7), we obtain the Volterra integral equation:

/ G(t — £)L(&)de, (2.8)

where

L(t) :=(La(2), L2(8))7, F(t) == (F2(2), (1)),
Fi(t) :=L;(0)e~ Wt Eim1 65593

2 t
+ Zmijpz.j(o) / e Hiis o= (Vi + i ¢:5Q3)(t=2) gg.

G(t) ::( Glo(t) G2o() )

t
. Zm”C”QJ/ e~ Hiide (,+Z)J 1c”QJ)(t_s)dS

It is well known in the Volterra integral equation theory that lim; o L(¢) = 0
if the spectral radius of the integral operator is less than one, whereas IL()
increases if it is more than one. Then we define the basic reproduction number
Ry (see Diekmann et al [3]) by the spectral radius of the integral operator as

follows:

°° 2, msg,

1
Rp := max Gi(t)dt = max I=1 i
1=1,2 0 1=1,2 Vg + ZJ -1 chQj

(2.9)

Ry also means the number of secondary larvae released by one larva that has

come in totally vacant habitats.
In the following Theorem 1-4, we state the preliminary results.
Letting ¢ > 0 and y = 0, (2.3) is reduced to

Wy

14+ a1z 14 Q12

We also define the basic reproduction number for species ¢ by

Z :Jclz Q
1 J
Roi : .7 uiJ

vi + ZJ =1 CtJQJ

Since (2.10) is a single quadratic equation for z, we can immediately show

Theorem 1. (i)If Rgy > 1, then (2.10) has a unique positive root.
(11))If Roy = 1, then
(ita)(2.10) has a unique positive root provided Ey > 1, where

B = V(01 Q1/ (i1 + a42), 2i2Q2 /(i1 + aiz)),

a112Qy alszz) 1. ' (2.10)
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while
(itb )no positive root provided 5y < 1.
(é’l"i)]me < 1, then
(111a)(2.10) has two positive roots provided Ey > 1 and Dy > 0, where

Dy i={vi(o11 + a13) + c11Qre1z + c12Q2011 Y2 (1 — Ep)?
—4viaioge(vy 4+ c11Q@1 + c12Q2) (1 — ROl)»

(viib Junique positive root provided By > 1 and Dy = 0, and
(tiic)no positive root provided E1 <1 or Dy < 0.

Theorem 2. If Ry < 1, then the trivial steady state is locally asymptotically
stable, whereas it is unstable if Rg > 1.

We introduce a threshold parameter Rj,; defined by
RS;I = ‘I[il (51 (u};),Sz(u;‘?)), il # 'ig, ’il, ig = 1,2.

o; 1s the reproduction number for species 7 under the stationary occupation of
the other species.

Theorem 3. The (large) non-trivial single-species’ steady state is locally asymp-
totically stable if Ri, < 1 and it is unstable if Ry, > 1. Furthermore the small
non-trivial single-species’ steady state (if it exist) is always unstable.

The results similar to Theorem 1-3 hold for species 2 by replacing ¢ = 1 by
1= 2.

Moreover we define the basic reproduction number for species ¢ in the case
that only habitat j exists by Ro;;:

miZ‘CiZ'
R, . Hij Qj
0i = ——————.
VT o e Q;
Theorem 4. If Ryi; < 1,Rp < 1,4,7 = 1,2, then the trivial steady state 1s
globally asymptotically stable.

Theorem 2, 3 are proved by the linearized stability argument and Theorem
4 is proved by using the Lyapunov function:

2
V(u) = Z nz.i'.j.Pij-i-ZLi.

i,j=1,2 Hij i=1

3 Coexistent Steady state

In this section, we consider the coexistent steady state, which corresponds to
a fixed point of the mapping T in the interior of Ri. We have the following
existence theorem.
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Theorem 5. If Ry > 1,Ry; > 1 and Ry, > 1, then T has at least one fized
point w = (z,y)” with both x > 0 and y > 0.

Proof. Let us define the bounded, convex and closed domain Up by
Ug :={w=(z,y)” € R%;z < B,y < B}.
and define the continuous mapping 77 with a positive number = (r < B) by

T (w) = (17 (w), T3 (w))",

where
T (w) = { %gZ%,—}— r—z, : ; :: (3.1)
Ty (w) = { %334- oy UTr (3.2)

The continuous mapping 7" transforms Up into itself if B is sufficiently large.
Therefore by the Brouwer’s fixed point theorem, 7" has a fixed point in Ug.
We note that the fixed point of 7" is not on the boundary of Ug.

In the following, we shall show that these fixed points of 17 satisfies both
z > r and y > r if r is sufficiently small.

We assume that every 77 has a fixed point which satisfies min{z,y} < r for
all » > 0. Then we can construct a sequence {wn}2%; = {(zn,yn)"}02: C Us
which are fixed points of T+ and satisfy

1
0 < min{z,,yn} < = n € N. (3.3)

By the Bolzano-Weierstrass theorem, there exists a subsequence {wy, }32, such
that Weo = (Teo, Yoo)” = iMoo Wn, € Up. From (3.3), we see that 2z, =0
Or Yoo = 0. If oo > 0, Yoo = 0, then from (3.1)-(3.2), we have

Tl (wnk) = Tny, (34)
Ty (wn,) < Yn | (3.5)

for sufficiently large nx. After dividing (3.4) by z,, > 0 and letting nx go to
infinity, then we obtain ‘

4 o @1%o  262%T0 \ _ 4
1+ e11%e0’ 1+ 012200
which is equivalent to the equation (2.10). Therefore zo, = L} follows, where

L} is the fifth element of u}. After dividing (3.5) by yn, > 0 and letting ni go
to infinity, we obtain

a11@1L]  a12Q2L]
1+ allLI 14 O:lzL;
011Q01T00  212Q2%

, ) <1,
14+ a11%00 1+ a1920” —

Ry = W3(S1(u1), S2(ul)) = ¥af )

= 2(



which contradicts Rgy > 1.

Next if 2o, = 0,9% > 0. From the similar manner, we obtain Kj; < 1,
which also contradicts R§; > 1. ‘

At last let oo = Yoo = 0. From (3.1)-(3.2), we have

Ty (wnk) < Tn,, ’ (36)
T2(wnk) < Yny (3.7)

for sufficiently large ny € N, again. Since z,, > 0 and y,, > 0, dividing
(3.6)-(3.7) by zn,,yn, respectively, we have

\Ili((allx"“ + CVZlynk)Ql’ (a122n, + Otzzynk)Qz) <1 i=12
14 o112, + a21Yn, ~ 1+ a122n, + @22Yn,

Letting ny go to infinity, it follows that
Roi =¥9,(0,0)< 1, 1 =1,2.

These inequalities contradict our assumption Ry = max;—;y Rg; > 1. Conse-
quently we know that there does not exist such a sequence {wy }5%,. Hence the
fixed point of 1" satisfies ¢ > r,y > » for sufficiently small r and it is a fixed
point of T with z > 0,y > 0. This completes the proof. O

We remark that the conditions Rj; > 1 of Theorem 5 must hold for every single
species’ steady state if it exist.

We can show the following uniqueness theorem by means of matrix calcula-
tion.

Theorem 6. Suppose the following four relations hold:

o= apia — a1 # 0, B = f11022 — P12P21 # 0,
Bi1v2 # Ba1v1, Pi2v2 # Bazv1,

where Bij = (%ﬁl - 1) ¢ijQj. Then u} is uniquely erplicitely determined if it
i

4 Discussion

In Theorem 5, we have obtained the sufficient condition for the existence of
coexistent steady state. Theorem 5 tells us that even if Ryy < 1, the coexistent
steady state exists provided Ry > 1, R§; > 1 and Rf, > 1 hold. Ry < 1 and
R}, > 1 biologically means that species 2 seems to extinct if it solely exist, but
it can maintain its numbers owing to the existence of species 1.

Then we think that even if each species cannot exist solely, two species may
coexist owing to the presence of each competitors. Then we conjecture that the
coexistent steady state exists if Ry < 1,R5; > 1 and Ry, > 1. In short, the
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coexistent steady state may exist if all single species’ steady states are unstable
(ie. R§; > 1 and Rf, > 1).

Our several results of two species and two habitats model can be extended
to understand the regional competition community of general number of species
and habitats.
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