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(二種二生息域、固着性メタ個体郡モデルの共存定常解)

Katumi, KAMIOKA (神岡勝見)
Department of Mathematical Sciences, University of Tokyo

(東京大学大学院数理科学研究科)

1 Introduction
A metapopulation such as barnacles is composed of many habitats for sessile
adults and the planktonic larvae. The larvae are produced from all the local
habitats, which are mixed in a common larval pool. The larvae then return to
settle on vacant space in a local habitat. The local population can be regulated
by the density dependent death rate of adult population and the settlement rate
of larval population, which is proportional to the amount of vacant space in the
each habitat and the density of larval population.

Iwasa and Roughgarden $[1, 2]$ have proposed the sessile metapopulation
model with space-limited recruitment to investigate the regional competition
community between species. They have shown that the existence of steady
states of single species and its stabilities. And they have shown that at least $n$

kinds of habitats are necesarry for $n$ kinds of species to coexist. Then in order
to investigate the competition community between species, they have treated
the special case that numbers of both species and habitats are two. But they
cannot obtain the sufficient condition for coexistence.

Here we also consider the basic model for two kinds of species and two kinds
of hatitats, and show the sufficient condition for the existence of coexistent
steady state. The basic tools to examine the above problem are the various
kind of basic reproduction numbers.

The Iwasa-Roughgarden’s basic model [2] is as follows:

$\frac{d}{dt}P_{ij}(t)=-pijP_{ij}(t)+c_{ij}(Qj-5j.(u(t)))L_{i}(t)$ , (1. 1)

$\frac{d}{dt}L_{:}(t)=-v$; $L_{j}(t)- \sum_{j=1}^{2}c_{ij}$ $(Qj-Sj (u(t)))L_{i}(t)+ \sum_{j=1}^{2}m_{ij}P_{ij}(t)$ , (1.2)

where $S_{j}(u):= \sum_{i=1}^{2}\gamma_{ij}P_{ij}$ , $u:=(P_{11}, P_{12}, P_{21}, P_{22}, L_{1}, L_{2})^{\tau}$ and $\mathrm{r}$ denotes the
transpose of the vector. $P_{ij}$ denotes the number of adult population of species
$i$ living in hatitat $j$ and $L_{i}$ does the number of larvae of species $i$ in the larval
pool. In the following we use the index $i,j$ to indicate species $i$ and habitat
$j$ . $\mu ij$ , $v_{i}$ , $c_{ij}$ , $\gamma \mathrm{i}j$ and $m_{ij}$ represent death rate of adult population, larval death
rate, accessibility to a local habitat and area occupied by a single individual and
birth rate. $Q_{j}$ – $S_{j}(u)$ denotes the vacant area of habitat $j$ , respectively. The
settlement rate may vary in time and that induces nonlinearity into this model.
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2 Preliminary results
The steady states $u^{*}:=(P_{11\}}^{*}P_{12)}^{*}P_{21}^{*}, (2.3)L_{1}^{*},$ $L_{2}^{*})^{\tau}$ are given as the roots of the
following system derived from $(\mathrm{L}1)-(1.2)$ :

$0_{-}--\mu_{ij}P_{ij}^{*}+c_{ij}(Q_{j}-S_{j}(u^{*}))L_{ii}^{*}$ (2.1)

$0=-v_{i}L_{i}^{*}- \sum_{j=1}^{2}\mathrm{c}_{ij}(Q_{j}-S_{j}(u^{*}))L_{i}^{*}+-$ $\sum_{j=1}^{2}m_{ij}P_{ij}^{*}$ , (2.2)

where $i$ , $j–1,2$ . Eliminating $P_{ij}^{*}$ and $S_{j}(u^{*})$ , and replacing $(L_{1}^{*}, L_{-}^{*},)^{\tau}$ by $\mathrm{t}\mathrm{b}$ $=$

$(X, \mathrm{j})^{\tau}$ . we obtain

$T(\mathrm{u})$ $=w,$ (2.3)

where

$T(w)$ $:=(T_{1}(w), 72 (w))^{\tau}$ ,

$T_{1}(w):= \Psi_{1}(\frac{(\alpha_{11}x+\alpha_{21}y)Q_{1}}{1+\alpha_{11}x+\alpha_{21}y})\frac{(\alpha_{12}x+\alpha_{22}y)Q_{2}}{1+\alpha_{12}x+\alpha_{22}y})$ x,

$T_{2}(w):= \Psi_{2}(\frac{(\alpha_{11}x+\alpha_{21}y)Q_{1}}{1+\alpha_{11}x+\alpha_{21}y}, \frac{(\alpha_{12}x+\alpha_{22}y)Q_{2}}{1+\alpha_{12}x+\alpha_{22}y})y)$

$\alpha_{ij}:=\frac{\gamma ij^{\mathrm{C}}ij}{\mu ij}$ ,

$\Psi_{i}(\xi_{1}, \xi_{2}):=\frac{\sum_{j=1}^{2}\frac{m_{ig}c_{ij}}{\mu ij}(Q_{j}-\xi_{j})}{v_{j}+\sum_{j=1}^{2}\mathrm{c}_{ij}(Q_{j}-\xi_{j})}$ .

Here we deifne the basic reproduction number as a threshold parameter which
determines whether one of the species will succeed in invasion or not when a
small number of larvae invade into the completely vacant habitats. We consider
the initial invasion phase of the larvae. In the early stage of invasion, the
dynamics of metapopulation can be described by the linearized equation at the
trivial steady state as follows:

$\frac{d}{dt}P_{ij}(t)=-\mu_{i\mathrm{j}}P_{ij}(t)+c_{ij}QjLi(t)$ , (2.4)

$\frac{d}{dt}L_{i}(t)=-$ $(v,$ $+ \sum_{i=1}^{2}c$, $jQ_{j})L_{i}(t)+ \sum_{j=1}^{2}m_{ij}P_{ij}(t)$ . (2.5)

By the variation of constants formula, (2.4)-(2.5) are reduced to

$P_{ij}(t)=P_{\dot{\iota}j}(0)e^{-\mu_{ij}t}+c_{ij}Q_{j}7^{t}$ $L_{i}(s)e^{-\mu i}j(t-s)_{ds}$ , (2.6)

$L_{j}(t)=L_{j}(0)e^{-(v+\Sigma_{\mathrm{j}=1}^{2}c.Q_{\mathrm{j}})t}+:j \sum_{j=1}^{2}m_{ij\int_{0}^{t}:+\Sigma_{\mathrm{j}=1}^{2}c.Q_{j})(t-s)}P_{ij}(s)e^{-(v}d\mathrm{j}$s.

(2.7)
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Substituting (2.6) into (2.7), we obtain the Volterra integral equation:

$\mathrm{L}$ $– \mathrm{F}(t)+\int_{0}$

’

$\mathrm{G}(t-5)$ IL(5)d5, (2.8)

where

$\mathrm{L}(t):_{-}^{-}(L_{1}(t), L_{2}(t))^{\tau}$ , $\mathrm{F}(t):=(F_{1}(t), F_{2}(t))^{\tau}.$,

$F_{i}(t)$ : $L_{i}(0)e^{-(v,+\Sigma_{\mathrm{j}=1}^{2}c}$ ’i $Q_{j}$ ) $t$

$+ \sum_{j=1}^{2}m_{ij}P_{ij}(0)\int_{0}^{t}e^{-\mu ig^{S}}e^{-(v_{\iota}+\Sigma_{j=1}^{2}\mathrm{c}_{ij}Q_{\mathrm{j}})(t-s)}ds$ ,

$\mathrm{G}(t)$ $:=(\begin{array}{ll}G_{1}(t) 00 G_{2}(t)\end{array})$
$)$

$G_{i}(t):= \sum_{j=1}^{2}mijc_{\dot{\iota}j}Q_{j}\int_{0}^{t}e^{-\mu s}e^{-(v.+\Sigma_{\mathrm{j}=1}^{2}c_{\iota j}Q_{j})(t-s)}d:j$s.

It is well known in the Volterra integral equation theory that $\lim_{tarrow\infty}\mathrm{L}(t)=0$

if the spectral radius of the integral operator is less than one, whereas $\mathrm{L}(t)$

increases if it is more than one. Then we define the basic reproduction number
$R_{0}$ (see Diekmann et al [3]) by the spectral radius of the integral operator as
follows:

$R_{0}:= \max_{=i1},’.\int_{0}^{\infty}G_{i}(t)dt=\max_{9i=1,,,\sim}\frac{\sum_{j_{-}^{-}1}^{2}\frac{m_{i\mathrm{j}}c_{ij}}{\mu i\mathrm{j}}Q_{\mathrm{j}}}{v_{i}+\sum_{j=1}^{2}c_{\mathrm{z}j}Q_{j}}$ . (2.9)

$R0$ also means the nu mber of secondary larvae released by one larva that has
come in totally vacant habitats.

In the following Theorem 1-4, we state the preliminary results.
Letting $x>0$ and $y=0$ , (2.3) is reduced to

I1 $( \frac{\alpha_{11}xQ_{1}}{1+\alpha_{11}x}, \frac{\alpha_{12}xQ_{2}}{1+\alpha_{12}x})=1.$ (2.10)

We also define the basic reproduction number for species $i$ by

$R_{0i}:= \frac{\sum_{j_{-}^{-}1}^{2}\frac{m_{j}\mathrm{j}c.j}{\mu.j}Q_{j}}{v_{j}+\sum_{j=1}^{2}c_{ij}Q_{j}}$ .

Since (2.10) is a single quadratic equation for $x$ , we can immediately show

Theorem 1. $(i)IfR_{01}>1,$ then (2.10) has a unique positive root.
$(\mathrm{i})\mathrm{I}\mathrm{f}$ $R_{01}=1,$ then

$(iia)(\mathit{2}$ .10$)$ has a unique positive root provided $E_{1}>1,$ $whe’ \mathrm{r}e$

$E_{i}:=I$ $i$
$(\alpha_{j1}Q_{1}/(\alpha_{i1}+\alpha_{i2}), \alpha_{i2}Q_{2}/(\alpha_{i1}+\alpha_{i2}))$ ,
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while
$(iib)no$ positive root provided $E_{1}\underline{<}1.$

$(ii_{i}.)IfR_{01}<1_{f}$ then
$(\iota iia)(_{\sim}^{\varphi}.\mathit{1}\mathit{0})$ has two positive roots provided $E_{1}>1$ and $D_{1}>0,$ where

$D_{1}$ : $\{v_{1}(\alpha_{11}+\alpha_{12})+c_{11}Q_{1}\alpha_{1l}.+c_{12}Q_{2}\alpha_{11}\}^{2}(1-E_{1})^{\underline{9}}$

$-4v_{1}\alpha_{11}\alpha_{12}(v_{1}+c_{11}Q_{1}+c_{12}Q_{2})(1-R_{01})$ ,

(iiib)unique positive root provided $E_{1}>1$ and $D_{1}=0,$ and
(iiic)no positive root provided $E_{1}\leq 1$ or $D_{1}<0.$

Theorem 2. If $R_{0}<1,$ then the trivial steady state is locally asymptotically
stable, whereas it is unstable if $R0>1.$

We introduce a threshold parameter $R_{0i}^{*}$ defined by

$R_{0i_{1}}^{*}:=\Psi:_{1}(S_{1}(u_{i_{2}}^{*}), S_{2}(u_{i_{2}}^{*}))$ , $i_{1}\neq i_{2}$ , $i1$ , $i_{2}=1,2$ .

$R_{0i}^{*}$ is the reproduction number for species $i$ under the stationary occupation of
the other species.

Theorem 3. The (large) non-trivial single-species ’ steady state is locally asymp-
totically stable if $R_{02}^{*}<1$ and it is unstable if $R_{02}^{*}>1.$ Furthem $or^{\backslash }e$ the small
non-trivial single-species’ steady state (if it exist) is always unstable.

The results similar to Theorem 1-3 hold for species 2 by replacing $i=1$ by
$i=2.$

Moreover we define the basic reproduction number for species $i$ in the case
that only habitat $j$ exists by $R_{0ij}$ :

$R_{0ij}:= \frac{\frac{m_{l}c_{ij}\mathrm{J}}{\mu_{\iota j}}Q_{j}}{v_{i}+c_{ij}Q_{j}}$ .

Theorem 4. If Roij $\leq 1$ , $R_{0i}\leq 1$ , $i$ , $j=1,2$ , then the trivial steady state is
globally asymptotically stable.

Theorem 2, 3 are proved by the linearized stability argument and Theorem
4 is proved by using the Lyapunov function:

$V(u):= \sum_{i,j=1,2}\frac{m_{ij}}{\mu_{\dot{*}j}}P_{ij}+\sum_{i=1}^{2}L_{i}$ .

3 Coexistent Steady state
In this section, we consider the coexistent steady state, which corresponds to
a fixed point of the mapping $T$ in the interior of $\mathbb{R}_{+}^{2}$ . We have the following
existence theorem.
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Theorem 5. If $R0>1,$ $R_{01}^{*}>1$ and $R_{02}^{*}>1,$ then T has at least one fixed
point w $=(x, y)^{\tau}$ with both x $>0$ Gndy $>0.$

Proof. Let us define the bounded, convex and closed domain $U_{B}$ by

$U_{B}:=\{w=(x, y)^{\tau}\in H_{+}^{2} ; x\underline{<}B, y\underline{<}B\}$ .

and define the continuous mapping $T^{r}$ with a positive number $r(r<B)$ by

$T^{f}(w)=(T_{1}^{r}(w), T_{2}^{r}(w))^{\tau}$ ,

where

$T_{1}^{f}(w):=\{$
$T_{1}(w)$ , $x>r,$
$T_{1}(w)+r-x,$ $x\leq r,$

(3.1)

$T_{2}^{r}(w):=\{$
$T_{2}(w)$ , $y>r,$
$T_{2}(w)+r-y_{1}$ $y\leq r.$

(3.2)

The continuous mapping $T^{r}$ transforms $U_{B}$ into itself if $B$ is sufficiently large.
Therefore by the Brouwer’s fixed point theorem, $T^{r}$ has a fixed point in $U_{B}$ .
We note that the fixed point of $T^{f}$ is not on the boundary of $U_{B}$ .

In the following, we shall show that these fixed points of $T^{f}$ satisfies both
$x>r$ and $y>r$ if $r$ is sufficiently small.

We assume that every $T^{r}$ has a fixed point which satisfies $\min\{x, y\}\leq r$ for
all $r>0$ . Then we can construct a sequence $\{w_{n}\}_{n=1}^{\infty}=\{(x_{n}, y_{n})^{\tau}\}_{n=1}^{\infty}\subset U_{B}$

which are fixed points of $T^{\frac{1}{n}}$ and satisfy

$0< \min\{x_{n}, y_{n}\}\leq\frac{1}{n}$ , tz $\in$ N. (3.3)

By the BolzanO-Weierstrass theorem, there exists a subsequence $\{\cdot w_{n_{k}}.\}_{k=1}^{\infty}$. such
that $en_{\infty}=(x_{\infty}, y_{\infty})^{\tau}:= \lim_{karrow\infty}w_{n_{k}}\in U_{B}$ . Prom (3.3), we see that $x_{\infty}=0$

or $/\infty=0.$ If $x_{\infty}>0$ , $y_{\infty}=0,$ then from (3.1)-(3.2), we have

$T1$ $(w_{n_{k}})=$ $1$

$n_{k}$ ’ (3.4)
$T_{9,arrow},(w_{n_{k}})\leq y_{n_{k}}$ (3.5)

for sufficiently large $n_{k}$ . After dividing (3.4) by $x_{n_{h}}>0$ and letting $n_{k}$ go to
infinity, then we obtain

$\Psi_{1}(\frac{\alpha_{11}Q_{1}x_{\infty}}{1+\alpha_{11}x_{\infty}}, \frac{\alpha_{12}Q_{2}x_{\infty}}{1+\alpha_{12}x_{\infty}})=1,$

which is equivalent to the equation (2.10). Therefore $x_{\infty}--L_{1}^{*}$ follows, where
$L_{1}^{*}$ is the fifth element of $LL_{1}^{*}$ . After dividing (3.5) by $y_{n_{k}}$. $>0$ and letting $n_{k}$ go
to infinity, we obtain

$R_{02}^{*}=$ $\mathrm{I}_{2}$ $(S_{1}(u_{1}^{*})_{\iota}S_{2}(u_{1}^{*}))=$ I2 $( \frac{\alpha_{11}Q_{1}L_{1}^{*}}{1+\alpha_{11}L_{1}^{*}}, \frac{\alpha_{12}Q_{2}L_{1}^{*}}{1+\alpha_{12}L_{1}^{*}})$

$= \Psi_{2}(\frac{\alpha_{11}Q_{1}x_{\infty}}{1+\alpha_{11}x_{\infty}}, \frac{\alpha_{12}Q_{2}x_{\infty}}{1+\alpha_{12}x_{\infty}})\leq 1,$
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which contradicts $R_{0\underline{?}}^{*}>1.$

Next if $x_{\infty}--0$ , $y_{\infty}>0.$ $\mathrm{P}\mathrm{i}’ \mathrm{c}\mathrm{m}$ the similar manner, we obtain $R_{01}^{*}\underline{<}1$ ,
which also contradicts $R_{01}^{*}>1.$

At last let $x_{\infty}=y_{\propto)}=0.$ From (3.1)-(3.2), we have

$T_{1}(w_{n_{k}})\leq$ $\mathrm{t}$

$n_{k}$ ’ (3.6)
$T2(w_{n_{k}}.)\leq y_{n_{h}}$ (3.7)

for sufficiently large $n_{k}\in$ N, again. Since $x_{n_{k}}>0$ and $y_{\tau\iota_{k}}>0,$ dividing
(3.6)-(3.7) by $x_{n_{k}}$., $1n_{k}$ respectively, we have

$\mathrm{v}_{:}(\frac{(\alpha_{11}x_{n_{k}}.+\alpha_{21}y_{n_{k}})Q_{1}}{1+\alpha_{11}x_{n_{k}}+\alpha_{21}y_{n_{k}}}.’\frac{(\alpha_{12}x_{n_{k}}+\alpha_{22}y_{n_{k}})Q_{2}}{1+\alpha_{12}x_{n_{k}}+\alpha_{22}y_{n\kappa}}.)\leq 1$ , $i=1,2$ .

Letting $n_{k}$ go to infinity, it follows that

$R_{0i}=$ I $j(0,0)\leq 1$ , $i=1,2$ .

These inequalities contradict our assumption $R_{0}-- \max_{i=1,2}R_{0i}>1.$ Conse-
quently we know that there does not exist such a sequence $\{\prime w_{n}\}_{n=1}^{\infty}$ . Hence the
fixed point of $T’$

. satisfies $x>r$ , $y>r$ for sufficiently small $r$ and it is a fixed
point of $T$ with $x>0$ , $y>0.$ This completes the proof. $\square$

We remark that the conditions $R_{0i}^{*}>1$ of Theorem 5 must hold for every single
species’ steady state if it exist.

We can show the following uniqueness theorem by means of matrix calcula-
tion.

Theorem 6. Suppose the following four relations hold:

$\alpha:=\alpha_{11}\alpha_{22}-\alpha_{12}\alpha_{21}\mathrm{g}$ $0$ , $\beta:=\beta_{11}\beta_{22}-\beta_{12}\beta_{21}\neq 0,$

$\beta_{11}v_{2}\neq\beta_{21}v_{1}$ , $\beta_{12}v_{2}\neq\beta_{22}v_{1}$ ,

where $\beta jj:=(\frac{m_{ij}}{\mu_{\mathrm{t}}j}-1)c_{ij}$ Qj, Then $u_{c}^{*}$ is uniquel’y explicitely determined if it
exist.

4 Disctission
In Theorem 5, we have obtained the sufficient condition for the existence of
coexistent steady state. Theorem 5 tells us that even if $R_{02}\underline{<}1$ , the coexistent
steady state exists provided $R_{01}>1$ , $R_{01}^{*}>1$ and $R_{02}^{*}>1$ hold. $R_{02}\leq 1$ and
$R_{02}^{*}>1$ biologically means that species 2 seems to extinct if it solely exist, but
it can maintain its numbers owing to the existence of species 1.

Then we think that even if each species cannot exist solely, two species may
coexist owing to the presence of each competitors. Then we conjecture that the
coexistent steady state exists if $R_{0}\leq 1$ , $R_{01}^{*}>1$ and $R_{02}^{*}>1.$ In short, the
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coexistent steady state may exist if all single species’ steady states are unstable
(i.e. $R_{01}^{*}>1$ and $R_{02}^{*}>1$ ).

Our several results of two species and two habitats model can be extended
to understand the regional competition community of general number of species
and habit $\mathrm{a}\mathrm{t}\mathrm{s}$ .
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